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SOME CONTRIBUTIONS OF BENO ECKMANN
TO THE DEVELOPMENT OF TOPOLOGY
AND RELATED FIELDS!

by Peter HILTON

INTRODUCTION

The work of Beno Eckmann in topology and related fields, extending
over a period of 35 years and continuing today just as actively as in those
early years, is marked by certain characteristic features which I will attempt
to describe in this introduction and to illustrate by selections from his
published work in the later sections of my talk.

If one is to look for the distinctive aspects of Eckmann’s contributions
to mathematics, one might attempt to summarize them as unification,
clarification and penetration. Eckmann has shown quite unique discernment
in identifying and developing the relationships between different parts of
mathematics; in particular, between algebraic topology on the one hand
and linear algebra, homological algebra, group theory and geometry on the
other. Simply to say that Eckmann has developed links between algebraic
topology and homological algebra is of course to understate the magnitude
of his contribution in this area. As a founder of homological algebra, he
has helped to forge the fundamental tools of the subject. However, Eck-
mann’s contribution in this direction will be discussed by Saunders MacLane
in his talk at this Congress, so that I will do no more than pay tribute to
the decisive positive influence that Eckmann has had on the development
of this important branch of algebra. I will myself be choosing some examples
from Eckmann’s publications to illustrate the relationships which he has
observed and studied between algebraic topology and the other subjects
which T have listed above.

I would like to add that Eckmann has always seen category theory as a
means of unification within mathematics. He was one of the earliest con-
tributors to the development of a point of view about mathematics which
is now so commonplace that young mathematicians find it difficult to believe
that it was certainly not obvious to the mathematicians of twenty years ago

') Presented at the Colloquium on Topology and Algebra, Zurich, April 1977.
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who had not come under the influence of Sammy Eilenberg or Saunders
MacLane. Moreover, it is possible that those same young mathematicians
perusing the literature may not have fully appreciated the significance of
Eckmann’s role in establishing the point of view to which I refer. Eckmann
1s not a professional categorist; on the other hand the unqualified benefit
of a categorical point of view has been clear to him from his earliest work
on group cohomology in 1945, and he has moreover encouraged the
development, and the broadening and deepening, of this point of view by
inviting to the research institute here in Ziirich active exponents of it.

Eckmann achieves clarification primarily by the limpid style of his
writing. In both his writing and his lecturing, he follows in the footsteps
of his own great teacher Heinz Hopf and himself constitutes a model for
his many students. It is difficult, if not impossible, by merely summarizing
his work, to demonstrate the clarity of his presentation. There is surely no
substitute for reading his own papers. However, it is possible, by taking
examples from his published work, to illustrate how very often Eckmann
shows what really lies behind an argument or a concept by stripping away
much of the superfluous technical detail. It is often the case that an argu-
ment in mathematics compels acceptance without really enabling the reader
to understand why the statement is true. (The “reader” may even be the
author of the argument himself!) Eckmann’s own arguments, expressed in his
particularly felicitous style of writing, are never of this kind, and, frequen-
tly, his papers have been devoted precisely to the clarification of an exis-
ting theory and its establishment in an appropriate mathematical context.

It is also characteristic of Eckmann to return to the topics of earlier
work in order to demonstrate progress made and the relevance of new
tools and techniques to the solution of classical problems. Examples of
this significant feature of his work will also be given below.

Of the penetrating nature of Eckmann’s work, it is surely unnecessary
for me to say a great deal. We would not be gathered here today at this
congress to do him honor were it not clear to all of us that his contributions
have had a profound effect on the development of our subject. But I would
also wish to include under this rubric the penetration of Eckmann’s under-
standing as evidenced by the facility he has to grasp. comprehensively, the
significance of new ideas introduced into mathematics.

I find myself in some difficulty in addressing the very congenial task
which the organizers of this congress have laid upon me. For, ever since the
late 1950’s, T have been very closely engaged in joint research with Beno
Eckmann. Indeed, over the 15-year period from 1958 to 1973, Eckmann
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published 37 papers of which 24 were joint papers with myself (and some-
times with a third collaborator, too, principally Urs Stammbach). This
long and fruitful collaboration is of course my own adequate testimony to
the high regard in which I have always held my good friend Beno Eckmann.
But it would perhaps contradict certain canons of good taste if I were to
cite our joint work in evidence of the depth of penetration of Eckmann’s
mathematical insights. Let me therefore only say of that work that I regard
my collaboration with Eckmann, and my previous apprenticeship as a
student of Henry Whitehead, as the two principal formative elements in
my own mathematical growth and maturity. I would only wish to add a
reference to the gratification which Eckmann and 1 felt that a leit motif of
our joint research, the heuristic duality which we uncovered at the heart
of homotopy theory and exploited, received recognition from Norman
Steenrod in his listing of principal themes of algebraic topology.

I have said that Eckmann remains as active in mathematical research
as ever. This is a source of great delight to us gathered here for this congress,
as also for the many mathematicians, all over the world, who derive benefit
from his contributions to the progress of our subject. For it is not enough
to say that Eckmann remains active; he remains effective, discriminating and
entirely contemporary. His most recent work, with Robert Bieri, on Poincaré
duality groups and a certain natural generalization of such groups, of which
you may hear from Bieri at this congress, exhibits all the qualities to which I
have already referred. It is a remarkable tribute to Beno Eckmann that one
may say of him that today, at the age of 60, he is still doing his best work.

But, as I feel sure Beno would himself agree, we have had enough of
generalities—it is time to get down to some mathematics!

I.  CONTINUOUS SOLUTIONS OF SYSTEMS OF LINEAR EQUATIONS

In [8; 1943] Eckmann considered the following problem. Suppose
given a system of r linear equations in n unknowns, r < n,

M

(1.1) Z aikxk = 0, i == 1,2,...,7‘ <n,

k=1
where the coefficients @, are continuous real-valued ') functions of a
variable u which describes some topological space U, which will usually

2

5 11; S]ckmann had considered the corresponding problem in the complex case in
; 1942].
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be supposed compact metric. A continuous solution of the system (1.1)
consists of n continuous real-valued functions x, (x) such that ’

2 ag(u)x,(u) = 0;

k=1
a system of solutions is linearly independent if, for each u € U, the solutions
are linearly independent in the usual sense; thus a single solution is linearly
independent if it vanishes for no value of u. Eckmann supposes the co-
efficient matrix (a;, (1)) to have maximum rank r for all u € U and asks how
many linearly independent solutions the system admits. In answer, he first
translates the problem into matrix language: Let 4, . map U to the space
of r x n orthogonal matrices.’) Can 4, , be extended, by adjoining rows,
to A4, ,,,? Clearly, if so, and if 4, , is obtained from the coefficient matrix
of (1.1) by orthogonalization, then (1.1) admits / linearly independent
solutions.

It is, however, Eckmann’s next step which we should emphasize. If

m = r + [, then we consider the fibre-map of Stiefel manifolds V,, , A Vs
with fibre V,_, ,_,. Of course, the manifolds V, , were not called Stiefel
manifolds in those days, but Eckmann naturally referred to Stiefel’s 1935
paper. Moreover, Eckmann spoke of the factorization or decomposition
(“Zerlegung”),

(12) Z: V;l,m/ V;i—r,m——r = I/n,r'

IffiX—=V,n
respect to Z, and the problem is to decide whether a givenmap 4, .: U — V.
is a trace with respect to Z. Plainly this is a homotopy question, depending
only on the homotopy class of 4, ,; plainly too a constant map 1s a trace.
It follows that if U is contractible then every system (1.1) of maximum rank
admits n — r linearly independent solutions—this is a theorem of Wazewski.

Let us now take U = S$% The problem is now one involving homotopy
groups, and Eckmann comes extraordinarily close to writing down the
homotopy sequence of the fibration (1.2); certainly he exploits it effectively,
If ¢ = n — 1, then we must study homotopy classes of maps 4, ,:S" !
— V, - By projection we get an element of =, _,; (V,, 1), that is, an integer c,
which we call the characteristic of A4, ,,, and it is immediate that a matrix
map 4, , exists, with ¢ = 1, if and only if there is an (m—1)-field on $"~'.
Thus if an (m—1)-field exists on S"~' every A, ,, occurs so that (1.1) has
m — r linearly independent solutions.

is a map, then f'is called the trace of F = Pf: X - V,,,, with

n,rs

1) We might expect the notation A4,; I have conserved Eckmann’s notation.
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One may show dy direct matrix arguments that, if m >2, then ¢ = 0
if n is odd (corresponding to the absence of a non-singular vector field
on S"~ 1) and that all even values of ¢ occur if n is even. The question
whether odd values of ¢ occur reduces to the question whether ¢ = 1 occurs
and this in turn leads to the consideration of the Hurwitz-Radon Theorem
(see Section 2). Eckmann uses the then existing, scanty knowledge of
homotopy groups of Stiefel manifolds to obtain special results (when
g # n — 1)-—we would do the same today, but would benefit from our
more extensive knowledge.

Indeed, Eckmann himself returned to the question 24 years later when
he lectured at a Battelle Rencontre in Seattle [67; 1968]. By this time, of
course, Adams had proved his celebrated Hopf Invariant One Theorem and
the properties of topological K-theory had been substantially developed.
Eckmann performed the significant feat of explaining the theory, and its
applications—to systems of linear equations, to the existence of (generalized)
vector products in R”, to the parallelizability of spheres, and to the existence
of almost-complex structures on spheres—of explaining all this to an audi-
ence dominated by theoretical physicists! What testimony to his clarity—
and courage!

2. A GROUP THEORETICAL PROOF
OF THE HURWITZ-RADON THEOREM

Immediately following the work discussed above, Eckmann produced
[9; 1943] a truly beautiful proof of the celebrated theorem on the composition
of quadratic forms. The problem is to determine, given n, those values of p
such that there exist n bilinear forms zy, ..., z, of the variables x,, ..., Xy
Y1 - YV With complex coefficients, such that the identity

(2.1) X+ +X) i+ +YY) = 2F 4+ .+ 22

holds. As formulated by Radon in 1923, the solution is the following. Let
n=u.2%"" with u odd and 0 < B < 3. Then we can find z,, ..., z, to
satisfy (2.1) if and only if p << 8« + 2%. Actually, Radon considered forms
with real coeflicients, but Eckmann showed explicitly in his proof that a
solution of (2.1) for forms with complex coefficients implies a solution for
forms with real coefficients. Eckmann’s proof is based on the classical
theory of (complex) representations of finite groups, together with certain
particular results, due to Frobenius and Schur, relating complex to real
representations. Before outlining Eckmann’s proof, let me quote Eck-
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mann’s own remarks justifying his sortie into this well-established field,
since it contains a key statement of his approach to what may be called the
systematics of mathematical exposition. Eckmann wrote:

“Es erscheint aus folgenden Griinden nicht tiberfliissig, zu den Beweisen
von Hurwitz und Radon noch einen dritten hinzuzufiigen: einmal ist unser
Beweis einfacher und kiirzer—dafiir operiert er aber mit weniger elementaren
Begriffen und Séitzen; ferner sind die Methoden von Hurwitz wie auch von
Radon ad hoc konstruiert und liegen auBerhalb der sonst in der Algebra
Ublichen, widhrend wir die Frage in die wohlbekannten Gedankenginge
der Darstellungstheorie einordnen, wo sie als schones Beispiel fiir die
Anwendung allgemeiner Sitze erscheint.” 1)

Once again the problem is first replaced by a matrix problem (this step
is, of course, common to all three proofs). Thus we seek p complex orthogo-
nal n X n matrices Ay, ..., 4,, such that A A, + A, 4, =0, ] # k. By
normalizing we may instead seek p — 1 complex orthogonal n X n
matrices 4y, ..., A,_ 4 such that

(2.2) Ap = =1, A A = —A AL k1 =1,2,..,p—1,k # 1.

Ignoring for the moment the orthogonality condition, Eckmann considers
the abstract group G, generated by (ay, a,,...,a,_q, €), subject to the
relations

(2.3) & = 1,a; = ¢, apa, = ea,ay, k,1 =1,2,...,p — 1,k # 1,

and investigates complex representations of G of degree n whereby ¢ is
represented by — /. The order of G is 27; if p = 2, G = Z/4 and the
problem is trivial, so we assume p >3. G has 2?7~ ! non-equivalent rep-
resentations of degree 1; by counting conjugacy classes it follows that,
if p is odd, G has an irreducible representation of degree f > 1 and, if p

is even, then G has 2 irreducible representations of degrees f, f' > 1. It is
p—1

easy to see (from standard theorems of representation theory) that f = 2 2

p—2

if p is odd, and that f = f* = 2 % if p is even. Moreover ¢ will be rep-
resented by —7 in these irreducible representations, since it cannot be

by “It seems, on the following grounds, not to be superfluous to add a third proof to
those of Hurwitz and Radon: on the one hand, our proof is simpler and shorter, although
it employs less elementary ideas and theorems; further, the methods of Hurwitz and
Radon were constructed in ad hoc fashion and lie outside the domain of standard algebra,
whereas we set the problem in the familiar framework of representation theory, where it
serves as a beautiful example for the application of general theorems”. (my italics).
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represented by 7. Thus the degree n of an arbitrary representation of G of
the required kind is given by

p—1 P2

(2.4) n=m.2 2% ,podd; n =m.2 ? ,peven.

It remains to determine which of those representations are equivalent
to an orthogonal representation—these will also, according to Frobenius-
Schur, be equivalent to orthogonal real representations. Corresponding

to an irreducible representation D of G, one computes S = X ¥ (97,
geG

where y is the character function. Then D is real-equivalent if and only if
S > 0; D is equivalent to its complex conjugate D if S < 0; and D is not
equivalent to D if S = 0. By a very beautiful application of the elementary
theory of complex numbers, Eckmann used this criterion to show that the
given irreducible representations of G (whereby ¢ is represented by —/)
are real-equivalent (that is, orthogonal-equivalent) if p = 7,0, 1 mod 8,
and not otherwise. If p = 3, 4, 5 mod 8 they are equivalent to their complex
conjugates; if p = 2, 6 mod 8 they are not. One may immediately deduce
the degrees of real-irreducible real representations of G, and hence show
that for a given n = u . 2", with u odd, the maximum value of p such that
there exists a real (orthogonal) representation of G' of degree n, in which
¢ 1s represented by — 7, is given by the rule:

t = 4o p = 8a + 1

I =40 4+ 1: p = 8a + 2

t =40+ 2: p = 8a + 4

t =40+ 3: p = 8u + 8.
This is the Hurwitz-Radon Theorem. Today we know that, when translated
into the language of vector fields on spheres, the Hurwitz-Radon number
p — 1 provides an upper bound on the number of vector fields on S" !

even without the linearity condition; this was, of course, proved by Adams
exploiting the techniques of topological K-theory.

3. COMPLEXES WITH OPERATORS

Here perhaps I trespass somewhat on Saunders MacLane’s territory.
But I do want to exemplify a characteristic feature of Eckmann’s thought,
whereby he passes freely to and fro between topology and algebra, gener-
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alizing both aspects in a constructive and purposeful way. In [33; 1953],
which was really the sequel to a pair of short papers [17, 18; 1947] which
had appeared some years earlier in the Proceedings of the National Academy
of Sciences, Eckmann considered a generalization of the algebraic con-
structions involved in studying the homology of covering spaces.

Let R be a unitary ring and let C be an R-complex (that is, a chain
complex such that each C, is an R-module and each boundary ¢: C, — C,_;
an R-homomorphism). Let J be an abelian group and let ® = Hom (R, J)
be the group of additive homomorphisms of R into J, turned into an R-
module by the rule

(3.1) (s@)(r) = @(rs),r,se R, p: R > J

If ¥ is a submodule of @ we say that the p-cochain f of C, with values in J,
is of type ¥ if, for each ¢, € C,, f (rc,), as a function of r € R, belongs to V.
It is easy to check that then the coboundary Jf is again of type ¥, so that
we may define the ¥-cohomology groups of C with coefficients in J, written
H{ (C,J). Among the examples which Eckmann gives of ¥Y-cohomology
are the following:

(a) If ¥ = &, we simply get the cohomology groups H? (C,J) of C,
regarded as a complex of abelian groups, with values in J.

(b) If J is an R-module and ¥ consists of the R-homomorphisms
from R to J, then a cochain of type ¥ is an equivariant cochain and
H{ (C,J) is just the equivariant cohomology group which we will write
simply as H? (C, J). Clearly we have here an isomorphism ¥ = J given by
¢ +> @ (1). This isomorphism suggests the general conclusion embodied in
the isomorphism (3.2) below.

(c) If Q is a subring of R and J is a Q-module, we may take ¥ to con-
sist of all Q-homomorphisms R — J. If C, denotes the complex C regarded
as a Q-complex, then Hy (C,J) = H? (Cy, J). Plainly, (c) generalizes (a)
and (b).

(d’) Let 4 be a group, B be a subgroup of A. If we take R = Z[A],
Q = Z [B] in (c) we obtain the group ¥ of functions { from A4 to the
B-module J such that s (ba) = by (a). The A-module structure on ¥ is
said to be induced by the B-module structure on J (it corresponds very

precisely to the induced representation of A, induced by the representation

of Bby J).
(d’") If 4 is a group and J an abelian group, and if R = Z [A] we may
take ¥ to consist of those functions ¥: 4 — J which vanish almost every-
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where on 4. The resulting cohomology group HJ (C, J) is called A-finite
and denoted H5_; (C,J). If J = Z, ¥ =~ Z [A]; an isomorphism (of
A-modules) is given by  — X ¥ (@) a” .

Eckmann unifies all those examples, coalescing them into example (b),
by means of the isomorphism

(3.2} H?(C,¥) = Hg(C,J),
| induced, at the cochain level, by '+ g, where
(3.3) g(co) = f(c)(1),ceC,, f: C, » ¥ (equivariant), g: C, > J ;

he then applies (3.2) in various contexts. The fact that the isomorphism
| (3.2) is now a commonplace certainly does not detract from its significance—
~ on the contrary!
'} Among the applications, let us mention the following. Les .S be a nice
topological space, so that we can construct covering spaces of S. Let B be
a subgroup of the fundamental group 4 of S, let Sy be the covering space
of S corresponding to B, let J be a B-module and let ¥ be the induced
A-module in the sense of (d"). We then have an isomorphism of singular
cohomology with local coefficients,

(3.4) H”(Sg,J) = H?(S, V).

A further, very significant application made by Eckmann in [33] and
further developed in [35; 1953] is to the (generalized) transfer. We will not
go into that here, but instead will turn to the theory of ends of groups.
If 4 is a finitely presented group and P a compact polyhedron with =, P
= A, then the ends of 4 may, following Hopf, be defined in terms of the

universal cover P of P; since they refer to the “infinite components” of P,
the theory of ends is only of interest if 4 is not finite. If C is the chain-

complex of some simplicial decomposition of P, then Specker proved that
H! (C, Z[4)) is a free abelian group whose rank is ¢ — 1, where e is the
number of ends !) of A. Indeed, one has

(3.5) H'(C,Z[A]) = H'(A,Z[A]) = D/D,,

where D is the group of (Fox) derivations from A4 to Z [A] and D, is the
subgroup of inner derivations. Now according to (d"") and (3.2), H' (C, Z[A4))

1) Hopf proved that, if 4 is not finite, then e can only take the values 1,2, ».
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=4 Hj_ﬁh (C, Z). But since the chain complex C/A4, obtained from C by
factoring out the operations of A, is of finite type, it follows that

(3.6) Hy +(C,Z) =H; (C,Z),

the first cohomology group of P with integer coeflicients based on finite

cochains, that is, on cochains which vanish on almost every simplex of P.

4. SPACES WITH MEANS

In his talk at the 1950 International Congress of Mathematicians [32],
the first international congress to be held after the second world war,
Eckmann addressed himself to the question of the existence on a topological
space X of a map u: X" — X, where X" is the n-™ cartesian power of X,
which should be symmetric in the n variables and should satisfy u (x, x, ..., x)
= x, x € X. He returned to the theme in the paper he presented on the
occasion of the celebration of the sixtieth birthday of Heinz Hopf [39;
1954], and it is therefore appropriate that I should refer to it here.

The methods used by Eckmann to study this problem were, of course,
those of homotopy theory; they are thus very different from those of
Aumann who first considered the problem in 1943. On the other hand, they
do enable one to investigate the more general concept of homotopy-mean,
whereby we understand that the map p is only required to satisfy the
conditions imposed above up to homotopy. This approach was explicitly
followed in the sequel [55; 1962] where, in collaboration with T. Ganea
and the present writer, Eckmann effectively gave a complete solution of
the problem, or, as one may say, killed it!

In [39], Eckmann showed that if X admits an n-mean, so do its homo-
topy groups and homology groups. So far as the homotopy groups are
concerned this is a “trivial” consequence, in the sense that it follows on
categorical grounds from the fact that the homotopy group functor is
product-preserving ; however, the argument relating to the (integer-valued)
homology groups was a rather subtle application of the Kiinneth Theorem.
Moreover, an n-mean, n >2, can only exist in a group if the group is
abelian, and then it exists (and is unique) if and only if the group admits
unique division by #. Indeed the #n-mean p: G" — G is simply

1
(4.1) U(X1, X0, 0y X,) = — (X1 +%X;,+...+X,) .
n
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Eckmann used this criterion in establishing that the homology groups of X
admitted an n-mean if X admitted an n-mean; and to show that if the
compact polyhedron X admits a (homotopy) n-mean for all n, then X is
contractible. He raised many questions, among them whether the existence
in such a space X of an n-mean for some n > 2 might imply the contracti-
bility of X. This question was answered positively in [55].

In that paper, the idea of an n-mean was first placed in its appropriate
categorical setting, so that the trivial (= categorical) aspects of the theory
of n-means could first be exhibited. In particular this permitted the des-
cription of the dual concept of an n-comean. However, insofar as groups
are concerned, the situation for the existence of n-comeans must be dis-
tinguished from that for the existence of n-means. Fix n > 2. Then in the
category of groups, only the trivial group admits an n-comean; in the
category of abelian groups, 4 admits an n-comean if and only if it admits
an n-mean. On the other hand, there are many compact polyhedra admitting
an n-comean; if m is prime to n and k > 2, and if X is the Moore sp‘ace
having Z/m as its single non-vanishing homology group in dimension £k,
then X admits an n-comean. On the other hand, the dual of Eckmann’s
result in [39] holds: if the compact polyhedron X admits an n-comean for
all n, then X is contractible.

Reverting to Eckmann’s question, one shows first that if X is a compact
polyhedron admitting an »n-mean, n > 2, then X is an H-space; that is,
X admits a continuous multiplication with two-sided unity element. How-
ever, Browder showed that such spaces satisfy Poincaré duality. Thus,
were X non-contractible, its top-dimensional (non-vanishing) homology
group H, X would be cyclic infinite, and therefore could not admit division
by n, contradicting Eckmann’s result in [39]. Thus the application of
Browder’s deep theorem kills the homotopy-theoretic interest of means in
compact polyhedra. It is pleasant to record that the obituary article [55]
was published in Studies in Mathematical Analysis and Related Topics,
symbolic testimony to the value of Eckmann’s constant search for relations
between the different branches of mathematics. But perhaps, like a famous
obituary of Bertrand Russell, the notice of the death of homotopy n-means
was premature. For localization theory, a powerful new tool in homotopy
theory, has rekindled interest in non-compact polyhedra, and there are
surely interesting examples of such polyhedra admitting n-means—for

: 1
example, Eilenberg-MacLane spaces for Z {—]-local spaces.
n
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5. SIMPLE HOMOTOPY TYPE

Our final example of Eckmann’s work brings us very much into the
modern era. It will be understood why I have eschewed the temptation to
deal with his very extensive contributions between 1958 and 1973 in detail.
However, in 1970, he published a paper with Serge Maumary [70], dedicated
to Georges de Rham, to which it will surely repay us to give some attention.

In 1950 Henry Whitehead recast in algebraic terms the theory of simple
homotopy types which he had introduced many years earlier. In this theory
one considers the collection of finite simplicial complexes ') homotopically
equivalent to a given complex X and introduces the finer classification of
simple equivalence into this collection. Whitehead showed that a single
invariant sufficed to classify homotopy equivalences modulo simple equiv-
alences; this invariant is now known as Whitehead torsion and is an element
of an abelian group constructed functorially out of 7, X. The importance
of this theory has come to be recognized more clearly in recent years with
the rise of differential topology and algebraic K-theory; indeed, the White-
head group Wh n, to which the Whitehead torsion belongs (x = 7, X) is
a quotient of K,; n. Chapman has proved the topological invariance of
Whitehead torsion using the techniques of infinite-dimensional topology.

In [70] Eckmann and Maumary give a purely geometric description of
the Whitehead group Wh X. They start with the classical description of a
simple equivalence s: ¥ — Y’ between finite cell complexes, as a sequence
of elementary expansions and contractions. For a given finite cell complex
X, they then introduce an equivalence relation into the family of maps
emanating from X with target a finite cell complex. Thus f: X - Y and
f': X — Y’ are equivalent if there exists a simple equivalence s: ¥ — Y’
such that sf ~ f'. Let 4 (X) be the set of equivalence classes thus defined.
One may introduce a binary operation into 4 (X)) by means of the homotopy
push-out—here we adopt a description equivalent to but not identical with
that of [70]. Thus letg: X — Y, h: X — Z be maps which we may assume
cellular. Replace one or both of g, 4 by cofibrations; this may be done by
the mapping cylinder construction. Thus, assume that g, 4 are cofibrations
and construct the topological push-out of g, A—this will be the double
mapping cylinder if g, 4 are embeddings in mapping cylinders:

1) There is no problem in replacing simplicial complexes by (finite) CW-complexes.




X—Y
(5.1) h u
¥ ¥
Z— M

Then if < g > stands for the class of g, etc., we define, from (5.1),
(5.2) <g>+ <h>= <ug >

Next one makes 4 a functor to sets, also by means of the homotopy
push-out: if f: X - X’ we take a cofibration g in the class < g > and
define

(5.3) Je <g> = <g>
from the push-dut
g
X - Y
(5.4 il
v v
X —Y
g

The fact that f,, is a homomorphism with respect to the addition (5.2) is
proved by purely categorical arguments; so too is the fact that A4 (X) 1s
an abelian monoid under the addition (5.2); of course the zero of 4 (X)
s < ly>.

Now let E(X) be the subset of A4 (X) consisting of classes < g > such
that g is a homotopy equivalence. It is plain that £ (X) is a submonoid;
however, it is actually an abelian group. First, £ is a functor, that is,
fEX < EX"if f: X —> X'. Second, let g: X — Y be a homotopy equiv-
alence with homotopy inverse g’: ¥ — X and set <h > =g, <g’' >,
h: X - Z, so that < h > e EX. Then from (5.1)-(5.4) it follows that

<g>+<h>=<gg>=<l1y>=0.

We have thus defined a functor E: P — 4b, where P is the category of
finite cell-complexes and Ab is the category of abelian groups. Finally,
Eckmann and Maumary prove that EX depends only on the 2-skeleton
of X; a general argument then enables them to deduce that E factors
through the fundamental group functor.
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The gain in conceptual simplicity achieved by this geometric viewpoint
1s substantial ; of course, the hard calculations remain to be done to compute
the Whitehead group. One may compare the achievement of this paper
with that of [34; 1953], in which Eckmann and Schopf produce a very
significant simplification and clarification of the concept of injective hull
of a module and a very easy, natural proof of its existence (first proved
by Reinhold Baer); or with a very recent paper [81; 1976], in which Eck-
mann gave a remarkably simple proof of the Dyer-Vasquez theorem that
the complement of a higher-dimensional knot S"~% < S", n >4, is never
aspherical unless the knot group is infinite cyclic (thus, if » > 5, unless
the knot is unknotted).

The story goes on. I have on my desk the latest manuscript, a joint
paper by Eckmann and Bieri, completed in the spring of 1977, entitled
“Relative Homology and Poincaré duality for group pairs”. As I have said,
Beno Eckmann remains active and effective—but more is true. The Eck-
mann touch remains as sure as ever!
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