| Issue 1-2: L'ENSEIGNEMENT MATHÉMATIQUE |  | 
            
              | Front matter |  | 
            
              | Front matter |  | 
            
              | Index |  | 
            
              | Front matter |  | 
            
              | Table of Contents | 1 | 
            
              | Front matter | 2 | 
            
              | Article: THE PROUHET-TARRY-ESCOTT PROBLEM REVISITED | 3 | 
            
              | Abstract | 3 | 
            
              | Chapter: 1. Introduction | 3 | 
            
              | Chapter: 2. Elementary Properties | 5 | 
            
              | Chapter: 3. Ideal and Symmetric Ideal Solutions | 7 | 
            
              | Chapter: 4. Related Problems | 14 | 
            
              | Chapter: 5. Perfect Solutions of Prime Size | 21 | 
            
              | Chapter: 6. Open Problems | 26 | 
            
              | Bibliography | 26 | 
            
              | Article: LE CODAGE DU FLOT GÉODÉSIQUE SUR LA SURFACE MODULAIRE | 29 | 
            
              | Abstract | 29 | 
            
              | Abstract | 29 | 
            
              | Chapter: 0. Introduction | 29 | 
            
              | Chapter: 1. La transformation des fractions continues | 31 | 
            
              | Chapter: 2. Le flot géodésique sur la surface modulaire | 34 | 
            
              | Chapter: 3. Une autre présentation du flot géodésique | 36 | 
            
              | Chapter: 4. Un système de coordonnées sur l'espace des réseaux | 37 | 
            
              | Chapter: 5. Le codage du flot géodésique | 39 | 
            
              | Chapter: 6. La constante de Lévy et le volume du fibré tangent à la surface modulaire | 43 | 
            
              | Chapter: 7. Un codage du flot géodésique sur un alphabet fini | 45 | 
            
              | Bibliography | 47 | 
            
              | Article: PROOF OF MARGULIS' THEOREM ON VALUES OF QUADRATIC FORMS, INDEPENDENT OF THE AXIOM OF CHOICE | 49 | 
            
              | Chapter: 1. Preliminaries | 50 | 
            
              | Chapter: 2. Proof of the Theorem | 53 | 
            
              | Appendix: Appendix: Recurrent points | 56 | 
            
              | Bibliography | 57 | 
            
              | Article: UNIMODULAR LATTICES WITH A COMPLETE ROOT SYSTEM | 59 | 
            
              | Chapter: 1. Introduction | 59 | 
            
              | Chapter: 2. Relationship with codes | 60 | 
            
              | Chapter: 3. The Witt class associated with a root system | 63 | 
            
              | Chapter: 4. Weight enumerators of finite scalar product modules | 69 | 
            
              | Chapter: 5. The deficiency | 72 | 
            
              | Chapter: 6. The tables | 73 | 
            
              | Chapter: 7. COMMENTS | 92 | 
            
              | Bibliography | 103 | 
            
              | Article: NOTE ON TABLE I OF "BARKER SEQUENCES AND DIFFERENCE SETS" | 105 | 
            
              | Bibliography | 107 | 
            
              | Article: CORRIGENDUM TO "BARKER SEQUENCES AND DIFFERENCE SETS" | 109 | 
            
              | Bibliography | 111 | 
            
              | Article: AN EXPOSITION OF POINCARÉ'S POLYHEDRON THEOREM | 113 | 
            
              | Chapter: 1. Introduction | 113 | 
            
              | Chapter: 2. Convex polyhedra | 116 | 
            
              | Chapter: 3. Conditions for Poincaré's Theorem | 125 | 
            
              | Chapter: 4. Developing maps | 136 | 
            
              | Chapter: 5. Defining a metric | 144 | 
            
              | Chapter: 6. Completeness | 148 | 
            
              | Chapter: 7. Algorithmic aspects | 156 | 
            
              | Chapter: 8. SPECIAL CASES | 161 | 
            
              | Chapter: 9. Literature review | 164 | 
            
              | Appendix: 10. Appendix | 167 | 
            
              | Bibliography | 169 | 
            
              | Article: ENUMERATIVE COMBINATORICS AND CODING THEORY | 171 | 
            
              | Abstract | 171 | 
            
              | Chapter: 1. REDUCTION TO ONE SPECIAL EQUATION | 172 | 
            
              | Chapter: 2. Coding theory | 173 | 
            
              | Chapter: 3. The code associated with f | 174 | 
            
              | Chapter: 4. ON THE LEAST VALUE OF f | 178 | 
            
              | Chapter: 5. The number of Hadamard matrices of order n | 179 | 
            
              | Chapter: 6. The number of proper 4-colorings of a graph | 182 | 
            
              | Bibliography | 185 | 
            
              | Article: CYCLIC DIFFERENCE SETS WITH PARAMETERS (511, 255, 127) | 187 | 
            
              | Bibliography | 192 | 
            
              | Rubric: BULLETIN BIBLIOGRAPHIQUE | 1 | 
            
              | Back matter |  | 
            
              | Back matter |  | 
            
              | Back matter |  | 
            
              | Back matter |  | 
            
              | Issue 3-4: L'ENSEIGNEMENT MATHÉMATIQUE |  | 
            
              | Front matter |  | 
            
              | Table of Contents |  | 
            
              | Front matter |  | 
            
              | Article: THE THEOREM OF KERÉKJÁRTÓ ON PERIODIC HOMEOMORPHISMS OF THE DISC AND THE SPHERE | 193 | 
            
              | Abstract | 193 | 
            
              | Chapter: 1. Introduction | 193 | 
            
              | Chapter: 2. Background and Definitions | 194 | 
            
              | Chapter: 3. Periodic Homeomorphisms of the Disc | 196 | 
            
              | Chapter: 4. Periodic homeomorphisms of the sphere | 201 | 
            
              | Bibliography | 203 | 
            
              | Article: UNITS OF CLASSICAL ORDERS: A SURVEY | 205 | 
            
              | Abstract | 205 | 
            
              | Abstract: Contents | 205 | 
            
              | Chapter: 1. Introduction | 205 | 
            
              | Chapter: 2. Elementary Properties | 208 | 
            
              | Chapter: 3. Finite generation: classical reduction theory | 209 | 
            
              | Chapter: 4. PRESENTATIONS I: THE THEORY OF TRANSFORMATION GROUPS | 222 | 
            
              | Chapter: 5. PRESENTATIONS II: INDEFINITE QUATERNIONS OVER THE RATIONALS | 227 | 
            
              | Chapter: 6. PRESENTATIONS III: $K_2$ | 229 | 
            
              | Chapter: 7. Cohomology | 231 | 
            
              | Chapter: 8. Congruence subgroups and normal subgroups | 236 | 
            
              | Chapter: 9. The Bass unit theorem | 238 | 
            
              | Chapter: 10. What is a unit theorem? | 242 | 
            
              | Bibliography | 246 | 
            
              | Article: AN ERGODIC ADDING MACHINE ON THE CANTOR SET | 249 | 
            
              | Abstract | 249 | 
            
              | Chapter: I. Introduction | 249 | 
            
              | Chapter: II. Ergodic measures for F | 255 | 
            
              | Chapter: ACKNOWLEDGMENTS | 266 | 
            
              | Bibliography | 266 | 
            
              | Article: ON HAUSDORFF-GROMOV CONVERGENCE AND A THEOREM OF PAULIN | 267 | 
            
              | Abstract | 267 | 
            
              | Chapter: Introduction | 267 | 
            
              | Chapter: Section 1 : Hausdorff-Gromov Convergence | 269 | 
            
              | Chapter: Section 2: The Proof of Paulin's Theorem | 277 | 
            
              | Chapter: Section 3: Convex Hulls | 285 | 
            
              | Chapter: Section 4: Concluding remarks | 286 | 
            
              | Bibliography | 288 | 
            
              | Article: LES RÉSEAUX DANS LES GROUPES SEMI-SIMPLES NE SONT PAS INTÉRIEUREMENT MOYENNABLES | 291 | 
            
              | Abstract | 291 | 
            
              | Abstract | 291 | 
            
              | Chapter: 1. Introduction | 291 | 
            
              | Chapter: 2. Rappels et preuve de la proposition 4 | 295 | 
            
              | Chapter: 3. Lemmes préliminaires | 299 | 
            
              | Chapter: 4. Preuve des résultats de l'introduction | 304 | 
            
              | Bibliography | 310 | 
            
              | Article: QUOTIENT OF THE AFFINE HECKE ALGEBRA IN THE BRAUER ALGEBRA | 313 | 
            
              | Abstract | 313 | 
            
              | Chapter: 0. Introduction | 313 | 
            
              | Chapter: 1. COUNTING DIAGRAMS | 316 | 
            
              | Chapter: 2. The abstract algebras | 324 | 
            
              | Chapter: 3. The Brauer representation | 329 | 
            
              | Chapter: 4. The cylindrical trace | 331 | 
            
              | Appendix: Appendix 1 | 340 | 
            
              | Appendix: Appendix 2: Restriction to the Temperley-Lieb algebra | 342 | 
            
              | Appendix: Appendix 3: The elements of A(4, 4). | 343 | 
            
              | Bibliography | 344 | 
            
              | Rubric: COMMISSION INTERNATIONALE DE L'ENSEIGNEMENT MATHÉMATIQUE (THE INTERNATIONAL COMMISSION ON MATHEMATICAL INSTRUCTION) | 345 | 
            
              | Chapter: PERSPECTIVES ON THE TEACHING OF GEOMETRY FOR THE 21st CENTURY  DISCUSSION DOCUMENT FOR AN ICMI STUDY | 345 | 
            
              | Chapter: 1. WHY A STUDY ON GEOMETRY? | 345 | 
            
              | Chapter: 2. Aspects of geometry | 346 | 
            
              | Chapter: 3. IS THERE A CRISIS IN THE TEACHING OF GEOMETRY? | 348 | 
            
              | Chapter: 4. Geometry as reflected in education | 349 | 
            
              | Chapter: 5. New technology and teaching aids for geometry | 350 | 
            
              | Chapter: 6. KEY ISSUES AND CHALLENGES FOR THE FUTURE | 351 | 
            
              | Chapter: 7. Call for papers | 356 | 
            
              | Rubric: BULLETIN BIBLIOGRAPHIQUE | 31 | 
            
              | Back matter |  | 
            
              | Back matter |  |