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178 S. ELIAHOU

4. ON THE LEAST VALUE OF f

Let us consider again an integral polynomial f = u; + -+ + uy, with
u; € M, for all i. By Theorem 2 and the MacWilliams identity, the cardinality
of f~1(v) can be expressed in terms of the weight enumerator of the dual
code K;= L, for every v in Z.

In this section, we will obtain another such formula for | 1) |,
provided v is a lower bound for the range of f. These results could be applied
to ““count’’ the number of binary zeros of f, since v = 0 is a lower bound for
the range of f2, and f? has as many binary zeros as f does.

THEOREM 4. Let f=u;, + - +uy with u,e M, forall i, and
let K:= L; be the dual of the code L; associated with f, with weight
enumerator Px(T). Assume that veZ,v =N mod2, isalower bound

for f, i.e.
v < f(p)
for all pe{l, —1}". Then we have

| fi) | = L - PI(-1)
28 - a! K

where

lI. a=a(@)=WN+0v)/2,

2. B=BW)=WN-0v)/2 —-n, and

3. PWW(—1) denotes the value at — 1 of the a-th derivative of Pg(T).
Proof. Let P;(T) = E,N: 0@ T" denote the weight enumerator of

L =Ly, and let y = y(v) = (N —0v)/2. By Corollary 3, we have deg P, <y
since f(p) = v for all p, and

(1) |f_1(0)| =2n—dimL.aY_
Now, by the MacWilliams identity, the weight enumerator of K is given by
Px(T) = L1_ a1+ T)N-i(1 = T)
T A+ DV (@, (1 =T + (1 + THQ(T)) ,

where Q(T) is some polynomial in 7. Note that N —y =a = (N +v)/2.
To extract a, from the above expression, we derive o times, and evaluate
at T = —1:

PP (-1) = ol a,2

— 1 N-ua
- 2d1mLa 0,72

b
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and therefore

1
_ (@) ¢ _
© gN-a-dimL | P (=1).

Oy

Multiplying both sides by 27-4”Z  and plugging in equation (1), we
obtain the claimed formula for [f-1(v)|. U

COROLLARY 5. Let v, be the least value assumed by f on binary
points. Then

1
5(N+ Vmin) = the order of —1 as a root of Pg(T). L]

5. THE NUMBER OF HADAMARD MATRICES OF ORDER 7

A Hadamard matrix is a square matrix H of order n with entries in
{+1, — 1}, satisfying the relation

H-H'=nI,.

(H T denotes the transpose of H, and I, the identity matrix of order n.)

It is well known that the order of a Hadamard matrix can only be 1, 2 or
a multiple of 4. Conversely, the existence of a Hadamard matrix of order n
for every n=0 mod 4 is a longstanding conjecture, due to Jacques
Hadamard [H]. The smallest open case currently occurs at n = 428. For a
survey on Hadamard matrices, see [SY].

The theory exposed above yields a counting formula for Hadamard
matrices of order n, in terms of the weight enumerator of a certain binary
linear code of length (g) 2,

STEP 1. Defining equations for Hadamard matrices.

We represent binary matrices of order » as points p = (p; ;) € {1, — 1},
Considering n? variables {x; ;}1 < j<n, let

n

gk,[ = E xk,rx[,r .

r=1

If p = (p; ;) 1s a binary matrix, then g, ,(p) is the dot product of the k-th
and /-th rows of p. Thus, a binary matrix p is Hadamard if and only if

gki(p)=0 forall 1 <k<i<gn.
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