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A consistent horocycle always exists in this case, so gluing B; into
place gives us a metric in Q which is complete near B;. We can also
describe what Q looks like near B;. If we call wedge a region in H?2
bounded by two geodesic half-lines with common origin, then a subset
of Q which contains B; is obtained as follows: for every half-infinite
geodesic side s of B; which is not a mirror, glue a suitably thin wedge to
B; by identifying s with one of the sides of the wedge.

This description of the possible situations implies the conclusion of the
proof. [

9. LITERATURE REVIEW

It seems to the authors that a minimal requirement for a satisfactory
treatment of Poincaré’s Theorem is that it should apply directly to the case
of a finite-sided Dirichlet domain resulting from the action of a discontinuous
group of isometries on one of the three constant curvature geometries S”, E”
and H”. Furthermore the hypotheses should be easy to verify, and extraneous
hypotheses should not be included. We review the literature with these criteria
in mind.

The first versions of Poincaré’s Theorem were published in [Poi82],
covering the two-dimensional version, and [Poi83], covering the three-
dimensional version. These are reprinted in Volume Two of [Poi52]. It is clear
that Poincaré understood very well what was going on. However, the papers
are not easy to read. In particular, the reader of the three-dimensional case
is referred to the treatment of the two-dimensional case for proofs; this is fully
acceptable for a trail-blazing paper, but not satisfactory in the long term.

There are a number of reasonable published versions of Poincaré’s
Theorem in dimension two. Of these, we would single out the version by
de Rham [dR71] as being particularly careful and easy to read. Most published
versions of Poincaré’s Theorem applying to all dimensions are unsatisfactory
for one reason or another. The most satisfactory version is [Sei75], due to
Seifert. The proofs are careful and rigorous, but rather long. Poincaré’s
Theorem is proved in all dimensions and for all three constant curvature
geometries. The treatment is not constructive in several aspects, specially when
it comes to completeness. There is some discussion of conditions which are
equivalent to completeness in the hyperbolic case, which are closer to being
constructive. However this discussion is limited to the finite volume case.
Seifert’s treatment also contains unnecessary restrictions, which, for example,
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would prevent his version being directly applicable to the Dirichlet domain
applied to a rotation through n about a fixed point in dimension two. (One
would first have to subdivide the boundary of the Dirichlet domain, since
Seifert assumes that the map to the quotient space is injective on each face
of the given polyhedron.)

The treatment in [Mas88] is difficult to understand. For example in H.9
on page 75, it is claimed that a metric is defined in a certain way, and this
fact is said to be “easy to see”, but it seems to us an essential and non-trivial
point, which is not so easy to see, particularly when the group generated by
the face-pairings is not discrete. Maskit’s proof does not use induction on
dimension, which seems to us essential for a simple and clear treatment. We
refer in particular to the assertions that certain maps are homeomorphisms on
page 77. The Proposition in IV.1.6 on page 79 of this book is incorrect — a
counter-example is given in Example 9.1 — because there are no infinite cycles
or infinite edges according to the definitions in the book. As in the case of
Seifert’s paper, the constructive aspect is ignored, and the question of
completeness is handled in an entirely non-constructive way. Maskit’s local
finiteness condition is more demanding than ours, and Seifert’s is more
demanding than Maskit’s.

In [Ril83], there is a statement of Poincaré’s Theorem with no proof, and
[Sei75] is cited. Unfortunately, Riley fails to take into account Seifert’s
restriction to the finite volume case. This leads him to a statement of
Poincaré’s Theorem, which implies that if two parallel vertical planes in upper
half-space are matched by a hyperbolic isometry, then the infinite cyclic group
thus generated is discrete.

Maskit’s paper [Mas71] contains a nice discussion of completeness, though
again it is not a constructive approach. He limits his discussion to hyl’)erbolic
space in dimensions two and three. We are not confident that the arguments
in the paper are complete. For example, there seems to be an assumption that
the quotient of a metric space, such that the inverse image of any point is finite,
is again metric. This is false, as is shown by identifying x with — xin [— 1, 1],
provided 0 < x < 1. A slight variation of this gives a counter-example in which
the inverse image of a point is always equal to two points.

EXAMPLE 9.1 (incomplete example). Take a quadrilateral in the
euclidean plane with no two sides parallel, and multiply with (0, o). Embed
this in the upper half-space model of H3, with the quadrilateral embedded in
a horizontal horosphere, and the factor (0, o) corresponding to vertical
straight lines. This gives us a convex hyperbolic polyhedron P with four faces.
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The quadrilateral gives rise to two commuting orientation-preserving euclidean
similarities which identify opposite sides. These similarities can be regarded as
hyperbolic isometries which are face-pairings for P. They do not generate a
discrete group of isometries of H?3. Maskit’s paper [Mas71] and his book
[Mas88] both contain statements implying that this group of isometries is
discrete.

There is a discussion of Poincaré’s Theorem in Beardon’s paper [Bea83].
Beardon concentrates on H?, with a single compact convex polygon.
Questions of completeness are not treated.

Morokuma’s paper [Mor78] is another paper which is difficult to read. If
the definitions in this paper are taken literally, then the statement of the main
theorem implies that a closed ball of finite radius is equal to the whole of
hyperbolic space. This is because a closed ball is the intersection of a collection
of half-spaces, each containing the ball in its interior, and as a consequence
a closed ball is a polyhedron with no faces. The paper contains a great deal
of notation, which, to our way of thinking, obscures the ideas. On occasion
the author seems to assume the main point of what needs to be proved. For
example, on page 163 of his article, the statement “t~!p’ € F, ., namely
F, ., = F"” would not be true if Morokuma’s group I" were not discrete. But
at this point he is trying to prove discreteness.

Apanasov’s paper [Apa86] is yet another paper which is difficult to read.
Apanasov allows non-convex polyhedra. To see the consequences of
Apanasov’s definitions, consider the Poincaré disk model for H?. According
to his definitions, the union of the closed first and third quadrants is a
polyhedron with two one-dimensional faces, namely the x- and y-axes. There
are no codimension-two faces. The intersection of two faces of a polyhedron
does not need to be a face. It is not clear to us what is meant by Condi-
tion IV on page 474 of the English translation of Apanasov’s paper. As a
general comment on this paper, it seems as though much of what one should
prove in Poincaré’s Theorem are presented as hypotheses, rather than as
conclusions.

An earlier paper by Aleksandrov, [Ale54], also makes many parts of
Poincaré’s Theorem into hypotheses rather than conclusions.

A proof of Poincaré’s theorem in the special case of a single polyhedron
with each face-pairing equal to the reflection in that face is given in [dIH91];
this proof has the same inductive structure as the proof given in our paper.
The only condition to check is that the angles at codimension 2 faces have the
form n/m for some integer m. This version of Poincaré’s theorem is readily
deduced from Theorem 5.5 using 5.4; in fact LocallyFinite is obvious in this
case and the quotient space is complete as it is identified with the polyhedron
itself.
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