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THE GELFAND-NAIMARK THEOREMS FOR C*-ALGEBRAS

by Robert S. Doran and Josef Wichmann

1. Introduction

Many of the Banach spaces which attract attention are at the same time

algebras under some multiplication. In spite of this fact their study from
this richer point of view was taken up only after the publication in 1932 of
Banach's book [6]. One of the early fundamental results in the general

theory of Banach algebras was a generalization of the classical theorem of
Frobenius that any finite dimensional division algebra over the complex
field is isomorphic to the field of complex numbers. S. Mazur [35] announced
in 1938 that every complex normed division algebra is isomorphic to the
field of complex numbers. Since the first published proof was given by
I. M. Gelfand [22] this result is often called the Mazur-Gelfand theorem
[43], [55]. As an immediate consequence one obtains the following beautiful
characterization of the complex field among normed algebras : any normed
algebra satisfying the norm condition || xy || || x || • || y || for all elements x
and y is isometrically isomorphic to the field of complex numbers.

Many important Banach algebras carry a natural involution. In the
case of an algebra of functions the involution is the operation of taking the

complex-conjugate and in the case of an algebra of operators on a Hilbert
space it is the operation of taking the adjoint operator. Motivated by these
observations the Soviet mathematicians Israel M. Gelfand and Mark
A. Naimark [23] proved, under some additional assumptions, the following
two theorems:

Theorem I. Let A be a commutative Banach algebra with involution
satisfying || x*x || || x* || • || x || for all x in A. Then A is isometrically
*-isomorphic to C0 (X), the algebra of all continuous complex-valued functions

which vanish at infinity on some locally compact Hausdorff space X.

Theorem II. Let A be a Banach algebra with involution satisfying
|| xvx I I x* || * I x || for all x in A. Then A is isometrically *-iso-
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morphic to a norm-closed *-subalgebra of bounded linear operators on some
Hilbert space.

The purpose of this paper is to present a thorough discussion of these

two representation theorems. We shall trace, as carefully as we have been

able, the interesting and rather tangled history which led to their present
form. Then proofs of the theorems will be given. Finally, we shall survey
some recent developments inspired by the theorems.

2. Definitions and motivation

A *-algebra is a complex associative linear algebra A with a mapping
x x* of A into itself such that for all x, y e A and complex X: (a) x**

x; (b) (2x)* 2x*; (c) (x + y)* x* + y*; and (d) (xy)* y*x*.
The map x -> x* is called an involution ; because of (a) it is clearly bijective.
A subalgebra B of A is called a *-subalgebra if x e B implies x* e B.

An algebra which is also a Banach space satisfying || xy II <1*1 -lb!
for all x and y is called a Banach algebra. A Banach algebra which is also

a *-algebra is called a Banach *-algebra. The involution in a Banach *-algebra
is said to be continuous if there is a constant M such that || x* || < M || x ||

for all x; the involution is isometric if || x* || || x || for all x.
A norm on a *-algebra is said to satisfy the B^-condition if || x*x ||

|| x* || • || x || for all x; a B*-algebra is a Banach *-algebra whose norm
satisfies the B*-condition. A B*-algebra with isometric involution clearly
satisfies the condition || x*x || || x ||2. On the other hand, if A is a Banach

*-algebra satisfying || x ||2 < || x*x || (in particular if equality holds), then
A is easily seen to be a B*-algebra with isometric involution.

The Banach space C (X) of continuous complex-valued functions on
a compact Hausdorff space is a commutative B*-algebra under point-wise
multiplication fg) (t) f(t) g (t), involution /* (t) /(t), and sup-
norm. Similarly, the algebra C0 (X) of continuous complex-valued functions
which vanish at infinity on a locally compact Hausdorff space is a commutative

B*-algebra.
Examples of noncommutative B*-algebras are provided by the algebra

B (.H) of bounded linear operators on a Hilbert space H. Multiplication
in B (H) is operator composition, the involution T -> T* is the usual adjoint
operation, and the norm is the operator norm || T || sup { || T £ || : || £ ||

< 1, £ e H }. A norm-closed *-subalgebra of B (.H) is called a C*-algebra;
clearly, every C*-algebra is a B*-algebra.
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