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316 V. F. R. JONES
1. COUNTING DIAGRAMS
Definition 1.1. An (a, b) diagram D will be a partition of the union of
a set of size “a” and a set of size “b” into subsets of size 2 (so a + b is even).

If the set of size “a” consists of points on one line and the set of size “b”
consists of points on another, the diagram may be represented pictorially

as below:
%

FIGURE 1.2: A (4, 6) diagram a.

The set of all (a, b) diagrams will be denoted ¥ (a, b).

Definition 1.3. If ae€ Y(a,b) a through-string for the pictorial
representation of o is a line going from one of the top points to one of the
bottom ones. The number of through strings of a will be written #(a.).

If there is some way of identifying sets of a given size (such as if they are
points on a line or a circle), we may define an associative rule (a, )~ o © B
allowing one to multiply a Z(a, b) diagram by a & (b, c¢) diagram to get
a Y (a,c) diagram. No doubt the neatest way to define all this is in terms of
categories but we prefer to remain extremely concrete so we define the
associative rule pictorially by concatenation of diagrams, as below.

FIGURE 1.4. With a as in Figure 1.1 and B € Z(6, 2) as follows,

b e
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a © B is formed as follows:

When two diagrams o and B are multiplied, a certain number of closed
loops are formed which are forgotten in the product a © B. We call n(a, B)
the number of closed loops.

LEMMA 1.5. If ae€ Z(a,b),Be Z(b,c),ye Z(cd),
i) n(o,B) +n(aoB,y)=nB,v)+n(,poy)
(i) (o ©B) <min{s(a), 2(B)}

Proof. (i) Both sides count the number of closed loops in the figure
obtained by concatenating the figures of o, B and ¥.

(i) Obvious.

The diagram in & (n,n) is obviously an identity for o

and will be denoted 1.

—7

Definition 1.6. We will say that a diagram D € Z(a, b) is planar if a
figure representing the diagram has no crossings and all the connecting lines
do not leave the strip in the plane defined by the top and bottom lines.

We will say that D is annular if the a + b points are on the inside
and outside of an annulus with all connecting lines inside the annulus, and
without crossings as in Figure 1.7.



318 V. F. R. JONES

FIGURE 1.7: An annular (3, 7) diagram with 1 through-string.

The set of planar (a, b) diagrams will be denoted #(a,b) and those
having ¢ through-strings #(a, b; t), and the set of annular (a, b) diagrams
/(a, b) and those having ¢ through-strings .2(a, b; t). It is well known

n+1 n

It will be convenient to fix two points on the inside and outside circle
respectively, call them #, and suppose they lie on a vertical line thus:

, 2n
that the set Z(n, n) has order cat(n) = 1 ( ) . We shall count .2/ (a, b).

FiGURE 1.8

Because of applications to subfactors we shall be interested in the case
</ (n, n), for which we say that a diagram is oriented if the curves joining
points may be oriented so that, at the boundary points, they point alternately
inward and outward, with the top * pointing outward and the bottom *
pointing inward. Thus Figure 1.9 is a figure of an oriented diagram.
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FIGURE 1.9

The set of oriented diagrams will be denoted 7 (n, n). Note that any planar
diagram is oriented. There are 22 oriented diagrams in .</'(4, 4) and 40 elements
altogether, which we enumerate in appendix 3 as they should be quite useful
in understanding the rest of the paper.

The difference between the planar and annular cases is that the curves in
the diagram may go round the circle. It is easy to guess that the element we
are about to define in .&/(n, n; n) will have a significant role to play.

Definition 1.10. The element u € .</(n, n; n) is the diagram of a cyclic
permutation represented by the figure below.

FIGURE 1.11: u € .</(6, 6; 6)

PROPOSITION 1.12.  For the semigroup structure on /(n,n) deter-
mined by o, u"=1.
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Proof. Although the figure represented by u” has a 360° twist, the
corresponding diagram is the identity. [

We now want to count annular diagrams. We begin with a preliminary

result which is well known but we include a proof for the convenience of
the reader.

n
LEMMA 1.13. Let { } = | P(n,p;p)|, the number of planar (n, p)
p

diagrams with p through-strings. Then

o)) (52 ).

Proof. Consider an element of Z(n + 1,p — 1; p — 1). The leftmost of
the bottom n + 1 points, call it x, is either connected to the top or the bottom.
If it is connected to the top it must be to the leftmost of those p — 1 points

since there are p — 1 through-strings. There are thus { } such. If x is

p—2
connected to the bottom, one may move x to the top to obtain an element

of #(n, p) as below:
&

FiGure 1.14

il anadi e B A

The process may clearly be reversed so that there are {
p

SR RS S

n
} such and
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n
Putting T\ 7 for p=0,1,... [—] we see that
D n—2p 2

n+ 1 <n> < n >
= + .
< D > p p—1
But the same recursion relations and boundary conditions are satisfied by
)=o)
p p—1
7 n n n n ( n ) ( n )
= — and —(n-p)Y=|n-p|—\n-pP-2].
<p> (p) (p B 1) p < 2 > 2 2
n n n—-2k+1(n+1
Also note ~ = .o
k k—1 n+1 k

n

COROLLARY 1.15. | «/(n,p;p)| :p(f_—_p) for p # 0.
2

Proof. Fix one of the p outside points. There are n ways to connect it
to the inside. Once connected, one may cut the annulus open along that string
and one is in the planar situation so

n-—1 w1 n
wtmpipri=n{l 1} -2 () -p(:) . O

p q
COROLLARY 1.16. ILQ/(p,q;t)|=t(1_ﬂ_—_f) (q_—_g) for t>0.

2 2

Proof. Given an annular diagram D with #(D) = ¢, one may push all the
curves connecting inner (resp. outer) boundary points to lie within a small
neighborhood of the inner (resp. outer) boundary circles. Then D may
be cut with a third circle, concentric to the others, which meets only the
through-strings. Thus we can write D = D; o D, with D, e & (p,t;1),
D, € /(t,q;t). Moreover given the pair D,,D,, it is immediate that
any other pair E,,E, with E, o0 E, =D is of the form E; = D, o u*,
E,=u"%o D, for some k =1,2,...,t(u € (¢, 1) as in Definition 1.10).
And all 7 such pairs (E,, E,) are clearly distinct. Thus

2 2

1 p q
| (P, q;1)| = ;l A (p, ;) || (8, q;50) | = t(p__f) (Q__f) .
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COROLLARY 1.17.

min . 2 2
| /@2p,2q) | = cat(p)cat(q) + zi:f”"”zz( q.) ( p.) and
g-i) \p-i

i 2p + 1 2qg + 1
| /@p +1,2g + )| = £™" P @i + 1) ( P ) ( " ) .
p—1 q— i
Proof. The only case not covered explicitly by Corollary 1.16 is the case
of zero through-strings. This can only happen if p and ¢ are even, and
then the argument of 1.16 shows that the number is | ./(2p, 0) | .27 (2q, 0) |
=|Z7@2p,0) | 72q,0)|. O
2 2
p) ( q) + cat(p)cat(q).
p q
It is possible to count the elements in .7 (2p, 2q) in a completely different
way which we now explain. This other way will not be used, but the truth of
the resulting binomial identity confirms the calculation.

p+tyq

S. Eliahou has calculated | .«7(2p, 2q) | = 2= (

To save on notation let d, , =|uU,;s0.22(2q,2p;t)| and let ¢, also
stand for cat (k).

First count all the elements of .27 (2q, 2p) with (the outer) * connected to
the inner circle. Clearly * can be connected to 2¢q points and, once connected,
there are cat(p + g — 1) ways of completing the diagram. There are thus
2qgcat(p + g — 1) such.

Now assume #* is connected to the outside. Then D is of the form (a)

or (b) in Figure 1.18:
| @Zk
()

FIGURE 1.18

(@)

Thus for the p — 1 possible points to which * is connected we must
count the two possibilities (which are distinct since there is at least one
through-string), which are clearly d, _ -1 4¢r and ¢, _ - ;d, 4. Altogether
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we get d,,=qcat(p+q—1)+codp-1,4t Cady_2,q+ "'+ Cp-2d1,4
-+ dl,qCp_z + ==+ Codp_l,q or

p—1

dyi1.4=qcat(p+q) +2 Y ocid, i
i=0

To get an explicit formula for 4, ,, we use generating functions.

Let CAT(x) = Y _,cat(n)x" = 1—_1—2%(_—“ and f,(x) = ¥, _odre1,0%"
Then

(X)) =q i cat(g + n)x" + 2xCAT(x) f;(x)
n=20

so that

1 oo}

fo(x) =q(l —4x) 2 Y cat(g+ n)x”

n=20
= [2r c 1 2n + 2q
o[ & () E e () )
r=0 \ ¥ n=on+qg+1 n+gq
Equating coefficients we see we have proven:

LEMMA 1.19.

p! 1 2n\ (2p+2+2g—2n—2
| /(@2p. 2q)| —cat(p)cat(q) =2q )} ————
n=0p+q—n\ n p+qgq—n—1

min (p, q) 2 2
R B v
r=1 p—1 q-—1

Finally we observe that oriented diagrams are easily counted from
nonoriented ones.

LEMMA 1.20. If p is even and ue </(p,p) is as in 1.10, then

for t>0, o~ ua is a bijection between ./(p,q;t) and unoriented
elements of </(p,q;t). Thus | Z(p,q;t)|=2|.Z(p,q;1)].

Proof. It suffices to show that, if a is oriented, ua is not, and vice versa.
The first assertion is obvious. So if «a is not oriented, choose a non-oriented
through-string. The same string extended through ua is then oriented. Cutting

along that string we are in the planar situation which is necessarily oriented
for obvious parity reasons.  []
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