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Vi-invariant subsets of X and v,(¢,) Y, C X for all k. Also it is easy to
see that {7, |k > 1} contains either all positive rational or all negative
rational numbers. Now let Y = n;_,Y,. Since {Y,} is a decreasing
sequence of compact subsets, Y” is nonempty. Now if {#, | kK > 1} contains all
positive rational numbers then v,(r)Y’ € X for all positive rational numbers
r and hence by continuity V., Y’ € X and, similarly, in the alternative
case V, Y’ C X. This completes the proof of the theorem.

APPENDIX: RECURRENT POINTS

For a compact metric space X we denote by C(X) the space of all conti-
nuous real-valued functions on X equipped with the sup-norm topology and
by C(X)™* the subset of C(X) consisting of all nonnegative functions; the
supremum norm of f € C(X), namely sup{| f(x)| | x € X}, will be denoted
by | 7]l. By an integral on C(X) we mean a linear functional on C(X) which
takes nonnegative values on C(X)*. For an integral A on C(X) the support
of A is defined to be the subset of X consisting of all x € X such that A(f) > 0
for any f € C(X)* for which f(x) > 0; the support is easily seen to be a
closed subset of X. It can also be verified by a simple point-set topological
argument that if A is an integral on C(X) and f € C(X) vanishes on the
support of Athen A(f) = 0. If Ais anintegral on C(X), where X is a compact
metrizable space, and X" is the support of A then there exists a unique integral
A’ on C(X’) such that A'(f|x) = A(f) for all f e C(X), where f|x
denotes the restriction of f to X'; this follows from the Tietze-Urysohn
extension theorem (cf. [D], (4.5.1)) and the above mentioned property of the
support. We note also that the support of A" as above is the whole of X".

For any homeomorphism ¢ of a compact (metrizable) space X an
integral A on C(X) is said to be ¢@-invariant if A(f o ¢) = A(f) for
all f e C(X); clearly the support of a ¢-invariant integral on C(X) is
a @-invariant (closed) subset of X.

Proof of Proposition 1.7. We fix a dense sequence in C(X), say
fi-J=1,2,.... Let xo € X. Given f;, for any sequence {m,} of natural
numbers m; ' Y7 f; 0 ¢/ (xo) is a bounded sequence and therefore admits
a convergent subsequence. Using a standard procedure (finding {m{’}, with
each sequence a subsequence of the previous one, such that the corresponding
sequence for f; as above converges and considering {m{”}) we get a sequence
{ny} of natural numbers such that n,' Y}’ ' fi0 ¢i(xy) converges

for all j; also, the limit is between — | f;| and || £;|. Since {f;} is dense
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in C(X) this readily implies that #n, ! Zln’; ;1 f o @i(xy) converges for all
f € C(X); let ¢, be the limit corresponding to f. Then it can be verified that
A: C(X)— R defined by A(f) = ¢, for all f e C(X), is a ¢-invariant
integral on C(X). Also clearly A is not identically zero and therefore by our
observations above, the support, say X', is a nonempty closed ¢-invariant
subset of X and further C(X’) admits an integral with full support
(namely X’) which is invariant under the restriction of ¢ to X’. Replacing X
as in the hypothesis by X’ we may without loss of generality assume that C(X)
admits a @-invariant integral whose support is X; in the rest of the argument
we let A be any such integral.

Now suppose that there do not exist any recurrent points for .
Let p( -, - ) be the metric on X. Let 6 be the function on X defined
by 0(x) =inf{p(o’(x),x)|i=1,2,...}, for all xeX. There being
no recurrent points means that 6(x) > 0 for all x € X. For each natural
number k let E,={xe X|0(x) >1/k}. Then each E, is a closed
subset of X and X = u E,. Therefore by the Baire category theorem
there exists a k& such that E, has an interior point in X. In particular,
there exists an open ball, say A4, of radius at most 1/3k contained in E,.
The definition of Ej; and the condition on the radius of A then imply
that the sets ¢i(A), i € Z, are mutually disjoint. Now let x € A and
let f e C(X)* be such that f(x) > 0 and the support of f (the closure
of the set {y € X|f(y) >0}) is contained in A. For each natural
number n let S,(f) = E:Ol foeie C(X). The disjointness of
©'(A), i € Z, implies that, for any n,|S.(f)|=|s|. Also, by the
¢-invariance of A we have A(S,(f)) = nA(f). Hence A(f) = A(S,(f))/n
SIS (AHIAUx)/n=|flIA(x)/n for all n, where 15 denotes the
constant function with value 1. But this implies that A(f) = 0 contradicting
the assumption that the support of A is the whole of X. This proves the
proposition.
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