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UNITS OF CLASSICAL ORDERS 209

For n € N let
I'(n) = kernel of (T = (A/nA)>)

the congruence group mod #; this is a normal subgroup of finite index.
Obviously I'(n) is torsion free for n > N. With more effort, one can do much
better: the regular representation injects I'(n) into the congruence group
mod » in GL,,(Z), m = dim 4, and Minkowski has shown that this is torsion
free for n > 2 [Mi].

(4) T contains only finitely many isomorphism classes of finite subgroups.

Proof. 1f Ty < T is torsion free and normal of finite index, then every
finite subgroup of I is isomorphic to a subgroup of I'/T’.

Later, we will show more: I' contains only finitely many conjugacy classes of
finite subgroups.

(5) T is residually finite, that is, for every x € I',x # 1, there is a normal
subgroup T, of finite index such that xé&l.

Of course, almost all I'(#) will do. It follows that I" is hopfian, that is, not
isomorphic to a proper factor group (see [MKS], p. 116).

(6) Finally, let us mention here the following result due to Zassenhaus [Z2]
(although it is not entirely elementary): I" contains a solvable subgroup of finite
index if and only if the Wedderburn components of A are number fields or
definite quaternions over Q.

Sketch of proof: the problem is readily reduced to simple A. The “If” part
is then trivial.

Conversely, if matrices are involved, one knows that I' has infinitely many
subfactor groups of the form SL,(F), where F is a finite field. The same is
therefore true of any subgroup of finite index. In the skew field case, the
argument is more intricate; we refer to [Z2].

3. FINITE GENERATION: CLASSICAL REDUCTION THEORY

The most basic fact about I' is that it is finitely generated; this is even valid
for arbitrary arithmetic groups, as has been proved by A. Borel and
Harish-Chandra in the fundamental paper [BHC]. Here I shall describe the
classical approach, carried out by Siegel [S1], who completed earlier work of
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Minkowski, Humbert, Weyl and Eichler. The leading idea is to make I'
operate on a suitable topological space; if this operation is “good enough”,
then generators can be read off form it, even, as we shall see in the next section,
defining relations. Let us begin with the basic definitions.

Let the group H operate on the topological space 7 as a group of
homeomorphisms. For a non-empty subset F C T define

EF)={heH|FNnFh+g}.

If we think of Fas a fundamental domain, then E(F) consists of those elements
which carry F to a ‘“neighbor”. The following basic observation occurs
in [S1, section 9].

BASIC LEMMA. Assume that

1) FH=T;

(i) FE(F) is a neighborhood of F; and
(iil)) T is connected.

Then E = E(F) generates H.

Proof. Let H, be the subgroup generated by E and {4;} be a set of right
coset representatives of H mod H,. Then the sets X; = FHyh; are disjoint,
open and form a cover of 7. Since T is connected, there can be only
one of them.

Let us illustrate this at once with the most classical case of
H =T = SL,(Z). In accordance with previous terminology, this is half the
unit group. In order to obtain finite generation one has to find 7 and F such
that F is not too small (otherwise (i) or (ii) might fail) and not too large
(otherwise E might be infinite).

A plausible condition for E being finite is that H operates discontinuously,
that is, no H-orbit has a cluster point. (If x is a cluster point of fH,
write x = f'h, f' € F; if there is a neighborhood f'e U C F, then Uh
contains infinitely many fh; and k;h~! € E). This rules out the most near-at-
hand choice of 7, the natural space R”. (Convince yourself for n = 2, that
" does not operate discontinuously on R?!) A possible choice, however, is
T=G=SL,(R), T' operating by right multiplication. I' is a discrete
subgroup of G. For £ > 0, w > 0 define

D, = {diag(a, ...,a,) € G|0 < a; < ta;;}

N, = {(u;) strict upper triangular with | n,;| < w}

and

St,w = SO(”)D[NW C G .
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This is called a ¢‘Siegel domain’’. One now proves two things:
(1) for ¢t > 2/15, w 2% we have S, ,.I = G;
(2) for all #, w the set
{yeT[S,wn S wy# T}
is finite.

Proofs can be found, e.g., in Borel’s book [B2, §1]. It is not difficult to
apply the lemma, and hence T is finitely generated.

Remark on terminology: by a fundamental domain we mean a set
containing a system of orbit representatives and such that H-translates of it
intersect at most on the boundaries. It is equivalent to (i) of the Basic lemma
that F contains a fundamental domain. Property (2) (and its generalizations)
is called ““Siegel’s property” by Borel; (1) and (2) constitute what Borel calls
“ensemble fondamental”. Other authors require other properties or
distinguish between ‘‘fundamental set’ and ““fundamental region”. Note that
a Siegel domain is not a fundamental domain in this sense! See [Te, 4.4] for
Minkowski’s classical fundamental domain of SL,(Z).

Let us briefly indicate (although this goes beyond our theme) how the argument
generalizes to arithmetic groups. SO(n) is a maximal compact subgroup
of G, the set D of diagonal matrices in G is a maximal torus (a torus is a group
isomorphic to a direct product of copies of R *), and the set N of strict upper
triangular matrices is a maximal unipotent subgroup of G. Such groups are
reasonably unique, and one has the Iwasawa decomposition

SO(n) X DX N> G
(0, d, n) - odn ,

which is a diffeomorphism of manifolds. Let D operate by conjugation on the
vector space g consisting of n-by-n matrices of trace zero, the Lie algebra
of G. The character group Hom (D, R ¥) is generated, say, by the first n — 1
coordinate functions and is isomorphic to Z”~!; for a character A define

¢* ={xeg|ldxd!=A(d)x, all de D}

and call A a root if g* # 0. Among the roots one can distinguish simple roots
which can be choosen to be
Ai: diag(d,, ..., d,) = d:d )}

i+1-

Thus,

D, ={d e D|\(d) < t,\ simple, d positive} .
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N, is simply a ‘“generic” compact subset of N. Now all of these concepts
— maximal compact subgroups, tori, unipotent subgroups, Iwasawa
decomposition, roots and simple roots — generalize to reductive real algebraic
groups G. Hence Siegel domains can be defined completely analogously, and
one can prove the analogues of (1) and (2) for arithmetic subgroups I of G;
this has been done in [BHC]. By elementary property (1), this applies to unit
groups of orders.

Secondly, let us pursue the connection of these concepts with reduction of
quadratic forms. In applying the lemma it is natural to look for a manifold
of least possible dimension which possesses a suitable F. In the case
of I' = SL,(Z), the observation that SO(n) N T' = compact and discrete,
hence finite leads to the expectation that the operation of I" on the coset space
SO(n)\ G still does the job. By linear algebra, the map

{ G — symmetric positive matrices of determinant 1
!

g 7 g'g

is surjective; this implies that the operation of G on these matrices,
(g, x) — g'xg, is transitive. The stabilizer of 1, is SO(n); hence SO(n)\G
identifies with that space, which in turn is identified with the space of positive
definite quadratic forms of determinant 1. If g = kdn is the Iwasawa
decomposition, then from

n(g) = n'dk'kdn = n'd*n

we see that S; , is mapped to the Siegel domain

ﬁz,w = {n'dn|d € D;2, n € N,,}

in the space of forms. Hence (1) translates to Minkowski’s “reduction
theorem” saying that every positive form of determinant 1 is a I'-translate of
an element of S;,; ;,,. It is clear that E(S;> ,) is still finite.

Hence we can (in principle) obtain a finite set of generators from the
I'-operation on a space of dimension

n(n—l)_n(n+1)_1
2 2

n2—1-—

But now the attentive reader will object that this is somewhat like putting
the cart before the horse because reduction theory doubtless has an interest
in its own right whereas it is elementary to write down a finite set of generators
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for SL,(Z). In fact, such a set can be given for SL,(R) if R is euclidean and
finite over Z (see [Ne], p. 107) and for SL,(Z) one can do with

1 1 ( O(1)1 \

and . ;

1

\ (=Dt 0 )
as Hua and Reiner have shown [HR]. Hurwitz [H] treated SL,(R), where R
is the integral domain of a number field, and remarked that the procedure can
be generalized to SL,(R), giving a sketch for n = 3. The most general form
of the argument was given by O’Meara [O’M]. The finite generation of
SL,(R) can be derived directly from the finiteness conditions incorporated in
the notion of number field, and there is no need to employ the geometry. This
should also hold for the case in which skew fields are involved although a
purely algebraic treatment of this case has — as far as I know — not
been given.

The reply is that finite generation as such is a very weak information and
gives hardly any insight into the structure of our unit groups. It is the raison
d’étre of groups to operate on sets having an internal structure, and it is by
understanding the operation that we understand groups. With regard to units
of orders, this has been stressed by Eichler [E1]:

,,Von der Uberzeugung ausgehend, daB die Begriffswelt der Zahlen-
geometrie die geeignete Grundlage fir den Aufbau eines tragenden Gertists fur
die hyperkomplexe Einheitentheorie abgibt, beschaftige ich mich hier mit
Darstellungen der Einheitengruppen durch affine Abbildungen eines Raumes
auf sich. In dieser geometrischen Gestalt trat sie erstmals in der analytischen
Zahlentheorie auf und fiihrte auf geometrische Untersuchungen, die bis
heute nicht in befriedigender Weise abgeschlossen werden konnten. Die
Hauptaufgabe der FEinheitentheorie sehe ich nun in der Auffindung von
Invarianten dieser Abbildungsgruppen.‘

Needless to say, this is still the adequate view on units of orders.
Furthermore, as we shall see later, the geometric method leads at least
theoretically to defining relations among the generators thus found; in the only
case where these can be derived purely algebraically (SL,(Z)) this derivation
has an artificial and a-posteriori character, and doubtless the most natural way
to the presentation

SL>(Z) = C4=x<c2 Cs

is by letting the group operate on a tree [Sel].
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Moving towards general orders we first deal with the case where A = D
is a skewfield, in which the number geometric method works particularly
smoothly. Put Dg = R ® ¢ D and

G ={xeDF|Nx)?*=1},

N denoting the regular norm D — Q. Clearly, I' C G is a discrete subgroup.
The following result was proved by Kdte Hey in her doctoral thesis (Hamburg
1929) and reappears in [Sch], [El], and [Z1].

THEOREM 1. G/T is compact.

Proof (according to [Z1]). We work with a Z-basis of A, so that
in Dr = R¢, g = dimD, A appears as Z2.

Let C be any convex, 0-symmetric compact set in R¢ such that vol(C) > 24,
By Minkowski’s lattice point theorem, C contains a nonzero a € A. If
x € G, then vol(Cx) = vol(C) because of | N(x) | = 1, and Cx is still convex
and O-symmetric, hence contains a nonzero a, € A.

Now let (x,) be a sequence of elements in G. Then there are a; € A\{0}
such that

a; = cix;, cie C.

It follows that | N(a;) | is bounded because N is bounded on C. Because D is
a skew field, we have

|N(CI,)|=|AQ,A|¢O

Since there are only finitely many right ideals of bounded index, there is a sub-
sequence (ay) such that

ar\ = a A\ (say) ,
hence
ay = 1€y, €, €I
Further,
| N(cx) | = | N(ag) | = | N(a)|> 0.

Since C is compact, (c,) contains a convergent subsequence (c;). The last
inequality shows that (¢, ') is convergent. From

-1 -1

we now read off that G/T" is compact. Note that we have used, so to speak,
only half of the lattice point theorem in that there was no need to specify C.



UNITS OF CLASSICAL ORDERS 215

This is our first generalization of Dirichlet’s unit theorem, the most
classical result on units of orders, in that it contains what one calls the hard
part of this theorem. In fact, let D = K be a number field and write, in usual
notations,

Kg=Ri X Crz2, ri+2r,=g8;
we have

G = {(xla ceey xr1+r2) € KR } (Xl ...x,l) |x,1+1 |2 ixr1+r2 !2 = 1} ]
The logarithm map

G - R,r=ri+r,—-1
g
(x)) = (og|xi|,...,log | x|, 21log| %, +1],..rr 210g [ Xp 4w ry—1])

is a homomorphism, continuous, surjective and has compact kernel.
Since T is discrete in G, log|I has finite kernel, and logI' is discrete in
log G = R”, hence a lattice. It follows that
I'=WK)XZ', r=rklogl <r,

W (K) denoting the roots of unity in K. This is the easy part of Dirichlet’s
theorem, the hard one being that 7= r. In the standard presentations of the
theorem, one now has to go through some unperspicous trickery (involving,
of course, the lattice point theorem) in order to establish the existence of
sufficiently many independent units. But clearly 7= r is equivalent to the
compactness of log G/logI’, which follows at once from Theorem 1.

The generalization of Theorem 1 to arithmetic groups is as follows:
let G C G/, be a reductive algebraic group defined over Q,I" an arithmetic
subgroup. Then Gr/T is compact if and only if G° (= connected component
of identity) has no nontrivial Q-characters and all elements of Gq are
semisimple (see [B2], p. 55ff.). The reader might try to verify that the
hypotheses of this result are satisfied if G is the algebraic group defined over
Q by the norm-1-elements of a skew field.

The finite presentation of I" can be extracted from Theorem 1. Let K C G
be a maximal compact subgroup; then I' n K is finite, hence T'" contains a
subgroup I'y of finite index such that I'o» K = 1. Then K\G/T, is a
compact manifold, and since K\ G is a homeomorphic to a Euclidean space,
I’y is its fundamental group. But the fundamental group of a compact

manifold is always finitely presented (a proof of this fact can be found
in [Ra], p. 95).

The two ““extreme cases” 4 = M,(Q) and A = D are comparatively easy;
unfortunately, the general case offers difficulties which cannot be overcome
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by a straightforward combination of these two. (Be sure to see clearly why the
skew field property of D is indispensable in the proof of Theorem 1). However,
Zassenhaus proves the following generalization in which A is not even
required to be semisimple: there is a system F of right coset representatives
of G mod I' of the following form:

F={xWx)VW(x)~"'},

where the x run over a compact subset of G, W(x) € G is a function with finite
range and V a torus with positive diagonal elements. Visibly, there is a
resemblance to a Siegel domain. In the skewfield case, V' = 1. From this one
can derive the finite presentability of I" along classical lines (see section 4).

Approaching the general case, now we could simply refer the reader to
Borel’s text [B2] since there is no point in reporting at length on the contents
of a textbook which is standard since 25 years. On the other hand, even in
a survey article the reader will expect to become acquainted more closely with
the methods. Therefore let us consider in some detail Siegel’s classical
treatment. Actually, we follow Weyl [W] who found it necessary to provide
a careful explanation of Siegel’s ““all too laconic” arguments. He divided the
proof (of finite generation) into three ‘“theorems of finiteness”; we will lead
the discussion up to a point where the content and the role of these theorems
become visible. Perhaps the clarity and elegance of Weyl’s arguments is still
of more than merely historical interest.

Let A = M,(D). A lattice N in D" is a finitely generated Z-module
containing a D-basis of the right D-vector space D”. Such a basis,
2 =1{d,, ..., d,}, is called a semibasis of N. Given ¥, the set

L(2) = {(ay, ...,a,) € D"| Xd;a; € N}

is another lattice, containing the standard basis vectors e, ..., e,. L(Z) is
called the representation of N in terms of <, and all such L(Z) are called

admissible lattices. The left order
O/ (N,A)={xe A IxNg N}

is our order A, and
I' ={xeA|xN = N} = A*

is the group which interests us; Weyl calls it the lattice group. If &, &’ are
two semibases, then L(Z) = L(Z’)ifand only if ¥’ = s’ for some s € I'.

An R-basis of Dg = R @D is called normal if the regular represen-
tation R of Dg with respect to that basis has the property

R(Dgr) = R(Dg)! (¢t denoting transpose) .
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It is not difficult to establish the existence of normal bases: let K = Z(D) and
write as before

R®QK= Rt X sz’ r, + 2r, = dlmQK
Then

Dr=R®eD=R®eK)®xD=[[RR,Dx [[ C®%D,

i=1 j=1

where ® {(® ) indicates that the tensor product is to be formed with respect
to the K-module structure of R(C) corresponding to the i-th (j-th) embedding
of K into R(C). The C Q/D are central simple C-algebras and hence full
matrix rings over C. The R Q ‘D are central simple R-algebras and hence full
matrix rings over R or H, the quaternion skew field. More precisely,

if s2 = dimg D,
C®/D = M,(C)
3) R®'D = M,R), for i =1, ...,r{ (say)
R®'D = M,,(H), for i=ri+1,..,r, +r] =r.

If we now replace the elements of C and H by their regular representations
with respect to the standard bases, then the typical elements are

a —-b —-c¢c -d
a -—0b C b a —d c -
(b a)e i W d a —b <t

d -—-c¢ b a

and transposing corresponds to the usual conjugation on C and H. Combining
this with the fact that for any skew field F, the regular representation

of M,(F) over F is equivalent to » times the identity, we see that normal
bases exist.

We fix one of them and obtain a conjugation on Dy by
a—~a=R-1(R(an)).

Call o symmetric if o = a, positive if R(a) > 0 is positive definite. A
quadratic form over Dy is now a matrix

F=(y;) € M,(Dr), with v, =1, .
For x € (Dg)" put

Flx] = x'Fx,
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a symmetric element of Dg. F is called positive if the real matrix (R(y;;)) is
positive definite. Important note: it would not work to define F > 0 by
F[x] >0, all x+# 0. Choosing x=(0,...,x;,...,0), we had to have
Xi¥;;Xi > 0, all x; # 0 which implies

N(Xx)*N(y;;) >0;

but if Dy is not a skew field, there will be x; # 0 with N(x;) = 0. The
positive F form an open convex cone in the space of all forms, in particular
a manifold of the same dimension. We call it H*. Weyl shows next that
F > 0if and only if F = /_1’/1, A € GIl,(Dyr); this implies that, as long as the
conjugation a — a is fixed, positiveness does not depend on the choice of a
normal basis.

Let 7r: D — Q (or Dr — R) denote the trace of the regular represen-
tation. It is not hard to show that, if F is positive in the above sense, one has

tr(x):=TrF[x] >0, for x+# 0 in (Dgr)".

This is the correct definition of “positive form over a skew field”’; as Weyl
points out, a crucial step in Siegel’s proof.

So far we have been setting the stage; now we come to the first main step,
the method of successive minima originally invented by Minkowski. Let the
lattice NV and the positive form ¢ = ¢ be given. Since for any real s > 0 there
are only finitely many d € N with ¢[d] < s, ¢ takes a minimum on N, say
t[d,] = s;. Inductively, we define a semibasis & = {d,, ...,d,} of N by the
requirement

tld,] = min{¢[d]|d e N\[dy, ..., dp_11},

where [d, ..., d,,_,] denotes the D-span of d,,...,d,_,. Write t[d,,] = Su;
then s; < 5, < ... <5,. We say that & is reduced with respect to t. Now
we make the change of variables which transforms d; to the unit vector e;
and N to L(¥); the new form is again denoted ¢. We then have

f[X] = t[em] =Sm

for xe L(Y)\]e,,...,e,_1] that is, (xy, ..., X,) # 0. An arbitrary form
satisfying these inequalities is called L (¥)-reduced. We have now reached a
point where we can state the finiteness theorems.

1. There exist L-reduced forms for only finitely many admissible lattices L.

In other words: if we fix N, but run over all positive F, only finitely many
lattices L (<) are produced by the method of successive minima.
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If L is admissible, call
Z(L):={Fe H* |tgis L — reduced}

the cell of L. If Z(L) is not empty, it is defined by infinitely many inequalities.
1. Z(L) can actually be defined by finitely many of them.
The proof also shows that different cells have disjoint sets of inner points.
We now come to what Weyl calls the “pattern of cells”; it is only here that

our lattice group I' comes into play. Every semibasis Z ={d,, ..., d,}
of N determines a cell Z(%) of reduced forms:

FeZ(Z) & tr[x] > trld,] for all x e N\[dy,....,dn-1].
If we associate with Z(<) the admissible lattice L(Z) = L(<), then
L(Z)=L(Z) & L(Z) = L(Z")

s g’ = s&,some sel

A = §7,
where I" operates on the forms in the usual manner:
st(x) =t(s 'x), x e (Dr)" .

Fix once and for all finitely many semibases <,, ..., &, such that
L(ZY), ..., L(Z,) are all the admissible lattices having reduced forms. If F
is any form, F determines a semibasis &/ such that L(<) has a reduced form.
Hence there is s € I' and i such that & = s, and sF € Z(<;). In other
words, the union

Zo= U Z(¥)

is a fundamental domain for the operation of I' on the space H*. The
“Third Theorem of Finiteness”, or the “Theorem of Discontinuity”, shows
that Z, has only finitely many neighbors. More precisely, Weyl defines, for
any given semibasis & and real numbers p > 1, w > 0, a subset H(Z, p, w)
of H* with the following properties:

(i) forp>1,w>0,H(Z,p,w)contains an open neighborhood of Z(9);
(i) if p>p’, w>w’, then

H(Z,p,w) D H(Z,p’,w’), and H+*= U H(Z,p,w).
D, w

III. Given any cell Z, Y,p and w, the set

{seT|sZn H(Z,p,w) + &)
IS finite.
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The latter clearly implies that
E(Zy) ={seTl|sZ¢nZy+ &}

is finite. Let us check condition (ii) of the basic lemma. There is a union H
of finitely many H(¥, p, w) containing an open neighborhood U of Z,.
Then there are only finitely many s € I' with sZ, NnH=# @. If all of
these are in E(Z,), U C E(Zy) Z, because every point of U is a I'-translate
of a point of Z,. Let sy, ..., s, be those not in E(Z,). Since s;Z, and Z
are disjoint, closed, and H* is a normal space, there is an open U; D Z,
with U; N s;Z, = @. Then we can take O U,.

To sum up: for the operation of I' on H* there is a closed connected
fundamental domain with finitely many neighbors, satisfying condition (ii) of
the basic lemma. The finite generation of I" is thereby proved; in the next
section we will also extract finite presentability from the reduction theory.

We now turn to the question of minimal dimension mentioned earlier. Our
space H™* is the image of GL,(Dg) under the map A — A'A. According
to (3),

GL,(Dr) = GL,s(R)"i X GL /2 (H)™" X GLs(C)2,

and H * arises by dividing out the product of the orthogonal, symplectic, and
unitary groups, respectively, which are maximal compact. For K € {R, H, C},
the real dimensions of the maximal compact subgroup of GL,,(K) are

m(m—1)

5 , m(2m+1) and m?.

A simple calculation now shows that

4) dimH* = rj M + r{ w + ryk?
2 2
=: r(d) +1

where k = ns. In view of NT' C {+ 1}, the number r(A) may be called the
geometric unit rank of A; of course, for A = K, that is, k = 1, it coincides
with the unit rank 7(K) = r; + r, — 1 in the sense of number theory. Siegel
shows that r(A) is in fact the minimal dimension for a discontinuous action
of T in a sense which we now explain.

Let more generally G be a locally compact topological group with a
countable basis for the topology, H < G a discrete subgroup and v a Haar
measure. Suppose that F is a set of coset representatives of G/H such

that (a) F is a Borel set, and (b) v(F) < oo. Siegel’s first main result is
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THEOREM. In this situation, H operates discontinuously on the homo-
geneous space C\G if and only if C is a compact subgroup of G.

First we have to check the hypotheses. By what has been said about the
cells, (a) is easy; (b) by no means. We only sketch the proof in the case
of SL,(Z) (see [B2], 1.11). Of course, it suffices to show that the Siegel
domain

S, ., = 8O(n) - D, N,

has finite volume in the Haar measure. Transferring the Haar measure to the
factors of the Iwasawa decomposition, this comes down to the finiteness of

§ p(a)da,

Dy
where da is the Haar measure on the torus and

p(@)) =1l ai/a;;

i<
and this is not hard.

REMARKS

(1) The general finiteness criterion for the fundamental domain of
arithmetic groups is that the underlying algebraic group has no Q-characters
([Bo2], 12.5); that is, ““half” the compactness criterion.

(2) It seems that the exact value of the volume has not yet been calculated
in the general case although Weyl ([W], p. 263) hints at the possibility. It is
of course known for SL,(Z) and some other cases; we refer to [Te, 4.4.4].

The theorem now shows that I' cannot operate discontinuously on
homogeneous spaces of GL,(Dgr) of smaller dimension; a result stated
already by Fichler [E2]. Of course, this does not rule out I'-operations on
spaces of smaller dimension which do not extend to the surrounding Lie group.
In fact, such operations may be viewed as the basis of the cohomological
results to which we come later.

The following simplification, however, is near at hand. Let R be the
integral domain of the central field K and ST be kernel of the reduced norm
map Nr: A* = K*, restricted to I' (we will recall the definition of Nr in
section 9). Then (R*") = NrR>* C NrT', and one deduces that ST - R, an
almost direct product, has finite index in I'. Since we don’t care about finite
indices and consider R* as known by Dirichlet’s theorem, we may
concentrate on ST'. In our previous notation (3), ST is a discrete subgroup of
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rn ry ry
H SLns(R) X H SLns/Z(H) X H SLnS(C)

(where for H, SL denotes elements of GL of reduced norm 1). Dividing out
the maximal compact subgroups, we find that ST operates discontinuously on
a homogeneous space of dimension

r(SA):=r4) - rK) ,

which may be called the “reduced geometric unit rank of A”. Explicitly,
inferring

r(Ky=ri+ri+r,—-1,
we obtain from (4) the formula

k2 (k-1

(5) r(SA) = r k-2 (k+1)

e +rk-1D(k+1).
2 1 2 2( )( )

We will go through the cases of small »(SA) in the concluding section.

It is surprising how easily the existence of a fundamental domain with
finitely many neighbors implies another finiteness theorem, which has already
been mentioned:

THEOREM 2. I contains only finitely many conjugacy classes of finite
subgroups.

Proof [B1]. Let G = GI[,(Dr) and C be the maximal compact subgroup
used above. Let H < I be a finite subgroup. Then H is contained in a maximal
compact C, which is conjugate to C: C = gCg-1. Then Cg-'C = Cg1,
so H fixes the point P=Cg~! of C\G = H*. Let y € I" be such that
Py € Z,, the fundamental domain. It follows that Pyy-'Hy = Py, so
vy~ 'Hy C E(Z,), which is finite. (This proof holds for arbitrary arithmetic

groups.)

4. PRESENTATIONS [: THE THEORY OF TRANSFORMATION GROUPS

We have already indicated that not only generators but also defining
relations can be extracted from a ‘““good” operation of I on a “good” space
and that reduction theory provides us with both. The basic idea is already
inherent in Poincaré’s treatment of Fuchsian groups (see e.g. [F], p. 168 ff.).
Gerstenhaber [G] established the abstract setting; later contributions are due
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