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RESEAUX ET MOYENNABILITE INTERIEURE 295
2. RAPPELS ET PREUVE DE LA PROPOSITION 4

Soit G un groupe localement compact, avec élément unité noté e. Dans la
suite, on entend par «représentation» de G une «représentation unitaire
continue dans un espace de Hilbert complexe». On désigne par 1s la
représentation unité de G dans P’espace de dimension 1.

Soit H un sous-groupe fermé de G. Pour toute représentation n de H, on
désigne par Ind f,(n) la représentation de G induite de n. (Voir ci-dessous les
rappels dans la preuve du lemme 4.) Lorsque © = 1, on obtient la représen-
tation quasi-réguliere de G associée a l’espace homogene H\G; si de
plus H = {e}, on obtient la représentation réguliére droite de G, notée pg.
Si r et ' sont deux représentations de G, la notation © < ©” (respectivement
n ~ n') indique que la représentation m est faiblement contenue dans w’
(resp. est faiblement équivalente a '); pour ces notions, voir [Dix].

Le groupe G est dit moyennable si 1, < pg; il v a de nombreuses autres
définitions équivalentes (voir par exemple [Gre] et [Eym]). Un groupe de Lie
réel connexe semi-simple est moyennable si et seulement s’il est compact: c’est
un résultat qui remonte a Furstenberg [Fur].

Considérons plus particuliérement le cas d’un groupe discret, noté I'. Si X
est une partie de I' invariante par conjugaison, on introduit I’espace /2(X)
des fonctions I' = C de carré sommable & supports dans X et la représen-
tation ar x de I' dans /?(X) définie par

(ar,x(7)€) (x) = &E(y ~'xy)

pour tous yel, £e/?(X) et xe X. Lorsque X =T — {e}, on écrit
simplement or. Le groupe I' est dit intérieurement moyennable si 1 < or.
Il y a plusieurs autres définitions de cette notion [BeH], mais il faut de
plus noter que certains auteurs utilisent les mémes mots pour une notion
distincte [Pat, page 84].

Rappelons deux des conditions standard suffisantes pour qu’un groupe I
soit intérieurement moyennable. La premiére est qu’il posséde une classe de
conjugaison finie et distincte de {e}, c’est-a-dire que o contienne la
représentation unité 1 au sens fort. La seconde est que I' soit moyennable et
non réduit a {e}. (L’argument usuel apparait dans [Gre, Lemma 1.1.3]; une
variante apparait ci-dessous aprés le lemme 4.)

Il existe par ailleurs des groupes intérieurement moyennables non
moyennables: c’est le cas d’un produit direct I'o X I'y lorsque T’y est non
moyennable et lorsque I'; est moyennable non réduit & un élément.
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Toutefois, de nombreux «exemples naturels» de groupes non moyennables
sont aussi non intérieurement moyennables, et les résultats de la présente note
fournissent des illustrations supplémentaires de ce fait.

Soit I’y un sous-groupe d’indice fini d’un groupe I' intérieurement
moyennable. Il se peut que I'y ne soit pas intérieurement moyennable
(exemple: T' =Ty X I'; avec I'; fini non réduit a3 un élément). Toutefois,
lorsque I' est de plus cci (ou, en toutes lettres, a classes de conjugaison infinies),
on a les lemmes suivants, desquels découle la moyennabilité intérieure de I'y
(proposition 4).

Introduisons d’abord quelques notations. On désigne par ['(I)
I’algébre de convolution des fonctions sommables de I' dans C, qui
est une algébre de Banach pour la norme définie par [§ ;= ¥, . |&M)|.
Comme I' est discret, tout élément & € /!(I') posséde aussi des normes
lel=(X,cr 6@ 1) et |&]w =supyer|&@)| qui sont finies.
Pour & € /1(I') et v € I', on définit ’adjoint £* € /(') et I’opérateur a(y)
sur /1T par

E*¥(x) =&E(x 1)
(@) &) (x) = E(v ~'xv)

pour tout x € I'. On désigne par /!(I')y, le convexe de /!(I') formé des
fonctions & a valeurs positives, telles que & (e) = 0, et de norme | € ||, = 1.

La moyennabilité intérieure de I' se traduit [BeH] par I’existence d’une
suite (§,),>1 dans /(') (J{ , qui est asymptotiquement invariante au sens ou

lim [a()&, — &[] =0

h— o

pour tout y € I.

LEMME 1. Si T' est intérieurement moyennable et cci, il existe une suite
asymptotiquement invariante (£,),>1 dans ['(I') 3,1 ayant les propriétés
suivantes.:

(i) &, esta support fini pour tout n > 1,
(ii) lim,-o|&x]e =0,
(iii) lim, - o | & ]2 = 0.

Preuve. Soit (§;) > 1 une suite asymptotiquement invariante de /(') ;.

Premier pas. Montrons d’abord que, pour tout xeI on a
limk_, - g,’{’(X) = 0.
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Pour cela, choisissons un entier ¢ > 2. On peut trouver y;,...,Yc €T
tels que les €éléments vy, "XY1, e Y 'xv. sont distincts deux & deux. Il existe
aussi un entier k, assez grand pour que |o(y;)&; — < ¢! pour
tout j € {1, ..., c} et pour tout kK > k,. Par suite &,’c’(yj—lxyj) > &/ (x) —c!
pour tout je{l,...,c}, donc 1 =[|E/ [, =c&/(x) —1 et £/(x) <2c~!
pour tout k > ko. L’entier ¢ étant arbitraire, la suite (£, (x))x > tend bien
vers 0.

Deuxieme pas. Le sous-ensemble de /!(I'),, formé des fonctions &
supports finis est dense dans /!(I') ;. On ne restreint donc pas la généralité
de ce qui suit en supposant a priori les fonctions §; & supports finis. Soit
alors (k,),>1 une suite strictement croissante d’entiers strictement positifs.
Pour tout n > 1 on pose

S, = U support (&,’é_) cr

1<j<n
(c’est une partie finie de I') et on note x, la fonction caractéristique de S, .

Montrons que, pour un choix convenable de (k,), > 1, on peut définir une
suite asymptotique invariante (§,),>; de /() 5’ , de n-ieme terme

Er= Gk —Ei -0 &L = &L xnoa |l
(avec %o = 0) de telle sorte que les supports des & sont alors finis et disjoints
deux a deux.
On pose k; =1, donc &; = &', puis on procede par récurrence sur z
en supposant &, ..., &, _, déja définis. Par le premier pas, on a
lim ) E&/(x)=0.

k= o xe8,_ 4

On peut choisir k, > k,_; tel que

1
Y Bl <-=
X e S,, -1 n
c’est-a-dire tel que | &; — &7 %,_1[: > "~. La définition ci-dessus de &’

a donc un sens, et la suite (&n)n >t a ev1demment les propriétés annoncées.
Troisieme pas. Soit (§,), > la suite définie & la Cesaro par
_/ =1

Cette suite satlsfalt ¢videmment les conditions (i) et (ii) du lemme (on a

méme | £, [« <5 pour tout n > 1). Comme |[&|2<|&],|& | pour tout
£ ell(l), elle satlsfalt aussi la condition (iii). [
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LEMME 2. Soit T un groupe intérieurement moyennable et cci, et soit
(&n)ns1 une suite asymptotiquement invariante de ['(I') 5”,1 possédant les
propriétés du lemme 1. Soit (M,)n,>1 la suite définie par m, =E&* % &,
et soit T’y un sous-groupe de T d’indice f = [I':T,] fini. Alors

1

n—= o yely- {e} f

Preuve. Désignons par y,: I — {0, 1} la fonction caractéristique d’une
classe a gauche s e I'/T";,. Posons

T={(x,»)) eT xT|x'yelyt= 1II (sTy X sTy)

sel /Ty

ou II désigne une réunion disjointe. Pour tout # > 1 on note n/, la restriction
den,aly,.Ona

In,li= Y &&= Y Y Ears) ) Enxs) ()

(x,y)eT sel/Ty xel,yeTl

= Z (“&HXSNI)Z

sel /Iy
ainsi que
: 1
L=]g. 0= X Hinxslll<( ) (U&nxslll)z)zl/f=(iln; 1f)?
sel /Ty sel /Ty

(on a utilisé I’inégalité de Cauchy-Schwarz pour la somme sur I'/T).
Par suite

un;u%

pour tout n > 1. Par ailleurs, il résulte du lemme 1 que m,(e) = | &, |3
tend vers O lorsque n tend vers l’'infini. La conclusion du lemme 2 en
résulte. [

Notons que les lemmes 1 et 2 ci-dessus sont des raffinements des
lemmes 3 et 4 de [GiH].
Dans la situation du lemme 2, posons de plus

Cn =Mn — nn(e)6

pour tout n > 1, ou & désigne la fonction caractéristique de {e} dans I". Notons
¢! la restriction de {, a Ty et | (.|l sa norme dans /!(T'y). Le lemme 2 se
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reformule en les inégalités ||/ > f~', et on peut définir une suite
asymptotiquement invariante (| C, |~ ')n>1 dans /1(I) {;,1. Il en résulte
que [, est intérieurement moyennable, ce qui achéve la preuve de Ila
proposition 4.

3. LEMMES PRELIMINAIRES

Soit d’abord T un groupe discret. Notons Cornj’(I') ’ensemble des classes
de conjugaison de I distinctes de {e}. Avec les notations du début du chapitre
précédent, on a

Or = @ ar, c

C € Conj’(I')

ou @ désigne une somme orthogonale. Pour tout C € Conj’(I'), choisissons
de plus un élément yc € C; notons Zr = {Yc}cecony(ry le sous-ensemble
de I' ainsi spécifié. Pour tout C € Conj’(I'), la classe C s’identifie a
I’espace homogéne Z(y-,I')\I" et on a

T
Or,c = Indz(yC, ) A Z(ve, F))

ou Z(yc,I') désigne le centralisateur de y- dans I' et ou = indique I’équi-
valence unitaire des représentations. On a donc

r
Or = @ Indz(y,r) (Izy,my) -

yeZr

LEMME 3. Soit T un réseau dans un groupe localement compact G.
Si ' est intérieurement moyennable, on a

e < @ Ind3, o (1z¢4,6)) -

Yy e ?)‘r

Preuve. Par hypothése, on a

T
Ir < @ IndZ(y,F) (ze,my) -
ve #r
En induisant a G on obtient

Ind?(lr) < @ Indg(y,r) (Iz¢4.m)) -

vye”r

Par ailleurs, 14 est une sous-représentation de Ind? (1), car I" est un réseau
dans G. La conclusion résulte donc de I’assertion (ii) du lemme suivant. [

Le lemme qui suit est essentiellement le «principe de majoration de
Herz» [EyL].
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