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and therefore

1
_ (@) ¢ _
© gN-a-dimL | P (=1).

Oy

Multiplying both sides by 27-4”Z  and plugging in equation (1), we
obtain the claimed formula for [f-1(v)|. U

COROLLARY 5. Let v, be the least value assumed by f on binary
points. Then

1
5(N+ Vmin) = the order of —1 as a root of Pg(T). L]

5. THE NUMBER OF HADAMARD MATRICES OF ORDER 7

A Hadamard matrix is a square matrix H of order n with entries in
{+1, — 1}, satisfying the relation

H-H'=nI,.

(H T denotes the transpose of H, and I, the identity matrix of order n.)

It is well known that the order of a Hadamard matrix can only be 1, 2 or
a multiple of 4. Conversely, the existence of a Hadamard matrix of order n
for every n=0 mod 4 is a longstanding conjecture, due to Jacques
Hadamard [H]. The smallest open case currently occurs at n = 428. For a
survey on Hadamard matrices, see [SY].

The theory exposed above yields a counting formula for Hadamard
matrices of order n, in terms of the weight enumerator of a certain binary
linear code of length (g) 2,

STEP 1. Defining equations for Hadamard matrices.

We represent binary matrices of order » as points p = (p; ;) € {1, — 1},
Considering n? variables {x; ;}1 < j<n, let

n

gk,[ = E xk,rx[,r .

r=1

If p = (p; ;) 1s a binary matrix, then g, ,(p) is the dot product of the k-th
and /-th rows of p. Thus, a binary matrix p is Hadamard if and only if

gki(p)=0 forall 1 <k<i<gn.
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STEP 2. Reduction to a single equation.
Let

By construction, we have the following properties:
(1) g(p) = 0 for every binary matrix p;
(2) g(p) = 0 if and only if p is Hadamard.

Developing the expression for g, we obtain:

&= Zk<1gi,1
= Ek<1(zrxk,rx1,r)2
= Y (M+20, Xk, rXi,r Xk, sX1,5)
=n (Z) +2f,

where

f:= Z Z xk,rxl,rxk,sxl,s .
k<l r<s
(Of course, the above computation is performed modulo the relations x;?‘, ;=1
for all i,j.)
The following properties of f = %( g—n ('2’)) derive instantly from those

of g:
(1) f(p)= —3n (;) for every binary matrix p;

1

2

) f(p) = —in(}) if and only if p is Hadamard.

STEP 3. The code associated with f.

Let K,:= L J;L denote the dual of the binary code L, associated with f, as
defined in Section 3. Explicitly, we consider the map

P F(;)2 - Fy

2
Ek,l;r,8) = ex,+e,,+ers+es,

where {E(k,l;7,8)} 1 <k<i<ni<r<s<n and {€; ;j}1<i j<n denote the stan-
dard bases of the left and right spaces, respectively; by construction then,
K, = Ker(d,).

As a direct consequence of Theorem 4 and of the above-mentioned
properties of f, we obtain the
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THEOREM 6. Let K, (n even) be the code of length ('2’) 2 defined as

n\ 2
the kernel of the above map q>,,:F2(2) — Ff,fz. Let P,(T) denote the
weight enumerator of K,. Then the number h(n) of Hadamard matrices
of order n is given by

h(n) .pga(n))(__ 1,

200 g (n)!

where

I. a(n)=n2(n—-1)(n-2)/8;

2. B(n) =n3(n—1)/8 — n?;

3. Pl (1) denotes the o(n)-th derivative of P,(T), evaluated
at — 1.

Proof. In the formula of Theorem 4, replace:
e N, the length of the code, by ('21) 2;
e 0, a lower bound for the values of f, by — %n (;), and

e n, the number of variables in f, by nZ2. ]

Thus, the determination of the weight enumerator of K, is an important
problem. We will give below, without proof, the number of codewords of
weight 3, 4 and 5 of K,. (Of course, there are no words of weight 1 or 2
in K,.) But the problem can be generalized a little bit, as follows. Consider
the map

T 1S R

2

Ek,l;r,s) = er,te,+erstes,

where now, the indices k < / range from 1 to m instead of 1 to n. We denote
by K, , the kernel of ¢, ,.

Let I' = {1,...,m} x {1, ...,n}. We can think of the vector basis e, ; as
the point on row i and column j in the grid I', and of E(k,!/;r,s) as the
rectangle determined by rows &,/ and columns r,s in I'. The image of
E(k,I;r,s) under ¢, ,, then, is the formal sum of its four corners.

Thus, an element of weight w in K,, , can be pictured as a set of w
rectangles in the grid I', such that every point in the grid coincides with
an even number of corners of the rectangles in the set.
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For example, all elements of weight 3 in K, , can be represented (up to
proper size and location) by the following picture:

or its vertical analogue. This picture represents a codeword of the form
E(k,lri,r) + E(k,I;r1,r3) + E(k, I 12, 713) .

Thus, the number of codewords of weight 3 in K, , is equal to

- () )+ () ()

Similarly, one can show that
wan) =3(3) (5) +9(5) (5) +3 (%) (3) 5

ws K ) =12(3) (5) +72(5) () +72(3) (5) +12(3) (5) +2(5) (3) -

As a last remark, note that an upper bound for the weights in the associated
code L, is given by §n3(n — 1), and that this bound is actually attained for
some # if and only if there exists a Hadamard matrix of order n. This follows
from, say, Corollary 3.

6. THE NUMBER OF PROPER 4-COLORINGS OF A GRAPH

Let G = (V, E) be a simple graph (no loops, no multiple edges) with vertex
set V and edge set E. We will identify V with {1, ..., n}, and denote the
cardinality of E by e.

A 4-coloring of G is the assignment to every vertex of one among four fixed
colors; such a coloring is proper if the colors assigned to the end vertices of
any edge are distinct. For a survey on the 4-colorings of planar graphs,
see [SK].

We will count the number of proper 4-colorings of G, in terms of the weight
enumerator of a certain code of length 3e.

STEP 1. The defining equations for proper 4-colorings.

As our palette of colors, we will choose the 4-set {1, — 1}2. The space of
all 4-colorings of G can thus be identified with {1, — 1}?", for example as
follows:
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