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L'Enseignement Mathématique, t. 40 (1994), p. 291-311

LES RÉSEAUX DANS LES GROUPES SEMI-SIMPLES

NE SONT PAS INTÉRIEUREMENT MOYENNABLES

par Pierre de la Harpe et Georges Skandalis

Abstract. We show that any lattice in a semi-simple connected real

Lie group G with trivial center and without compact factor is a group which

is not inner amenable. The results carry over to lattices in groups defined over

local fields of characteristic zero, and to some other cases.

Résumé. On montre que tout réseau dans un groupe de Lie réel G

connexe semi-simple de centre trivial et sans facteur compact est un groupe
non intérieurement moyennable. Les résultats s'étendent aux réseaux dans les

groupes définis sur des corps locaux de caractéristique nulle, ainsi qu'à
quelques autres cas.

1. Introduction

Le premier objet de ce travail est d'obtenir le résultat suivant. Rappelons

qu'un réseau d'un groupe localement compact G est un sous-groupe
discret T de G tel qu'il existe sur T\ G une mesure de probabilité G-invariante.
La notion de moyennabilité intérieure est rappelée au chapitre 2 ci-dessous.

Proposition 1. Soit G un groupe de Lie réel connexe, semi-simple, de

centre réduit à un élément, et sans facteur compact. Alors tout réseau T
de G est non intérieurement moyennable.

Notons que ce résultat était déjà connu quand G est de plus supposé simple:
lorsque G est de rang réel 1, voir [HaJ] pour le cas où T est sans torsion
et [GiH] pour le cas général; lorsque G a la propriété (T) de Kazhdan,
voir [BeH].

Keywords: Groupes intérieurement moyennables, réseaux, groupes semi-simples
1980 Mathematics subject classifications: 22 D 10, 22 E 40.
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292 P. DE LA HARPE ET G. SKANDALIS

La proposition 1 est une conséquence presque immédiate du résultat plus

technique ci-dessous. Dans un groupe G, on note e l'élément neutre
et Z(x, G) le centralisateur d'un élément x e G.

Théorème A. On considère des groupes localement compacts GH, GT

et un réseau

T C G Gh x Gj

ayant les propriétés suivantes.

(a) Le groupe GH agit par homéomorphismes sur un espace compact Q

et il n'existe aucune mesure de probabilité GH-invariante sur Q. De plus,

pour tout x e Gh tel que xz ne soit pas relativement compact dans GH,

il existe une mesure de probabilité Z(x, GH)~invariante sur Q.

(b) Le groupe GT possède la propriété (T) de Kazhdan. De plus} pour
tout x e Gt ~ {e}, le centralisateur Z(x, GT) n'est pas de covolume fini
dans Gt-

(c) Le groupe T n (GH x {c}) est sans torsion.

Alors T n'est pas intérieurement moyennable.

Pour appliquer ce théorème, considérons un ensemble fini non vide A ainsi

que, pour tout a e A, un corps local ka et un groupe algébrique affine Ga

défini sur ka; on suppose Ga connexe, simple, ka-isotrope, et de centre
réduit à {e}. On note Ga le groupe des points ka-rationnels de Ga. qui est

non compact [Mar, §1.2.3], et G le produit direct IlaeAGa.
On peut décomposer G en le produit GH des facteurs de rang déployé un

(l'indice H indique que ces facteurs, au moins lorsque ka R, agissent sur
des espaces hyperboliques) fois le produit GT des autres facteurs (l'indice T
indique que GT possède la propriété de Kazhdan). Les hypothèses du
théorème A sont alors satisfaites (voir le chapitre 4 ci-dessous) et on obtient
le résultat suivant.

Proposition 2. Soit G comme ci-dessus et soit T0 un réseau de G

qui est sans torsion. Alors T0 est non intérieurement moyennable.

Si ka R pour tout a e A, les composantes connexes des groupes G

de la proposition 2 coïncident précisément avec les groupes G de la proposition

1. (Voir par exemple [Zim, 3.1.6].)
On trouve au chapitre 4 une généralisation de la proposition 2.
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Corollaire. Soit G comme à la proposition 2; on suppose de plus les

corps ka de caractéristique nulle. Alors tout réseau Y de G est non
intérieurement moyennable.

Preuve. Les hypothèses du corollaire impliquent que Y est de type fini;
voir [Mar, Theorem IX.3.2.i et Remark (i) du n° IX.1.2]; si ka R pour
tout a e A, voir aussi [Rai, Remarks 6.18 et 13.21]. Or, en caractéristique

nulle, le groupe linéaire de type fini Y possède nécessairement un sous-

groupe T0 d'indice fini qui est sans torsion [Sel]. Il en résulte que T0 n'est pas
intérieurement moyennable (proposition 2), et Y non plus (proposition 4

ou [GiH]).

En présence de corps de caractéristiques non nulles, notons d'abord qu'il
existe des réseaux qui ne sont pas de type fini: c'est par exemple le cas

de Y SL(2, F^[t]) dans G SL(2, ¥q(£t))), et plus généralement de tout
réseau non cocompact dans un groupe G de rang un sur un corps Fg((t))
(voir [Lui] et [Lu2]). Notons aussi que le «lemme de Selberg» invoqué
dans la preuve du corollaire ne s'applique pas: par exemple, pour tout
sous-groupe r0 d'indice fini dans Y SL(2, ¥q [z1]), le volume de G/Y0 est

égal à une série infinie convergente de la forme

n(G/r0)= £ <oo
xeFcardinal(T,)

où les Tx sont certains sous-groupes finis de T0 [Ser, II. 1.5], de sorte
que r0 a toujours de la torsion.

Toutefois, étant donné un réseau T d'un groupe [] a e G„ comme à

la proposition 2, on peut encore montrer que T est non intérieurement
moyennable dans certains cas, comme (1) et (2) ci-dessous. Rappelons d'abord
que T est produit direct de réseaux irréductibles, et qu'un tel produit est
non intérieurement moyennable si et seulement s'il en est de même de chaque
facteur [BeH, Corollaire 3]. Il résulte donc de [Mar, Corollary IX.4.4] qu'on
ne restreint pas la généralité de ce qui suit en supposant que les corps ka ont
tous la même caractéristique; vu le corollaire précédent, on suppose cette
caractéristique non nulle. Ceci dit, on a les résultats suivants.

(1) Si tous les Gasontde rang déployé au moins 2, alors le réseau T a la
propriété (T) de Kazhdan, et n'est donc pas intérieurement moyennable.

(2) Si A {a} est réduit à un élément, si ka Ff;((/)) et si Ga est de
rang déployé un, alors le réseau Tpossède un sous-groupe T0 d'indice fini qui
est un produit libre non banal (voir [Lui] et [Lu2]), donc T0 n'est pas
intérieurement moyennable [BeH], et T non plus (proposition 4 ci-après).
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Mais nous n'avons pas su éliminer en toute généralité l'hypothèse sur les

caractéristiques dans le corollaire ci-dessus.

Si G est comme dans la proposition 2 ou son corollaire, les méthodes
utilisées pour montrer la non moyennabilité intérieure de T s'appliquent à

d'autres sous-groupes qu'à des réseaux. Pour illustrer ces généralisations sans

trop alourdir notre rédaction, nous montrons au chapitre 4 un théorème B,

qui est un raffinement du théorème A ci-dessus, et qui implique le

résultat suivant. Sur un corps local k, on considère toujours la valeur
absolue x | x | associant à x le module (au sens de la théorie de la mesure
de Haar) de l'automorphisme y h* xy du groupe additif de k. Dans la

proposition qui suit, on ne fait aucune hypothèse sur la caractéristique de k.

Proposition 3. On considère un entier d ^ 2, un corps local k et

un sous-groupe S du groupe G PGL(é/, k). Déplus,
si d 2 on suppose que S ne contient pas de sous-groupe résoluble

d'indicefini, et qu'il existe dans S un élément représentépar une

matrice de valeurs propres telles que | Xa | < | |,
si d ^ 3 on suppose que S contient un réseau de G.

Alors S est non intérieurement moyennable.
Par exemple, pour tout d ^ 2, le groupe PSL(d,Q) n'est pas

intérieurement moyennable.

Si T [respectivement S] est un groupe comme dans l'un des résultats

précédents, la non moyennabilité intérieure de ce groupe implique que son

algèbre de von Neumann est un facteur plein. (Ceci grâce à un résultat dû à

Effros [Efr]; voir aussi l'observation (1) à la fin du § 1 de [BeH].)
Pour montrer ces résultats, on utilise des propriétés élémentaires (relatives

à la contenance faible) de l'induction des représentations unitaires. Avant la

preuve, nous rappelons quelques-unes des notions en jeu. On utilise enfin (dans

la preuve du corollaire) le résultat suivant. Il généralise le théorème 1 de [GiH]
en ceci que T n'est pas nécessairement supposé être de type fini.

Proposition 4. Soient T un groupe et r0 un sous-groupe d'indice

fini. On suppose que T est intérieurement moyennable et cci (c'est-à-dire

que ses classes de conjugaison autres que {e} sont toutes infinies).
Alors r0 est aussi intérieurement moyennable.
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2. Rappels et preuve de la proposition 4

Soit G un groupe localement compact, avec élément unité noté e. Dans la

suite, on entend par «représentation» de G une «représentation unitaire

continue dans un espace de Hilbert complexe». On désigne par Ig b
représentation unité de G dans l'espace de dimension 1.

Soit H un sous-groupe fermé de G. Pour toute représentation 7t de H, on

désigne par Ind%(n) la représentation de G induite de n. (Voir ci-dessous les

rappels dans la preuve du lemme 4.) Lorsque n 1H, on obtient la représentation

quasi-régulière de G associée à l'espace homogène H\G; si de

plus H {e}, on obtient la représentation régulière droite de G, notée pG.
Si 7i et 7i ' sont deux représentations de G, la notation n -< n ' (respectivement
7T '— 7C,) indique que la représentation n est faiblement contenue dans n'
(resp. est faiblement équivalente à n'); pour ces notions, voir [Dix].

Le groupe G est dit moyennable si 1G -< Pg; il y a de nombreuses autres

définitions équivalentes (voir par exemple [Gre] et [Eym]). Un groupe de Lie
réel connexe semi-simple est moyennable si et seulement s'il est compact: c'est

un résultat qui remonte à Furstenberg [Fur].
Considérons plus particulièrement le cas d'un groupe discret, noté T. Si X

est une partie de r invariante par conjugaison, on introduit l'espace 12{X)
des fonctions T - C de carré sommable à supports dans X et la représentation

ar,i de T dans 12{X) définie par

(ar,x(j)£>)(x) - Uy~lxy)

pour tous y e T, ^ e l2(X) et x e X. Lorsque X=T-{e}f on écrit
simplement ar. Le groupe T est dit intérieurement moyennable si lT< ar.
Il y a plusieurs autres définitions de cette notion [BeH], mais il faut de

plus noter que certains auteurs utilisent les mêmes mots pour une notion
distincte [Pat, page 84].

Rappelons deux des conditions standard suffisantes pour qu'un groupe T
soit intérieurement moyennable. La première est qu'il possède une classe de

conjugaison finie et distincte de {e}, c'est-à-dire que ar contienne la
représentation unité lr au sens fort. La seconde est que T soit moyennable et
non réduit à {e}. (L'argument usuel apparaît dans [Gre, Lemma 1.1.3]; une
variante apparaît ci-dessous après le lemme 4.)

Il existe par ailleurs des groupes intérieurement moyennables non
moyennables: c'est le cas d'un produit direct T0 x lorsque T0 est non
moyennable et lorsque T{ est moyennable non réduit à un élément.
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Toutefois, de nombreux «exemples naturels» de groupes non moyennables
sont aussi non intérieurement moyennables, et les résultats de la présente note
fournissent des illustrations supplémentaires de ce fait.

Soit T0 un sous-groupe d'indice fini d'un groupe T intérieurement

moyennable. Il se peut que T0 ne soit pas intérieurement moyennable
(exemple: T T0 x Tj avec Tx fini non réduit à un élément). Toutefois,
lorsque T est de plus cci (ou, en toutes lettres, à classes de conjugaison infinies),
on a les lemmes suivants, desquels découle la moyennabilité intérieure de T0

(proposition 4).
Introduisons d'abord quelques notations. On désigne par ll(T)

l'algèbre de convolution des fonctions sommables de T dans C, qui
est une algèbre de Banach pour la norme définie par || ^ || i D

e r
| £, (y) I

•

Comme T est discret, tout élément E.e/^T) possède aussi des normes
Il Gl2 (Eyer I Ç(y) l2)1/2 et IU IU supïer U(y) I qui sont finies.

Pour ^ e Z1 (T) et y e T, on définit l'adjoint e / ^T) et l'opérateur a (y)

sur P(T) par

(a (Y) 0M^(y-'xy)

pour tout xeT. On désigne par /1 (F) q j le convexe de /1 (F) formé des

fonctions £ à valeurs positives, telles que £(e) 0, et de norme \\^\\i 1.

La moyennabilité intérieure de T se traduit [BeH] par l'existence d'une
suite dans /'(T)^ qui est asymptotiquement invariante au sens où

lim II a (y)£w - ||j 0
n -> oo

pour tout y e T.

Lemme 1. Si T est intérieurement moyennable et cci, il existe une suite

asymptotiquement invariante (£„)n> i dans /1 (F)q, i ayant les propriétés
suivantes:

(i) est à support fini pour tout n ^ 1,

(ii) lim„ o, |Ub IL 0,

(iii)lim„^oo |U« II2 0.

Preuve. Soit (££')*^ 1 une suite asymptotiquement invariante de 11(T)q{.

Premier pas. Montrons d'abord que, pour tout x eT on a

lim* - oo^o/c (^0 0.
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Pour cela, choisissons un entier c ^ 2. On peut trouver yx,..., yc e T

tels que les éléments y^xyi, y~lxyc sont distincts deux à deux. Il existe

aussi un entier k0 assez grand pour que || a(yj)^ - ||i ^ c~1 pour
tout j e {1, c} et pour tout k ^ &0. Par suite (y/^Yy) ^ £*(*) ~ c~l
pour tout j e {1, c}, donc l=||^ji et ^'(x)^2c_1
pour tout k ^ k0. L'entier c étant arbitraire, la suite (^(x))k^ i tend bien

vers 0.

Deuxième pas. Le sous-ensemble de /1 (F) o, i formé des fonctions à

supports finis est dense dans /1 (F) J j. On ne restreint donc pas la généralité
de ce qui suit en supposant a priori les fonctions à supports finis. Soit
alors (kn)n>\ une suite strictement croissante d'entiers strictement positifs.
Pour tout n ^ 1 on pose

S„ U support (^.) C T
1 < j < n

(c'est une partie finie de T) et on note %n la fonction caractéristique de S„.
Montrons que, pour un choix convenable de (kn)n ^ x, on peut définir une

suite asymptotique invariante {^rn)n ^ î de /1 (F) J, i de ft-ième terme

(avec Xo 0) de telle sorte que les supports des t>'n sont alors finis et disjoints
deux à deux.

On pose k{ 1, donc £,[ puis on procède par récurrence sur n
en supposant ^,n_l déjà définis. Par le premier pas, on a

lim Z U'W 0 •

k -> oo xeS„_i

On peut choisir kn> kn-X tel que

I ^ I.
c'est-à-dire tel que || - ^knin-i Iii ^ TLyp > La définition ci-dessus de \'n
a donc un sens, et la suite (£>rn)n&\ a évidemment les propriétés annoncées.

Troisième pas. Soit (t>n)n> i la suite définie à la Cesàro par

Cette suite satisfait évidemment les conditions (i) et (ii) du lemme (on a
même || ||

oo ^ ~ pour tout n ^ 1). Comme || £ II* ^ Il £ ||i || £ H» pour tout
£ e ll(T), elle satisfait aussi la condition (iii).
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Lemme 2. Soit r un groupe intérieurement moyennable et cci, et soit
(^n)n^ i une suite asymptotiquement invariante de ll (r)^ \ possédant les

propriétés du lemme 1. Soit (r\n)n>i la suite définie par rj „ £*
et soit r0 un sous-groupe de T d'indice f [T:T0] fini. Alors

liminf £ r\nM >-
y e Tq -{e}JPreuve. Désignons par %s: T {0, 1} la fonction caractéristique d'une

classe à gauche 5er/r0. Posons

T{(X,y)er x r Ix-^y e T0} II (sr0 x sTo)
5 e r/r0

où II désigne une réunion disjointe. Pour tout n ^ 1 on note T\'n la restriction
de r\n à r0. On a

I "H «
II I E ln{x)ln{y)E E M M

(x,y)eT seT/F0 x e F, y e F

E (lU-xJi)*
5 6 r/r0

ainsi que

î

i II Uli E E (Il^x.ili)2 1/7 (h;Iii/)'
5 g r/r0 \j e r/r0 /

(on a utilisé l'inégalité de Cauchy-Schwarz pour la somme sur r/r0).
Par suite

h h
1

IhJli > y
pour tout n ^ 1. Par ailleurs, il résulte du lemme 1 que v\n{e) || \\
tend vers 0 lorsque n tend vers l'infini. La conclusion du lemme 2 en

résulte.

Notons que les lemmes 1 et 2 ci-dessus sont des raffinements des

lemmes 3 et 4 de [GiH].
Dans la situation du lemme 2, posons de plus

Ç* h* - T|«(^)ô

pour tout n ^ 1, où ô désigne la fonction caractéristique de {e} dans T. Notons
Çn la restriction de C,„ à F0 et | ^ Il sa norme dans ll(T0). Le lemme 2 se
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reformule en les inégalités || Ç« Il ^/_1, et on peut définir une suite

asymptotiquement invariante (©|©[":1)^i dans ^(^0)0,1- ^ en résulte

que r0 est intérieurement moyennable, ce qui achève la preuve de la

proposition 4.

3. Lemmes préliminaires

Soit d'abord F un groupe discret. Notons Conj'(T) l'ensemble des classes

de conjugaison de T distinctes de {e}. Avec les notations du début du chapitre

précédent, on a

O-T© ar,c
C e Conj'(T)

où © désigne une somme orthogonale. Pour tout C e Conj'ÇT), choisissons

de plus un élément yc e C; notons Wy {yc) c e conj'n) le sous-ensemble

de T ainsi spécifié. Pour tout C e Conj'(T), la classe C s'identifie à

l'espace homogène Z(yc,r)\r et on a

ar,c ~ IndlZ{yÇt n (lz(Yc,r))

où Z(yc,r) désigne le centralisateur de yc dans T et où « indique
l'équivalence unitaire des représentations. On a donc

ar ~ © IndlZ{yY) (1 z(y,d) •

Y £

Lemme 3. Soit T un réseau dans un groupe localement compact G.
Si T est intérieurement moyennable, on a

1 g © IndZ{yG) Oz(y,g)) •

ye

Preuve. Par hypothèse, on a

lr "< © IndrZ{y r) (1 z(y,r>) •

Y e

En induisant à G on obtient

Ind°(lT)-< © IZ(Y,r))
Y 6 rr r

Par ailleurs, 1G est une sous-représentation de car T est un réseau
dans G. La conclusion résulte donc de l'assertion (ii) du lemme suivant.

Le lemme qui suit est essentiellement le «principe de majoration de
Herz» [EyL].
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Lemme 4. Soient {Hj}jeJ et {Hj}y- 6 j deux familles de sous-groupes
fermés d'un groupe localement compact G telles que H'} C Hj pour
tout j g J.

(i) S'il existe pour tout j e J une représentation unitaire %j de Hj
telle que \G-< ®jeJIndaHj(nj),alors <

(ii) Si 10 < ®j^jInd%'.{\Hj), alors \G< ®jsjIndGHj{\H]).

Preuve. (a) Précisons le modèle considéré ici pour les représentations
induites en rappelant ceci. On considère d'abord un sous-groupe fermé H
de G et une représentation n de H dans un espace de Hilbert

On choisit une mesure \x sur l'espace homogène H\G dont la classe est

invariante par l'action à droite de G. (On peut par exemple prendre l'image

par la projection canonique G -» H\ G d'une mesure de probabilité sur G dans

la classe de la mesure de Haar.) Pour tout g e G, on a donc une dérivée de

Radon-Nikodym décrite par l'application

| (H\G) x G R +A"
1 (5>s) ^ Wt

satisfaisant l'identité de cocycle A(s, ggr) A(s, g)A(sg, g').
On introduit l'espace vectoriel L2(G, des applications mesurables

: G -> (modulo l'égalité presque partout) qui sont iL-équivariantes,
c'est-à-dire telles que

£>(h~lx) n(h)t,(x) pour tout h e H et presque tout x e G

et de carré sommable au sens où

I IU(*) \2d\l(x)<00 ;

J/AG

comme || £(x) ||2 ne dépend que de la classe x Hx de x, on a commis l'abus
d'écrire ce nombre || £(x) ||2. L'espace L2(G, %fn)H est muni d'un produit
scalaire défini par

<^U'> I <Ux)\ l'{x)>d\x{i)
j H\ G

qui en fait un espace de Hilbert.
On définit la représentation n Ind%(n) de G dans L2(G, par

(S(g)£) M ^(xg)A(x, g)1/2
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pour tous g e G, Ç e L2(G, et x e G (avec x //x e H\G). On

vérifie que n est bien une représentation de G, car À est un cocycle, et qu'elle

est bien unitaire, car (en posant y x8)

IU (g)U2=| lUOc*) II2 A(i,^)c?n(x)
i H\ G

IUU) ||2A(j«"',g)A(Ag-1)^^(>i)
J H\G

IUU)12<W)
J H\ G

pour tous g e G et £ e L2(G, 3fK)H.

(b) Montrons d'abord l'assertion (i) du lemme lorsqu'il n'y a qu'un
sous-groupe H de G. Posons o =* 1H et o Ind%(\H). L'application de

composition avec la norme de s'écrit

l 4 « (G-C, AT"|Ç(*)|).
Elle est G-équivariante (via les représentations n et 5), lipschitzienne
de rapport 1, et || TV(^) || || £ || pour tout E, e L2(G,

Dire que 1G < n, c'est dire que, pour toute partie compacte K de G et

pour tout nombre s > 0, il existe une fonction E, e L2{G, telle

que II Ç H 1 et telle que

sup I 7C {k) E, - £ Il < 8
k e K

Ces propriétés impliquent qu'on a aussi || iV(^) || 1 et

sup II ô (Ar)AT(^) - N(^) Il < s
k e K

Il en résulte que 1G < o.

(c) On montre le cas général de l'assertion (i) grâce au même argument,
en utilisant une application

N,
l ®jejL2(G, ®jeJL2(G,C)HJ

\(tj)jeJ»(Njï,j)j e

avec Njcomme dans (b) pour tout j e J.
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(d) L'hypothèse de (ii) s'écrit aussi

le -< © IndGHj(IndHHJ,(lH;))
j 6 J J

de sorte que l'assertion (ii) est un cas particulier de (i).

Remarque. Pour illustrer le lemme 4, répétons l'un des arguments
montrant qu'un groupe Y qui est moyennable et non réduit à {e} est aussi

intérieurement moyennable. Rappelons que Y est moyennable si et seulement
si 1 r Pr •

Pour toute classe de conjugaison C C Y - {e}, si on choisit un élément y
de C, on a (avec les notations comme au chapitre 3)

lr< Pr IndTz{y T) pZ(Y,r).

Le lemme 4.i implique qu'on a aussi

lr~< IndTz{j d lz(y,n ar,c •

On a donc a fortiori lr -< ar.

Lemme 5. Soit G un groupe localement compact qui possède la

propriété (T) de Kazhdan et soit (Hj)jeJ une famille de sous-groupes
fermés de G. On suppose que, pour tout j e J, il n'existe aucune

mesure de probabilité G-invariante sur l'espace homogène Hj\G. Alors

lc-te © In
j e /

Preuve. Supposons par l'absurde que l'on ait lG< ®j e jlnd^.
Comme G a la propriété (T), la contenance aurait lieu au sens fort. Comme
la représentation \G est irréductible, il existerait j e J tel que lG soit une

sous-représentation de Ind%.(\Hj), c'est-à-dire que Hj\G possède une

mesure de probabilité G-invariante, contrairement à l'hypothèse.

Lemme 6. Soit G un groupe localement compact agissant continûment
dans un espace compact Ü et soit (Hj)jeJ une famille de sous-groupes
fermés de G. On suppose qu'il n'existe aucune mesure de probabilité
G-invariante sur Q, et qu'il existe pour tout j e J une mesure de probabilité

Hj-invariante vy sur Q. Alors

1 g "K (+) IndGHA 1/zy) •

r J
J
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Preuve. On convient ici que l'action de G sur Q est à droite.

Pour tout j e J, on choisit une mesure de probabilité |iy sur Hj\G qui est

quasi-invariante par G (voir la preuve du lemme 4). On introduit l'espace de

Hilbert

^r= © L2(H
j e J

de la représentation ® jejlnd%.(\Hj) ainsi que sa sphère unité c¥fx. On

introduit aussi l'espace Prob (Cl) des mesures de probabilité sur Q, muni de

la topologie vague; c'est naturellement un G-espace compact. Nous allons

définir en deux temps une application

^ -> Prob (Cl)

f ^ V/

lipschitzienne et G-équivariante.
Dans un premier temps, on introduit pour tout je/ le G-espace

Mes +(Hj\G) des mesures positives finies sur Hj\G, ainsi que l'application

L2(Hj\G, \ij)~+ Mes+(Hj\G)
fi ^ il,-.

qui est évidemment lipschitzienne sur les parties bornées. De plus, comme G
agit à gauche via IndaHj{\H.)surL2(Hj\G, py) et à droite sur (Hj\G),
on a (avec des notations dont nous espérons le sens évident au lecteur)

I fj(xg) |2 A(x, g)d\ij(x)
H/;(*«)! 2d

d((V-/j)g)

pour tout g e G.

Dans un second temps, on introduit le sous-espace

Il '
Mes (Hj \G) C II

j 6 J j eJ

formé des familles (Xj)JeJ telles que v\r oo, ainsi que
l'application de convolution

| II]eJMes+(Hj\G)^Mes+(Cl)
\ ^ Sy 6./ Vy * hj

où

Vy kj \ (Vj)sdXj(g)
V Hj\ G



304 P. DE LA HARPE ET G. SKANDALIS

Pour tout g e G de projection canonique g e Hj\G, l'image (v,-)g par g de

la mesure Vj sur Q ne dépend que de g, et nous avons noté (v,)* cette mesure
image. Il est à nouveau évident que (kj) X vy- kj est une application
lipschitzienne, et qu'elle est G-équivariante pour les actions à droite naturelles
de G à la source et au but.

On obtient par composition l'application -> Prob (Q) annoncée, qui
applique un vecteur unité / (sur la mesure de probabilité

v/= I (vy^UCg)NMi) •

j 6 J J Hj\G

Supposons alors qu'on ait

lc< ® In
jeJ

Il existerait dans une suite de vecteurs

fn n J m 1

asymptotiquement G-invariante au sens où

lim sup £ \lnd%.(\H]) (Ar-1) (/,,„) - 0
n -+ oo k e K j e J

pour toute partie compacte K de G. Il en résulterait que la suite

correspondante (v/Jn > i de ProZ? (Q) serait aussi asymptotiquement invariante au

sens où

lim sup II (yfn)k - v/n || 0
n -> oo k e K

pour toute partie compacte K de G. Quitte à passer à une suite extraite, on
obtiendrait à la limite une mesure de probabilité G-invariante sur Q, en

contradiction avec les hypothèses du lemme/L'hypothèse de contenance faible
ci-dessus est donc impossible, et la preuve est achevée.

4. Preuve des résultats de l'introduction

Enonçons d'abord le raffinement suivant du théorème A.

Théorème B. On considère des groupes localement compacts GHi GT

un réseau

r C G GH X GT

et un sous-groupe S de G contenant T, ayant les propriétés suivantes.



RÉSEAUX ET MOYENNABILITÉ INTÉRIEURE 305

(a) Le groupe GH agit par homéomorphismes sur un espace compact O

et il n'existe aucune mesure de probabillité GH-invariante sur Q. De plus,

pour tout x e Gh — {e} tel Que (x,e) e S, il existe une mesure de

probabilité Z(x, GH)~invariante sur Q.

(b) Le groupe GT possède la propriété (T) de Kazhdan. De plus, pour
tout x e Gt — {e}, le centralisateur Z(x, GT) n'est pas de covolume fini
dans Gt.

Alors S n'est pas intérieurement moyennable.

Preuve. Notons ßr la restriction à T de la représentation as définie au

chapitre 2. Soit E un système de représentants des orbites de l'action de T

sur S - {e} par (y, s) ysy ~1. On a

ßr © IndTZ(s r) (lz(j,r>) •

5 e I
Si S était intérieurement moyennable, on aurait ls -<as, donc lr < ßr par
restriction à T. Il suffit donc de supposer que lT< ßr et de montrer qu'on
obtient une contradiction.

Si on avait lr-< ßr, on aurait par induction de T à G (comme au
lemme 4) la relation

(*) 1 g "< © Indzis.G) Oz(s*<?)) •

i £ I
Pour tout s e L, écrivons

s («s1//, Sj) £ ï C 5 C G - GTi X Gt

Posons

I^InfG.xW)
ainsi que

z -
Le membre de droite de la relation (*) se décompose naturellement en une

somme de deux termes, chacun étant lui-même une somme sur l'un des

ensembles LH, Er. Or une relation de contenance faible de la forme
1 r -< © î ^ n ^ n (ft* où N est un nombre fini implique que 1 r < n„ pour l'un
des n au moins. Il résulterait donc de que l'une au moins des relations

(*//) Ig ® Indz{s,G) (lz(s,G))
5 Y.H

(*t) 1 o < ® Ind%s
s e

aurait lieu.
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Supposons d'abord que (*r) ait lieu. Pour tout s (sH, sT) e 1T,
posons

H(s) GhxZ(st,Gt)
Le lemme 4.ii implique que l'on aurait

lc -< © Inl«w)selT

et donc aussi la relation équivalente

1 gt ® Indz(st,gt)(^z(st ,Gt)) •

51 6 HT

Comme sT ± e pour tout sel.7, les hypothèses du théorème stipulent

que Z(sT, Gt) n'est pas de covolume fini dans GT. La dernière relation de

contenance faible ci-dessus serait donc en contradiction avec le lemme 5.

Supposons alors que la relation (#) ait lieu. Le même argument que plus
haut implique que l'on aurait aussi

1 oH < ® Ind%Ht0H
S 6

Vu les hypothèses du théorème B, il existe sur Q une mesure de probabilité

Z(sH, GH)-invariante. La dernière relation de contenance faible
ci-dessus serait alors en contradiction avec le lemme 6 appliqué à GH agissant

sur Q.

Preuve du théorème A. Il suffit de vérifier que les hypothèses
du théorème A impliquent celles du théorème B lorsque S T. Soit

a e Gh ~ {e} tel que (x, e) e T. L'hypothèse (c) du théorème A implique

que x est d'ordre infini; comme T est discret dans G, cela implique que xz
n'est pas relativement compact. L'hypothèse (a) du théorème A implique donc

l'hypothèse (a) du théorème B. Comme les hypothèses (b) coïncident dans les

deux théorèmes, ceci achève la preuve du théorème A.

Preuve de la proposition 2. Soit G= nae^a, avec Ga G(ka)
simple non compact et de centre réduit à {e}, comme à la proposition 2. On

peut supposer les notations telles que A B II D, avec Gp de rang déployé

un pour tout ß e B et avec G§ de rang déployé au moins deux pour tout
ô e D. On pose alors GH H$eBGp et GT Ilôe^^ô- On considère un
réseau sans torsion T0 de G GH x Gr. Vérifions les hypothèses du

théorème A.
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(a) Pour chaque ß e B, le groupe Gß agit par isométries sur un

espace Aß qui est un espace hyperbolique approprié (lorsque kß est

archimédien) ou un arbre (dans les autres cas). Notons Qß le bord de Wß (à

la Gromov). Soit gß e Gß tel que gf n'est pas relativement compact dans Gß.

Alors gß a exactement un ou deux points fixes dans Qß, et il existe sur Qß

une mesure de probabilité Z(gß, Gß)-invariante (à support ces un ou

deux points).
Le groupe GH agit sur la réunion disjointe Q IIßGjgQß par

((gß)ßefl)* pour * e ^o-
Soit p une mesure finie G-invariante sur Q; pour tout ß e B, la mesure

induite pß sur Qß est Gß-invariante, donc réduite à zéro puisque Gß n'est pas

moyennable; par suite p 0. Soit g (gß)ß gb e GH tel que gz ne soit pas

relativement compact dans GH\ il existe ß0 e B tel que (gßo)z ne soit pas
relativement compact dans Gßo, et par suite il existe comme ci-dessus une

mesure de probabilité Z(gßo, Gßo)-invariante sur Qßo; en prolongeant cette

mesure par zéro sur ß^ßoQß, on obtient une mesure de probabilité
Z(g, GH)-in-variante sur Q. L'action de GH sur Q vérifie donc bien les

hypothèses (a) du théorème.

(b) Le groupe GT a la propriété (T) car c'est un produit direct de

groupes qui ont cette propriété. D'autre part, pour tout 8 e D et pour
tout xô e Gô - {e}, le centralisateur Z(xs,Gs) n'est pas Zariski-dense
dans Gs. Il résulte donc du théorème de densité de Borel que Z(x5, Gs) n'est
pas de covolume fini dans Gô (voir [Zim, Theorem 3.2.5] si le corps local kô
est archimédien, et [Wan] sinon). Par suite, si x (xô)ô6jD e Gt - {e},
on a Z(x, Gt) ü§ 6 5Z(xô, G§) et Z(x, Gr) n'est pas de covolume fini
dans Gt IIse^Gg.

(c) Cette hypothèse du théorème A est strictement contenue dans les

hypothèses de la proposition 2.

Le théorème B permet par exemple de généraliser comme suit l'énoncé de
la proposition 2. On considère un groupe G IIa6/4Ga GH x GT
comme dans la preuve précédente.

Proposition 2bls. Soit G comme ci-dessus et soit T un réseau
de G tel que T n {Gh x M) soit sans torsion. Alors tout sous-
groupe S de G contenant T est non intérieurement moyennable.

Notons d'une part que S n'est pas nécessairement fermé dans G, et d'autre
part que l'assertion de non moyennabilité intérieure porte sur S vu comme
«groupe discret».
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Preuve de la proposition 1. Elle résulte de la proposition 2, comme
indiqué dans l'introduction.

Avant d'entreprendre la preuve de la proposition 3, considérons un
corps k muni d'une valeur absolue

k R +

X b* | X |

par rapport à laquelle k est un corps local (c'est-à-dire est localement compact
et non discret). On sait qu'une telle valeur absolue possède un prolongement
unique à une clôture algébrique ka de k [Wae, Section 18.4] et donc à la

complétion correspondante K de ka. La droite projective P^ hérite ainsi
de K une topologie qui rend continue l'action naturelle de PGP (2, k). (On
prendra garde que P^ n'est en général pas compact, car K n'est en général

pas localement compact.)

Soit xePGL(2, k), x^e un élément représenté par une matrice

x e GL(2, k) de valeurs propres X\,X2eka. Rappelons que x est dit
hyperbolique [respectivement parabolique, elliptique,] si |^i|^|^2|
[resp. Xi X2, ^2 et | Xi j \X2 {]. Ainsi x possède exactement deux

points fixes sur P^ si x est hyperbolique ou elliptique, et un point fixe
si x est parabolique.

Pour un élément hyperbolique h e PGL(2, k), on note co^ le point fixe
correspondant à la valeur propre Xa de h telle que | Xa | s= max{| Xi |, \X2\},
et ah l'autre point fixe de h dans P^. Etant donné des voisinages Ah, Qh de

ah,(ùh dans PlK, il existe alors un entier n0 tel que

^ n
K ~ Ah Q h)

pour tout n tel que | n | ^ n0.

Lemme 7. Soient k un corps local et S un sous-groupe de PGL(2, k).
On suppose que

(i) S ne contient pas de sous-groupe résoluble d'indice fini,
(ii) S contient un élément hyperbolique.

Alors S n'est pas intérieurement moyennable.

Preuve. Soit h0 e S un élément hyperbolique de points fixes

a0,O30 eP^. Le groupe S est Zariski-dense dans G PGL{2, k),
car les sous-groupes algébriques connexes de G distincts de G sont
résolubles. Il existe donc Xi,x2,x3eS tels que les huit points a0,co0
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et Xj(ao)> Xj(cù0) 0 sont distincts. Pour j e {1,2,3}, on pose

hj XjhoxJ1 et on note ay coy ses points fixes. Quitte à remplacer chacun

des éléments h0, h2> h3 par une puissance convenable, on peut alors

trouver

des voisinages Ej de {ay, coy} disjoints deux à deux (1 ^ 3) et

un domaine fondamental D pour l'action de Hq sur PK-{a0,co0}
contenant les Ej

On vérifie qu'on a

S - {e} T u h0 THq
1

u h;lThQ

T,hiTh{l> h2 Th^ 1, h^Th^1 disjoints deux à deux

En effet, tout élément s e hxTh^x possède un point fixe dans E{ (par suite

s $ T) et n'en possède aucun dans E2 u P3, sinon h^1 sh{ e T en posséderait

dans /zj~1 (E2 u E3) C Ex, contrairement à la définition de T (par suite

s$h2Th2l u /z3r/23"1); les autres vérifications sont analogues.

Il résulte de (*) que S n'est pas intérieurement moyennable. (Voir [HaS];
un argument de ce type apparaît dans la preuve du théorème 5 de [BeH], mais

n'y est pas correct, car une transformation elliptique de l'arbre de Bruhat-Tits
concerné peut posséder plusieurs points fixes.)

Remarques. (1) Si k est de caractéristique nulle ou impaire, on sait qu'il
existe une extension finie de k contenant les racines de tous les polynômes du
second degré à coefficients dans k, donc les valeurs propres de toute matrice
À e GL{2, k). Mais ceci n'est pas vrai lorsque k F2((0), d'où l'introduction

du corps K ci-dessus.

(2) Considérons le sous-groupe S PSL(2, Z) du groupe G PSE(2, Qp).
Le groupe S ne contient pas de sous-groupe résoluble d'indice fini, et ne
contient pas d'élément hyperbolique (car S est contenu dans le sous-groupe
compact PSL(2,Zp) de G). Pour la preuve ci-dessus, on ne peut donc pas
supprimer du lemme 7 l'hypothèse (ii).

tels que

h" (Pk - Ej) C Ej pour tous n e Z, n 0 et j e {1, 2, 3}

Posons

C=P^-JD
s possède un point fixe dans C

s ne possède aucun point fixe dans Ex u E2 u E3
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On peut sans doute supprimer (ii) en raisonnant comme au lemme 4.1
de [Tit], ce qui pour l'exemple ci-dessus revient à plonger PSL(2, Z) dans

PSL(2, R). Mais la preuve du cas général sans l'hypothèse (ii) dépasse

l'ambition du présent travail.

Preuve de la proposition 3. L'assertion pour d 2 résulte du lemme 7.

L'assertion pour d ^ 3 résulte du théorème B.

Le premier auteur remercie Bachir Bekka, Marc Burger et Alain Valette

pour d'utiles commentaires.
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