
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 40 (1994)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: PROOF OF MARGULIS' THEOREM ON VALUES OF QUADRATIC
FORMS, INDEPENDENT OF THE AXIOM OF CHOICE

Autor: Dani, S. G.

Anhang: Appendix: Recurrent points

DOI: https://doi.org/10.5169/seals-61104

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-61104
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


56 S. G. DANI

Ki-invariant subsets of X and v2(tk)Yk ç X for all k. Also it is easy to
see that {tk\k^\} contains either all positive rational or all negative
rational numbers. Now let Y' nk=lYk. Since {Yk} is a decreasing

sequence of compact subsets, Y' is nonempty. Now if {tk \ k ^ 1} contains all
positive rational numbers then v2 (r)Y' ç X for all positive rational numbers

r and hence by continuity F2+ F ç I and, similarly, in the alternative
case F2~ Y' ç X. This completes the proof of the theorem.

Appendix: Recurrent points

For a compact metric space X we denote by C(X) the space of all
continuous real-valued functions on X equipped with the sup-norm topology and

by C(X)+ the subset of C(X) consisting of all nonnegative functions; the

supremum norm of f e C(X), namely sup{ | f(x) | \x e X}, will be denoted

by ||/||. By an integral on C(X) we mean a linear functional on C(X) which
takes nonnegative values on C{X)+. For an integral A on C(X) the support
of A is defined to be the subset of X consisting of all x e X such that A (/) > 0

for any / e C(X)+ for which f(x) > 0; the support is easily seen to be a

closed subset of X. It can also be verified by a simple point-set topological
argument that if A is an integral on C{X) and / e C(X) vanishes on the

support of A then A(/) 0. If A is an integral on C(X), where Ais a compact
metrizable space, and X' is the support of A then there exists a unique integral
A' on C(X') such that A'(/\X') A(/) for all f e C(X), where f\x>
denotes the restriction of / to X' ; this follows from the Tietze-Urysohn
extension theorem (cf. [D], (4.5.1)) and the above mentioned property of the

support. We note also that the support of A' as above is the whole of X'.
For any homeomorphism (p of a compact (metrizable) space X an

integral A on C(X) is said to be (p-invariant if A(/ o (p) A(/) for
all / e C{X)\ clearly the support of a (p-invariant integral on C(X) is

a (p-invariant (closed) subset of X.

Proof of Proposition 1.7. We fix a dense sequence in C(A), say

fj,j= 1,2, Let x0 e X. Given /y, for any sequence {mk} of natural
numbers mkl o

*

fj ° <P'(*o) is a bounded sequence and therefore admits

a convergent subsequence. Using a standard procedure (finding {m^}, with
each sequence a subsequence of the previous one, such that the corresponding

sequence for fj as above converges and considering we get a sequence

{nk} of natural numbers such that nk
1

Y,"k= o1 fj ° ^'(^o) converges
for all j; also, the limit is between - |) fj || and ||/y||. Since {ff is dense
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in C(X) this readily implies that nkl f ° (P'fco) converges for all

/ e C(X)\ let C/be the limit corresponding to /. Then it can be verified that

A: C(X) -+ R defined by A(/) c/, for all /e C(AT), is a (p-invariant

integral on C(X). Also clearly A is not identically zero and therefore by our
observations above, the support, say X', is a nonempty closed cp-invariant

subset of X and further C(X') admits an integral with full support
(namely X') which is invariant under the restriction of cp to X'. Replacing X
as in the hypothesis by X' we may without loss of generality assume that C(X)
admits a cp-invariant integral whose support is X; in the rest of the argument
we let A be any such integral.

Now suppose that there do not exist any recurrent points for cp.

Let p( • • be the metric on X. Let 0 be the function on X defined

by 0(x) — inf{p(cp'(x), x) | i 1, 2, ...}, for all x e X. There being

no recurrent points means that 0(x) > 0 for all x e X. For each natural
number k let Ek {x e X | 0(x) ^ l/k}. Then each Ek is a closed

subset of X and X= u Ek. Therefore by the Baire category theorem
there exists a k such that Ek has an interior point in X. In particular,
there exists an open ball, say A, of radius at most 1/3k contained in Ek.
The definition of Ek and the condition on the radius of A then imply
that the sets (p'(A), i e Z, are mutually disjoint. Now let xeA and
let / e C(X)+ be such that f(x) > 0 and the support of / (the closure
of the set {y e X \ f(y) > 0}) is contained in A. For each natural
number n let S„(f) f0 cp7' e C(X). The disjointness of
cp'(,4), i e Z, implies that, for any n, || Sn(f) || || / ||. Also, by the
cp-invariance of A we have A (S„(/)) nA(f). Hence A (/) A (Sn(f))/n
< II S„(f) || A(lx)/n || / \\A(lx)/n for all n, where \x denotes the
constant function with value 1. But this implies that A(/) 0 contradicting
the assumption that the support of A is the whole of X. This proves the
proposition.

Acknowledgement: Thanks are due to J. Aaronson and M.G. Nadkarni
for a discussion on recurrent points and to Gopal Prasad and Nimish Shah
for useful comments on an earlier version.

REFERENCES

[DM-1] Dani, S.G. and G. A. Margulis. Values of quadratic forms at primitive
integral points. Invent. Math. 98 (1989), 405-424.

[DM-2] Dani, S.G. and G.A. Margulis. Values of quadratic forms at integral
points; an elementary approach. L'Enseignement Math. 36 (1990)
143-174.


	Appendix: Recurrent points

