Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 40 (1994)

Heft: 3-4: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: LES,RESEAUX DANS LES GROUPES SEMI-SIMPLES NE SONT PAS
INTERIEUREMENT MOYENNABLES

Autor: de la Harpe, Pierre / Skandalis, Georges

DOl: https://doi.org/10.5169/seals-61115

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-61115
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 40 (1994), p. 291-311

LES RESEAUX DANS LES GROUPES SEMI-SIMPLES
NE SONT PAS INTERIEUREMENT MOYENNABLES

par Pierre DE LA HARPE et Georges SKANDALIS

ABSTRACT. We show that any lattice in a semi-simple connected real
Lie group G with trivial center and without compact factor is a group which
is not inner amenable. The results carry over to lattices in groups defined over
local fields of characteristic zero, and to some other cases.

RESUME. On montre que tout réseau dans un groupe de Lie réel G
connexe semi-simple de centre trivial et sans facteur compact est un groupe
non intérieurement moyennable. Les résultats s’étendent aux réseaux dans les
groupes définis sur des corps locaux de caractéristique nulle, ainsi qu’a
quelgues autres cas.

1. INTRODUCTION

Le premier objet de ce travail est d’obtenir le résultat suivant. Rappelons
qu'un réseau d’un groupe localement compact G est un sous-groupe
discret I de G tel qu’il existe sur I'\ G une mesure de probabilité G-invariante.
La notion de moyennabilité intérieure est rappelée au chapitre 2 ci-dessous.

PROPOSITION 1. Soit G un groupe de Lie réel connexe, semi-simple, de
centre réduit a un élément, et sans facteur compact. Alors tout réseau T
de G est non intérieurement moyennable.

Notons que ce résultat était déja connu quand G est de plus supposé simple:
lorsque G est de rang réel 1, voir [HaJ] pour le cas ou T est sans torsion

et [GiH] pour le cas général; lorsque G a la propriété (T) de Kazhdan,
voir [BeH].

Keywords: Groupes intérieurement moyennables, réseaux,

. ; groupes semi-simples.
1980 Mathematics subject classifications: 22 D 10, 22 E 40. P P
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La proposition 1 est une conséquence presque immédiate du résultat plus
technique ci-dessous. Dans un groupe G, on note e I’élément neutre
et Z(x, G) le centralisateur d’un élément x € G.

THEOREME A. On considere des groupes localement compacts Gy, Gr
et un réseau

I'CG=Gyg X Gr

ayant les propriétés suivantes.

(a) Le groupe Gpg agit par homéomorphismes sur un espace compact £
et il n’existe aucune mesure de probabilité Gy-invariante sur Q. De plus,
pour tout x € Gy tel que xZ% ne soit pas relativement compact dans Gy,
il existe une mesure de probabilité Z(x, Gg)-invariante sur €.

(b) Le groupe G posséde la propriété (T) de Kazhdan. De plus, pour
tout x € Gr — {e}, le centralisateur Z(x,Gr) n’est pas de covolume fini
dans Gr.

(c) Le groupe T N (Gy X {e}) est sans torsion.

Alors T n’est pas intérieurement moyennable.

Pour appliquer ce théoréme, considérons un ensemble fini non vide A4 ainsi
que, pour tout a € A, un corps local k, et un groupe algébrique affine G,
défini sur k,; on suppose G, connexe, simple, k,-isotrope, et de centre
réduit a {e}. On note G, le groupe des points k,-rationnels de G,. qui est
non compact [Mar, §1.2.3], et G le produit direct [, ., Ga.

On peut décomposer G en le produit Gy des facteurs de rang déployé un
('indice H indique que ces facteurs, au moins lorsque k, = R, agissent sur
des espaces hyperboliques) fois le produit G des autres facteurs (I’indice T
indique que Gr possede la propriété de Kazhdan). Les hypothéses du
théoreme A sont alors satisfaites (voir le chapitre 4 ci-dessous) et on obtient
le résultat suivant.

PROPOSITION 2. Soit G comme ci-dessus et soit 1"y un réseau de G
qui est sans torsion. Alors T’y est non intérieurement moyennable.

Si k, = R pour tout a € A, les composantes connexes des groupes G
de la proposition 2 coincident précisément avec les groupes G de la propo-
sition 1. (Voir par exemple [Zim, 3.1.6].)

On trouve au chapitre 4 une généralisation de la proposition 2.
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COROLLAIRE. Soit G comme a la proposition 2; on suppose de plus les
corps k., de caractéristique nulle. Alors tout réseau I’ de G est non
intérieurement moyennable.

Preuve. Les hypothéses du corollaire impliquent que I" est de type fini;
voir [Mar, Theorem IX.3.2.i et Remark (i) du n°® IX.1.2]; si k, = R pour
tout a € A, voir aussi [Ral, Remarks 6.18 et 13.21]. Or, en caracte-
ristique nulle, le groupe linéaire de type fini I" posséde nécessairement un sous-
groupe I'y d’indice fini qui est sans torsion [Sel]. Il en résulte que I'y n’est pas
intérieurement moyennable (proposition 2), et I' non plus (proposition 4
ou [GiH]). U

En présence de corps de caractéristiques non nulles, notons d’abord qu’il
existe des réseaux qui ne sont pas de type fini: c’est par exemple le cas
de ' = SL(2,F,[r]) dans G = SL(2,F,((?))), et plus généralement de tout
réseau non cocompact dans un groupe G de rang un sur un corps F,((?))
(voir [Lul] et [Lu2]). Notons aussi que le «lemme de Selberg» invoqué
dans la preuve du corollaire ne s’applique pas: par exemple, pour tout
sous-groupe I'y d’indice fini dans I' = SL (2, F,[¢]), le volume de G/T, est
égal a une série infinie convergente de la forme

1

G/Ty) = < . oo
HG Do) EF cardinal (T,

ou les I', sont certains sous-groupes finis de Iy [Ser, II.1.5], de sorte
que I'y a toujours de la torsion. ‘

Toutefois, étant donné un réseau I' d’un groupe G = ] «c 4 Ga comme a
la proposition 2, on peut encore montrer que I est non intérieurement
moyennable dans certains cas, comme (1) et (2) ci-dessous. Rappelons d’abord
que I' est produit direct de réseaux irréductibles, et qu’un tel produit est
non intérieurement moyennable si et seulement s’il en est de méme de chaque
facteur [BeH, Corollaire 3]. Il résulte donc de [Mar, Corollary I1X.4.4] qu’on
ne restreint pas la généralité de ce qui suit en supposant que les corps k, ont
tous la méme caractéristique; vu le corollaire précédent, on suppose cette
caractéristique non nulle. Ceci dit, on a es résultats suivants.

(1) Si tous les G, sont de rang déployé au moins 2, alors le réseau I a la
propriété (T) de Kazhdan, et n’est donc pas intérieurement moyennable.

(2) Si A = {a} est réduit & un élément, si k, = F,((?)) et si G, est de
rang déployé un, alors le réseau I" posséde un sous-groupe I'y d’indice fini qui
est un produit libre non banal (voir [Lul] et [Lu2]), donc T’y n’est pas
intérieurement moyennable [BeH], et I’ non plus (proposition 4 ci-aprés).
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Mais nous n’avons pas su éliminer en toute généralité I’hypothése sur les
caractéristiques dans le corollaire ci-dessus.

Si G est comme dans la proposition 2 ou son corollaire, les méthodes
utilisées pour montrer la non moyennabilité intérieure de T' s’appliquent a
d’autres sous-groupes qu’a des réseaux. Pour illustrer ces généralisations sans
trop alourdir notre rédaction, nous montrons au chapitre 4 un théoréme B,
qui est un raffinement du théoréme A ci-dessus, et qui implique le
résultat suivant. Sur un corps local k, on considére toujours la valeur
absolue x | x | associant & x le module (au sens de la théorie de la mesure
de Haar) de 1’automorphisme yt xy du groupe additif de k. Dans la
proposition qui suit, on ne fait aucune hypothése sur la caractéristique de k.

PROPOSITION 3. On considére un entier d > 2, un corps local k et
un sous-groupe S du groupe G = PGL(d, k). De plus,

sid = 2 on suppose que S ne contient pas de sous-groupe résoluble
d’indice fini, et qu’il existe dans S un élément représenté par une
matrice de valeurs propres \q,he telles que |Ao|<|Ao!,

sid > 3 on suppose que S contient un réseau de G.

Alors S est non intérieurement moyennable.
Par exemple, pour tout d2>2, le groupe PSL(d,Q) n’est pas
intérieurement moyennable.

Si T' [respectivement S] est un groupe comme dans 1’un des résultats
précédents, la non moyennabilité intérieure de ce groupe implique que son
algébre de von Neumann est un facteur plein. (Ceci grace a un résultat di a
Effros [Efr]; voir aussi I’observation (1) a la fin du §1 de [BeH].)

Pour montrer ces résultats, on utilise des propriétés élémentaires (relatives
a la contenance faible) de I’induction des représentations unitaires. Avant la
preuve, nous rappelons quelques-unes des notions en jeu. On utilise enfin (dans
la preuve du corollaire) le résultat suivant. Il généralise le théoreme 1 de [GiH]
en ceci que I' n’est pas nécessairement supposé €tre de type fini.

PROPOSITION 4. Soient I un groupe et ©I'y un sous-groupe d’indice
fini. On suppose que 1" est intérieurement moyennable et cci (c’est-a-dire
que ses classes de conjugaison autres que {e} sont toutes infinies).
Alors T, est aussi intérieurement moyennable.
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2. RAPPELS ET PREUVE DE LA PROPOSITION 4

Soit G un groupe localement compact, avec élément unité noté e. Dans la
suite, on entend par «représentation» de G une «représentation unitaire
continue dans un espace de Hilbert complexe». On désigne par 1s la
représentation unité de G dans P’espace de dimension 1.

Soit H un sous-groupe fermé de G. Pour toute représentation n de H, on
désigne par Ind f,(n) la représentation de G induite de n. (Voir ci-dessous les
rappels dans la preuve du lemme 4.) Lorsque © = 1, on obtient la représen-
tation quasi-réguliere de G associée a l’espace homogene H\G; si de
plus H = {e}, on obtient la représentation réguliére droite de G, notée pg.
Si r et ' sont deux représentations de G, la notation © < ©” (respectivement
n ~ n') indique que la représentation m est faiblement contenue dans w’
(resp. est faiblement équivalente a '); pour ces notions, voir [Dix].

Le groupe G est dit moyennable si 1, < pg; il v a de nombreuses autres
définitions équivalentes (voir par exemple [Gre] et [Eym]). Un groupe de Lie
réel connexe semi-simple est moyennable si et seulement s’il est compact: c’est
un résultat qui remonte a Furstenberg [Fur].

Considérons plus particuliérement le cas d’un groupe discret, noté I'. Si X
est une partie de I' invariante par conjugaison, on introduit I’espace /2(X)
des fonctions I' = C de carré sommable & supports dans X et la représen-
tation ar x de I' dans /?(X) définie par

(ar,x(7)€) (x) = &E(y ~'xy)

pour tous yel, £e/?(X) et xe X. Lorsque X =T — {e}, on écrit
simplement or. Le groupe I' est dit intérieurement moyennable si 1 < or.
Il y a plusieurs autres définitions de cette notion [BeH], mais il faut de
plus noter que certains auteurs utilisent les mémes mots pour une notion
distincte [Pat, page 84].

Rappelons deux des conditions standard suffisantes pour qu’un groupe I
soit intérieurement moyennable. La premiére est qu’il posséde une classe de
conjugaison finie et distincte de {e}, c’est-a-dire que o contienne la
représentation unité 1 au sens fort. La seconde est que I' soit moyennable et
non réduit a {e}. (L’argument usuel apparait dans [Gre, Lemma 1.1.3]; une
variante apparait ci-dessous aprés le lemme 4.)

Il existe par ailleurs des groupes intérieurement moyennables non
moyennables: c’est le cas d’un produit direct I'o X I'y lorsque T’y est non
moyennable et lorsque I'; est moyennable non réduit & un élément.
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Toutefois, de nombreux «exemples naturels» de groupes non moyennables
sont aussi non intérieurement moyennables, et les résultats de la présente note
fournissent des illustrations supplémentaires de ce fait.

Soit I’y un sous-groupe d’indice fini d’un groupe I' intérieurement
moyennable. Il se peut que I'y ne soit pas intérieurement moyennable
(exemple: T' =Ty X I'; avec I'; fini non réduit a3 un élément). Toutefois,
lorsque I' est de plus cci (ou, en toutes lettres, a classes de conjugaison infinies),
on a les lemmes suivants, desquels découle la moyennabilité intérieure de I'y
(proposition 4).

Introduisons d’abord quelques notations. On désigne par ['(I)
I’algébre de convolution des fonctions sommables de I' dans C, qui
est une algébre de Banach pour la norme définie par [§ ;= ¥, . |&M)|.
Comme I' est discret, tout élément & € /!(I') posséde aussi des normes
lel=(X,cr 6@ 1) et |&]w =supyer|&@)| qui sont finies.
Pour & € /1(I') et v € I', on définit ’adjoint £* € /(') et I’opérateur a(y)
sur /1T par

E*¥(x) =&E(x 1)
(@) &) (x) = E(v ~'xv)

pour tout x € I'. On désigne par /!(I')y, le convexe de /!(I') formé des
fonctions & a valeurs positives, telles que & (e) = 0, et de norme | € ||, = 1.

La moyennabilité intérieure de I' se traduit [BeH] par I’existence d’une
suite (§,),>1 dans /(') (J{ , qui est asymptotiquement invariante au sens ou

lim [a()&, — &[] =0

h— o

pour tout y € I.

LEMME 1. Si T' est intérieurement moyennable et cci, il existe une suite
asymptotiquement invariante (£,),>1 dans ['(I') 3,1 ayant les propriétés
suivantes.:

(i) &, esta support fini pour tout n > 1,
(ii) lim,-o|&x]e =0,
(iii) lim, - o | & ]2 = 0.

Preuve. Soit (§;) > 1 une suite asymptotiquement invariante de /(') ;.

Premier pas. Montrons d’abord que, pour tout xeI on a
limk_, - g,’{’(X) = 0.
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Pour cela, choisissons un entier ¢ > 2. On peut trouver y;,...,Yc €T
tels que les €éléments vy, "XY1, e Y 'xv. sont distincts deux & deux. Il existe
aussi un entier k, assez grand pour que |o(y;)&; — < ¢! pour
tout j € {1, ..., c} et pour tout kK > k,. Par suite &,’c’(yj—lxyj) > &/ (x) —c!
pour tout je{l,...,c}, donc 1 =[|E/ [, =c&/(x) —1 et £/(x) <2c~!
pour tout k > ko. L’entier ¢ étant arbitraire, la suite (£, (x))x > tend bien
vers 0.

Deuxieme pas. Le sous-ensemble de /!(I'),, formé des fonctions &
supports finis est dense dans /!(I') ;. On ne restreint donc pas la généralité
de ce qui suit en supposant a priori les fonctions §; & supports finis. Soit
alors (k,),>1 une suite strictement croissante d’entiers strictement positifs.
Pour tout n > 1 on pose

S, = U support (&,’é_) cr

1<j<n
(c’est une partie finie de I') et on note x, la fonction caractéristique de S, .

Montrons que, pour un choix convenable de (k,), > 1, on peut définir une
suite asymptotique invariante (§,),>; de /() 5’ , de n-ieme terme

Er= Gk —Ei -0 &L = &L xnoa |l
(avec %o = 0) de telle sorte que les supports des & sont alors finis et disjoints
deux a deux.
On pose k; =1, donc &; = &', puis on procede par récurrence sur z
en supposant &, ..., &, _, déja définis. Par le premier pas, on a
lim ) E&/(x)=0.

k= o xe8,_ 4

On peut choisir k, > k,_; tel que

1
Y Bl <-=
X e S,, -1 n
c’est-a-dire tel que | &; — &7 %,_1[: > "~. La définition ci-dessus de &’

a donc un sens, et la suite (&n)n >t a ev1demment les propriétés annoncées.
Troisieme pas. Soit (§,), > la suite définie & la Cesaro par
_/ =1

Cette suite satlsfalt ¢videmment les conditions (i) et (ii) du lemme (on a

méme | £, [« <5 pour tout n > 1). Comme |[&|2<|&],|& | pour tout
£ ell(l), elle satlsfalt aussi la condition (iii). [
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LEMME 2. Soit T un groupe intérieurement moyennable et cci, et soit
(&n)ns1 une suite asymptotiquement invariante de ['(I') 5”,1 possédant les
propriétés du lemme 1. Soit (M,)n,>1 la suite définie par m, =E&* % &,
et soit T’y un sous-groupe de T d’indice f = [I':T,] fini. Alors

1

n—= o yely- {e} f

Preuve. Désignons par y,: I — {0, 1} la fonction caractéristique d’une
classe a gauche s e I'/T";,. Posons

T={(x,»)) eT xT|x'yelyt= 1II (sTy X sTy)

sel /Ty

ou II désigne une réunion disjointe. Pour tout # > 1 on note n/, la restriction
den,aly,.Ona

In,li= Y &&= Y Y Ears) ) Enxs) ()

(x,y)eT sel/Ty xel,yeTl

= Z (“&HXSNI)Z

sel /Iy
ainsi que
: 1
L=]g. 0= X Hinxslll<( ) (U&nxslll)z)zl/f=(iln; 1f)?
sel /Ty sel /Ty

(on a utilisé I’inégalité de Cauchy-Schwarz pour la somme sur I'/T).
Par suite

un;u%

pour tout n > 1. Par ailleurs, il résulte du lemme 1 que m,(e) = | &, |3
tend vers O lorsque n tend vers l’'infini. La conclusion du lemme 2 en
résulte. [

Notons que les lemmes 1 et 2 ci-dessus sont des raffinements des
lemmes 3 et 4 de [GiH].
Dans la situation du lemme 2, posons de plus

Cn =Mn — nn(e)6

pour tout n > 1, ou & désigne la fonction caractéristique de {e} dans I". Notons
¢! la restriction de {, a Ty et | (.|l sa norme dans /!(T'y). Le lemme 2 se




RESEAUX ET MOYENNABILITE INTERIEURE 299

reformule en les inégalités ||/ > f~', et on peut définir une suite
asymptotiquement invariante (| C, |~ ')n>1 dans /1(I) {;,1. Il en résulte
que [, est intérieurement moyennable, ce qui achéve la preuve de Ila
proposition 4.

3. LEMMES PRELIMINAIRES

Soit d’abord T un groupe discret. Notons Cornj’(I') ’ensemble des classes
de conjugaison de I distinctes de {e}. Avec les notations du début du chapitre
précédent, on a

Or = @ ar, c

C € Conj’(I')

ou @ désigne une somme orthogonale. Pour tout C € Conj’(I'), choisissons
de plus un élément yc € C; notons Zr = {Yc}cecony(ry le sous-ensemble
de I' ainsi spécifié. Pour tout C € Conj’(I'), la classe C s’identifie a
I’espace homogéne Z(y-,I')\I" et on a

T
Or,c = Indz(yC, ) A Z(ve, F))

ou Z(yc,I') désigne le centralisateur de y- dans I' et ou = indique I’équi-
valence unitaire des représentations. On a donc

r
Or = @ Indz(y,r) (Izy,my) -

yeZr

LEMME 3. Soit T un réseau dans un groupe localement compact G.
Si ' est intérieurement moyennable, on a

e < @ Ind3, o (1z¢4,6)) -

Yy e ?)‘r

Preuve. Par hypothése, on a

T
Ir < @ IndZ(y,F) (ze,my) -
ve #r
En induisant a G on obtient

Ind?(lr) < @ Indg(y,r) (Iz¢4.m)) -

vye”r

Par ailleurs, 14 est une sous-représentation de Ind? (1), car I" est un réseau
dans G. La conclusion résulte donc de I’assertion (ii) du lemme suivant. [

Le lemme qui suit est essentiellement le «principe de majoration de
Herz» [EyL].
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LEMME 4. Soient {H;}j., et {H}};c, deux familles de sous-groupes
Jermés d’un groupe localement compact G telles que H i CH; pour
tout jelJ.

(i) S’il existe pour tout j € J une représentation unitaire T ; de H;
telle que 1, < @jejlndgj(nj), alors 1g < @jejlndgj(lHj).

(i) Si 1lg <@jesIndg(ly), alors 16< @;c,Indg (1x).

Preuve. (a) Précisons le modéle considéré ici pour les représentations
induites en rappelant ceci. On considére d’abord un sous-groupe fermeé H
de G et une représentation n de H dans un espace de Hilbert 777 .

On choisit une mesure p sur ’espace homogene H\ G dont la classe est
invariante par I’action a droite de G. (On peut par exemple prendre I’image
par la projection canonique G — H\ G d’une mesure de probabilité sur G dans
la classe de la mesure de Haar.) Pour tout g € G, on a donc une dérivée de
Radon-Nikodym décrite par I’application

A { (H\G) x G =R,

’ dp(s8)
(S:g) = dp (s)

satisfaisant I’identité de cocycle A(s, gg’) = A(s, g) A(s8, g’).

On introduit I’espace vectoriel L2(G, 77;)" des applications mesurables
£:G— 77, (modulo I’égalité presque partout) qui sont H-é€quivariantes,
c’est-a-dire telles que

E(h—'x) = n(h)&(x) pour tout & € H et presque tout x € G

et de carré sommable au sens ou

s | €x) [2dn(x) < oo ;
H\G

comme || € (x) |2 ne dépend que de la classe x = Hx de x, on a commis ’abus
d’écrire ce nombre | € (x) 2. L’espace L2(G, 7,)# est muni d’un produit
scalaire défini par

<tElg > = s <E(X) | &' (x) > dp(x)
H\G

qui en fait un espace de Hilbert.
On définit la représentation 7 = Ind $(n) de G dans L*(G, 2#,)H par

(m(2)€) (x) = E(xg)A(x, g)!/?
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pour tous ge G, &€ LG, 2#;)" et xe G (avec x = Hx € H\G). On
vérifie que 7 est bien une représentation de G, car A est un cocycle, et qu’elle
est bien unitaire, car (en posant y = x£)

N

In (g€ = IE(xe) [2A(X, g)dp(x)
v H\G

Y

= e IPAGE ", ) A, g~ du(y)

VvV H\G

N

= I E) [2du(y)
vV H\G

=] &>
pour tous g € G et £ € L2(G, 7/7)" .

(b) Montrons d’abord I’assertion (i) du lemme lorsqu’il n’y a qu’un
sous-groupe H de G. Posons ¢ = 15 et 6 = Ind,G,(lH). L’application de
composition avec la norme de 775 s’écrit

N‘{ LG, 7)) = L*(G, 5 = O)F
e » G- xmfemD.

Elle est G-équivariante (via les représentations m et o), lipschitzienne
de rapport 1, et [ N(&) | = | &€ | pour tout & € L2(G, 2,)".

Dire que 15 < 7, c’est dire que, pour toute partie compacte K de G et
pour tout nombre € > 0, il existe une fonction & = &g . € L2(G, 575)" telle
que | €| = 1 et telle que

sup | m (k)€ - E]<ce.

keK
Ces propriétés impliquent qu’on a aussi | N(§) [ = 1 et
sup [ 6 (F)N(E) - N(&) | <e.
keK

I en résulte que 15 < 6.

(c) On montre le cas général de I’assertion (i) grace au méme argument,
en utilisant une application

. { ®jes LG, 7)1 = ®@;c;L*(G, C)H
(§))jes ¥ (N;i&)jes

avec N; comme dans (b) pour tout j € J.
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(d) L’hypothese de (ii) s’écrit aussi

16 < @ Ind,ij(lndzj;(l,,;))

jeJ

de sorte que D’assertion (ii) est un cas particulier de (i). [

Remarque. Pour illustrer le lemme 4, répétons 1’un des arguments
montrant qu’un groupe I' qui est moyennable et non réduit a {e} est aussi
intérieurement moyennable. Rappelons que I' est moyennable si et seulement
st 1p< pr.

Pour foute classe de conjugaison C C I' — {e}, si on choisit un élément y
de C, on a (avec les notations comme au chapitre 3)

lIr< pr = I”dg(y,r) Pzy,r)-

Le lemme 4.i implique qu’on a aussi
r
1r<< ]ndZ(y,l") IZ(y,F) = 0r,c -

On a donc a fortiori 1r < ar.

LEMME 5. Soit G un groupe localement compact qui posséde la
propriété (T) de Kazhdan et soit (H;);., une famille de sous-groupes
fermés de G. On suppose que, pour tout jeJ, il n’existe aucune
mesure de probabilité G-invariante sur [’espace homogene H;\G. Alors

6K @ Ind, (1) .
jelJ

Preuve. Supposons par I’absurde que ’on ait 15< ®jejlndgj(lﬂj).
Comme G a la propriété (T), la contenance aurait lieu au sens fort. Comme
la représentation 1, est irréductible, il existerait j € J tel que 14 soit une
sous-représentation de Indgj(lHj), c’est-a-dire que H;\G possede une
mesure de probabilité G-invariante, contrairement a I’hypothése. [

LEMME 6. Soit G un groupe localement compact agissant contintiment
dans un espace compact Q et soit (H;)jc,; une famille de sous-groupes
fermés de G. On suppose qu’il n’existe aucune mesure de probabilité
G-invariante sur €, et qu’il existe pour tout j € J une mesure de proba-
bilité H;-invariante v; sur Q. Alors

lo X @ Ind§ (1) .

JjedJ
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Preuve. On convient ici que ’action de G sur Q est a droite.

Pour tout j € J, on choisit une mesure de probabilité p; sur H;\ G qui est
quasi-invariante par G (voir la preuve du lemme 4). On introduit I’espace de
Hilbert

= B L*H\G, )

jeJ

de la représentation @ ;.,Ind gj(l ;) ainsi que sa spheére unité 1. On
introduit aussi I’espace Prob () des mesures de probabilité¢ sur Q, muni de
la topologie vague; c’est naturellement un G-e$pace compact. Nous allons
définir en deux temps une application

H1 — Prob(Q)

S m Vs
lipschitzienne et G-équivariante.

Dans un premier temps, on introduit pour tout j e J le G-espace
Mes , (H;\ G) des mesures positives finies sur H;\ G, ainsi que I’application
{ L2(H\G, u;) = Mes . (H;\G)

Ji > wy, =S 17,
qui est évidemment lipschitzienne sur les parties bornées. De plus, comme G
agit a gauche via Ina’f,j (1g,) sur L*(H;\ G, ;) et a droite sur Mes, (H,\ G),
on a (avec des notations dont nous espérons le sens évident au lecteur)
dWrg-1n5,(X) =] f;(x2) [P A(x, g)du,; (%)

= | fj(x2) [2dp;(x¢)

= d((us,)¢) (X)
pour tout g € G.

Dans un second temps, on introduit le sous-espace

[1' Mes,(HN\G) ¢ [] Mes,(H\G)

jed jelJ
formeé des familles (X;);., telles que L MHNG) < o, ainsi que
I’application de convolution
{ [1,., Mes . (H\G) - Mes., (Q)
A)jes P LiesVixh,

ou

Vix ;= s‘ (v,)Edr;(g) .
HA\G

J
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Pour tout g € G de projection canonique ¢ € H,\ G, I'image (v ;)& par g de
la mesure v; sur Q ne dépend que de g, et nous avons noté (v j)é cette mesure
image. Il est & nouveau évident que (A;)— Y v, » A; est une application
lipschitzienne, et qu’elle est G-équivariante pour les actions a droite naturelles
de G a la source et au but.

On obtient par composition ’application 277 — Prob () annoncée, qui
applique un vecteur unité f = (f;), sur la mesure de probabilité

jeJ

vi= L s v)ELfi (@) [2du,(g) -
H\G

Supposons alors qu’on ait
16< @ Ind§, (1u) .

jeJ
Il existerait dans 277 une suite de vecteurs

(fn)n;l = ((fj,n)je])n>1

asymptotiquement G-invariante au sens ou

lim sup ¥ | Ind$§ (1) k=) (fin) = fin |2 =0

n—>o kek jeld
pour toute partie compacte K de G. Il en résulterait que la suite corres-
pondante (vr, ),>1 de Prob(Q) serait aussi asymptotiquement invariante au

sens ou

=0

lim sup || (v )% — vy,

n—- o kek

pour toute partie compacte K de G. Quitte a passer a une suite extraite, on
obtiendrait a la limite une mesure de probabilité G-invariante sur Q, en
contradiction avec les hypothéses du lemme. L’hypothése de contenance faible
ci-dessus est donc impossible, et la preuve est achevée. [

4., PREUVE DES RESULTATS DE L’INTRODUCTION

Enoncons d’abord le raffinement suivant du théoréme A.

THEOREME B. On consideére des groupes localement compacts Gy, Gr
un réseau

I'CG=GygXxXGr

et un sous-groupe S de G contenant T', ayant les propriétés suivantes.
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(a) Le groupe Gy agit par homéomorphismes sur un espace compact Q
et il n’existe aucune mesure de probabillité Gy-invariante sur Q. De plus,
pour tout x € Gy — {e} tel que (x,e)e S, il existe une mesure de
probabilité Z(x, Gy)-invariante sur Q.

(b) Le groupe Gr possede la propriété (T) de Kazhdan. De plus, pour
tout x € Gr — {e}, le centralisateur Z(x,Gr) n’est pas de covolume fini
dans Gr.

Alors S n’est pas intérieurement moyennable.

Preuve. Notons Br la restriction a I' de la représentation o g définie au
chapitre 2. Soit ¥ un systéme de représentants des orbites de 1’action de T’
sur S — {e} par (y,s)— ysy~!. On a

Br = @ I”dg(s,r)(ll(s.r)) .
SEL
Si S était intérieurement moyennable, on aurait 15 < ag, donc 1 < By par
restriction a I'. 11 suffit donc de supposer que 1+ < Br et de montrer qu’on
obtient une contradiction.

Si on avait 1< Br, on aurait par induction de I' &8 G (comme au
lemme 4) la relation
(%) lo < @ md§, g z60) -

seXL
Pour tout s € X, écrivons
S=(Su,ST)EXLCSCG=0CgXGr.
Posons
TH =Y N (Gy X {e})
ainsi que
XT=% - XH,

Le membre de droite de la relation (%) se décompose naturellement en une
somme de deux termes, chacun étant lui-méme une somme sur 'un des
ensembles X, X7, Or une relation de contenance faible de la forme
Ir< @1<nen (M) ou N est un nombre fini implique que 1 < 7w, pour ’'un
des n au moins. Il résulterait donc de (x) que ’une au moins des relations

(%n) lg < @ IndS, 61z 0)
serH

(*7) e < @ Ind3 5 (126 6))
sexT

aurait lieu.
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Supposons d’abord que (x7) ait lieu. Pour tout s = (sy,sr) € X7,
posons

H(s) = Gy X Z(s1, Gr) .
Le lemme 4.ii implique que 1’on aurait

lg < @ I”dg(s)(lH(s))

sexT

et donc aussi la relation équivalente

lGT < @ Ind (ST GT)(IZ(ST GT))

sexT

Comme s; # e pour tout s € X7, les hypotheses du théoréme stipulent
que Z(s7, G7) n’est pas de covolume fini dans G+. La derniére relation de
contenance faible ci-dessus serait donc en contradiction avec le lemme 5.

Supposons alors que la relation (x g) ait lieu. Le méme argument que plus
haut implique que I’on aurait aussi

seXH

Vu les hypothéses du théoreme B, il existe sur € une mesure de proba-
bilit¢ Z(sy, Gy)-invariante. La derniére relation de contenance faible
ci-dessus serait alors en contradiction avec le lemme 6 appliqué a8 Gy agissant
sur Q. [

Preuve du théoreme A. 11 suffit de vérifier que les hypotheéses
du théoreme A impliquent celles du théoréme B lorsque S =1TI. Soit
x € Gy — {e} tel que (x,e) € I'. L’hypothése (c) du théoréme A implique
que x est d’ordre infini; comme I" est discret dans G, cela implique que x?
n’est pas relativement compact. L hypothese (a) du théoréme A implique donc
I’hypotheése (a) du théoreme B. Comme les hypotheses (b) coincident dans les
deux théorémes, ceci achéve la préuve du théoréme A. [

Preuve de la proposition 2. Soit G =[], .,4G., avec G, = G(k,)
simple non compact et de centre réduit a {e}, comme a la proposition 2. On
peut supposer les notations telles que A = B LI D, avec Gy de rang déployé
un pour tout f € B et avec G5 de rang déployé au moins deux pour tout
8 € D. On pose alors Gy = [[4.5Gp et Gr = [[5.,Gs. On considere un
réseau sans torsion I'y de G = Gy X Gr. Vérifions les hypotheéses du
théoréme A.
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(a) Pour chaque P e B, le groupe Gp agit par isométries sur un
espace X qui est un espace hyperbolique appropri¢ (lorsque kg est
archimédien) ou un arbre (dans les autres cas). Notons Qg le bord de Xj (a
la Gromov). Soit gy € G tel que gg n’est pas relativement compact dans Gg.
Alors g a exactement un ou deux points fixes dans Qp, et il existe sur g
une mesure de probabilité Z(gp, Gg)-invariante (a support ces un ou
deux points).

Le groupe Gp agit sur la réunion disjointe Q = . Qp par
((gp)pen)x = gp,x pour x € Qp.

Soit pn une mesure finie G-invariante sur Q; pour tout f € B, la mesure
induite pg sur Qg est Gg-invariante, donc réduite a zéro puisque Gg n’est pas
moyennable; par suite p = 0. Soit g = (gp)pe 5 € Gy tel que gZ ne soit pas
relativement compact dans Gpg; il existe By € B tel que (gg,)% ne soit pas
relativement compact dans Gg,, et par suite il existe comme ci-dessus une
mesure de probabilité Z(gp,, Gg,)-invariante sur Qg ; en prolongeant cette
5p,2p, On obtient une mesure de probabilite
Z (g, Gy)-invariante sur Q. L’action de Gy sur Q vérifie donc bien les
hypotheéses (a) du théoréme.

mesure par zéro sur

(b) Le groupe Gr a la propriété (T) car c’est un produit direct de
groupes qui ont cette propriété. D’autre part, pour tout § € D et pour
tout xs € G5 — {e}, le centralisateur Z(xs, Gs) n’est pas Zariski-dense
dans Gs. Il résulte donc du théoréme de densité de Borel que Z (x5, Gs) n’est
pas de covolume fini dans G; (voir [Zim, Theorem 3.2.5] si le corps local k3
est archimédien, et [Wan] sinon). Par suite, si x = (x5)s<p € Gr — {e},
ona Z(x,Gr) = [lsesZ(xs,Gs) et Z(x, G7) n’est pas de covolume fini
dans Gr = [[sep Gs.

(c) Cette hypothése du théoréme A est strictement contenue dans les
hypothéses de la proposition 2. [

Le théoreme B permet par exemple de généraliser comme suit 1’énoncé de
la proposition 2. On considére un groupe G = [M,.,.Ga=GygxGry
comme dans la preuve précédente.

PROPOSITION 2%, Soit G comme ci-dessus et soit T un réseau
de G tel que T n(GyXx{e}) soit sans torsion. Alors tout sous-
groupe S de G contenant I est non intérieurement moyennable.

Notons d’une part que S n’est pas nécessairement fermé dans G, et d’autre

part que ’assertion de non moyennabilité intérieure porte sur S vu comme
«groupe discret».
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Preuve de la proposition 1. Elle résulte de la proposition 2, comme
indiqué dans l’introduction. [

Avant d’entreprendre la preuve de la proposition 3, considérons un
corps k muni d’une valeur absolue

k > R,
Ao |

par rapport a laquelle k est un corps local (c’est-a-dire est localement compact
et non discret). On sait qu’une telle valeur absolue posséde un prolongement
unique a une cléture algébrique k, de k [Wae, Section 18.4] et donc a la
complétion correspondante K de k,. La droite projective P}( hérite ainsi
de K une topologie qui rend continue ’action naturelle de PGL (2, k). (On
prendra garde que P,l( n’est en général pas compact, car K n’est en général
pas localement compact.)

Soit x €e PGL(2,k), x # e un ¢lément représenté par une matrice
x e GL(2,k) de valeurs propres A;,A, € k,. Rappelons que x est dit
hyperbolique [respectivement parabolique, elliptique,] si |Ai|# |\, ]
[resp. A1 = Az, Ay # Ay et |A1]|=]|A,[]. Ainsi x posséde exactement deux
points fixes sur Py si x est hyperbolique ou elliptique, et un point fixe
si x est parabolique.

Pour un élément hyperbolique # € PGL (2, k), on note w, le point fixe
correspondant a la valeur propre A, de / telle que | Ao, | = max{| A, | A2 |},
et o, I’autre point fixe de 4 dans P;. Etant donné des voisinages A4,, Q, de
o,,®, dans P;(, il existe alors un entier n, tel que

hn(Py — A, uQ,) CA,uQ,
pour tout 7 tel que || > ny.

LEMME 7. Soient k un corps local et S un sous-groupe de PGL (2, k).
On suppose que

(i) S ne contient pas de sous-groupe résoluble d’indice fini,

(ii) S contient un élément hyperbolique.
Alors S n’est pas intérieurement moyennable.

Preuve. Soit hye S un ¢élément hyperbolique de points fixes
0o, € Py. Le groupe S est Zariski-dense dans G = PGL(2,k),

car les sous-groupes algébriques connexes de G distincts de G sont
résolubles. Il existe donc x;,Xx,,x3; € § tels que les huit points oy, W,
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et x;(0o), x;(wo) (I <£j<3) sont distincts. Pour je{l,2,3}, on pose
h; = x;hox; ' et on note a;, ®; ses points fixes. Quitte a remplacer chacun
des éléments kg, iy, h,, b3 par une puissance convenable, on peut alors
trouver

des voisinages E; de {a;, ®,} disjoints deux a deux (1 </ < 3) et

un domaine fondamental D pour laction de k7 sur Py — {ao, @}
contenant les E;

tels que

h}(Px — E;)) CE; pourtous neZn#0etje{l,2,3}.

Posons
C=P,—-D
s posséde un point fixe dans C
T=({seS—{e} P p .
s ne possede aucun point fixe dans E; U E, U Ej

On vérifie qu’on a

S—{e}= T v hoTh(;IUh(;lTho

(*) T, hThi"', h,Thy"', h;Th; ' disjoints deux a deux .

En effet, tout élément s € A, Th, ! posséde un point fixe dans E, (par suite
s¢ T) et n’en posséde aucun dans £, U E;, sinon /1, 'sh, € T en posséderait
dans h;'(E,u E;) C E;, contrairement a la définition de 7 (par suite
s¢h,Thy ' U h3Thy'); les autres vérifications sont analogues.

Il résulte de (x) que S n’est pas intérieurement moyennable. (Voir [HaS];
un argument de ce type apparait dans la preuve du théoreme 5 de [BeH], mais
n’y est pas correct, car une transformation elliptique de ’arbre de Bruhat-Tits
concerné peut posséder plusieurs points fixes.) [

Remarques. (1) Si k est de caractéristique nulle ou impaire, on sait qu’il
existe une extension finie de k contenant les racines de tous les polyndmes du
second degré a coefficients dans k, donc les valeurs propres de toute matrice
x € GL(2,k). Mais ceci n’est pas vrai lorsque k = F,((¢)), d’ou 'introduc-
tion du corps K ci-dessus.

(2) Consideérons le sous-groupe S = PSL(2,Z) du groupe G = PSL(2,Q),).
Le groupe S ne contient pas de sous-groupe résoluble d’indice fini, et ne
contient pas d’élément hyperbolique (car S est contenu dans le sous-groupe
compact PSL(2,Z,) de G). Pour la preuve ci-dessus, on ne peut donc pas
supprimer du lemme 7 I’hypothése (ii).
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On peut sans doute supprimer (ii) en raisonnant comme au lemme 4.1
de [Tit], ce qui pour P’exemple ci-dessus revient & plonger PSL (2, Z) dans
PSL(2,R). Mais la preuve du cas général sans I’hypothése (ii) dépasse
I’ambition du présent travail.

Preuve de la proposition 3. L’assertion pour d = 2 résulte du lemme 7.
L’assertion pour d > 3 résulte du théoréme B. [

Le premier auteur remercie Bachir Bekka, Marc Burger et Alain Valette
pour d’utiles commentaires.
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