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2. Rappels et preuve de la proposition 4

Soit G un groupe localement compact, avec élément unité noté e. Dans la

suite, on entend par «représentation» de G une «représentation unitaire

continue dans un espace de Hilbert complexe». On désigne par Ig b
représentation unité de G dans l'espace de dimension 1.

Soit H un sous-groupe fermé de G. Pour toute représentation 7t de H, on

désigne par Ind%(n) la représentation de G induite de n. (Voir ci-dessous les

rappels dans la preuve du lemme 4.) Lorsque n 1H, on obtient la représentation

quasi-régulière de G associée à l'espace homogène H\G; si de

plus H {e}, on obtient la représentation régulière droite de G, notée pG.
Si 7i et 7i ' sont deux représentations de G, la notation n -< n ' (respectivement
7T '— 7C,) indique que la représentation n est faiblement contenue dans n'
(resp. est faiblement équivalente à n'); pour ces notions, voir [Dix].

Le groupe G est dit moyennable si 1G -< Pg; il y a de nombreuses autres

définitions équivalentes (voir par exemple [Gre] et [Eym]). Un groupe de Lie
réel connexe semi-simple est moyennable si et seulement s'il est compact: c'est

un résultat qui remonte à Furstenberg [Fur].
Considérons plus particulièrement le cas d'un groupe discret, noté T. Si X

est une partie de r invariante par conjugaison, on introduit l'espace 12{X)
des fonctions T - C de carré sommable à supports dans X et la représentation

ar,i de T dans 12{X) définie par

(ar,x(j)£>)(x) - Uy~lxy)

pour tous y e T, ^ e l2(X) et x e X. Lorsque X=T-{e}f on écrit
simplement ar. Le groupe T est dit intérieurement moyennable si lT< ar.
Il y a plusieurs autres définitions de cette notion [BeH], mais il faut de

plus noter que certains auteurs utilisent les mêmes mots pour une notion
distincte [Pat, page 84].

Rappelons deux des conditions standard suffisantes pour qu'un groupe T
soit intérieurement moyennable. La première est qu'il possède une classe de

conjugaison finie et distincte de {e}, c'est-à-dire que ar contienne la
représentation unité lr au sens fort. La seconde est que T soit moyennable et
non réduit à {e}. (L'argument usuel apparaît dans [Gre, Lemma 1.1.3]; une
variante apparaît ci-dessous après le lemme 4.)

Il existe par ailleurs des groupes intérieurement moyennables non
moyennables: c'est le cas d'un produit direct T0 x lorsque T0 est non
moyennable et lorsque T{ est moyennable non réduit à un élément.
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Toutefois, de nombreux «exemples naturels» de groupes non moyennables
sont aussi non intérieurement moyennables, et les résultats de la présente note
fournissent des illustrations supplémentaires de ce fait.

Soit T0 un sous-groupe d'indice fini d'un groupe T intérieurement

moyennable. Il se peut que T0 ne soit pas intérieurement moyennable
(exemple: T T0 x Tj avec Tx fini non réduit à un élément). Toutefois,
lorsque T est de plus cci (ou, en toutes lettres, à classes de conjugaison infinies),
on a les lemmes suivants, desquels découle la moyennabilité intérieure de T0

(proposition 4).
Introduisons d'abord quelques notations. On désigne par ll(T)

l'algèbre de convolution des fonctions sommables de T dans C, qui
est une algèbre de Banach pour la norme définie par || ^ || i D

e r
| £, (y) I

•

Comme T est discret, tout élément E.e/^T) possède aussi des normes
Il Gl2 (Eyer I Ç(y) l2)1/2 et IU IU supïer U(y) I qui sont finies.

Pour ^ e Z1 (T) et y e T, on définit l'adjoint e / ^T) et l'opérateur a (y)

sur P(T) par

(a (Y) 0M^(y-'xy)

pour tout xeT. On désigne par /1 (F) q j le convexe de /1 (F) formé des

fonctions £ à valeurs positives, telles que £(e) 0, et de norme \\^\\i 1.

La moyennabilité intérieure de T se traduit [BeH] par l'existence d'une
suite dans /'(T)^ qui est asymptotiquement invariante au sens où

lim II a (y)£w - ||j 0
n -> oo

pour tout y e T.

Lemme 1. Si T est intérieurement moyennable et cci, il existe une suite

asymptotiquement invariante (£„)n> i dans /1 (F)q, i ayant les propriétés
suivantes:

(i) est à support fini pour tout n ^ 1,

(ii) lim„ o, |Ub IL 0,

(iii)lim„^oo |U« II2 0.

Preuve. Soit (££')*^ 1 une suite asymptotiquement invariante de 11(T)q{.

Premier pas. Montrons d'abord que, pour tout x eT on a

lim* - oo^o/c (^0 0.
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Pour cela, choisissons un entier c ^ 2. On peut trouver yx,..., yc e T

tels que les éléments y^xyi, y~lxyc sont distincts deux à deux. Il existe

aussi un entier k0 assez grand pour que || a(yj)^ - ||i ^ c~1 pour
tout j e {1, c} et pour tout k ^ &0. Par suite (y/^Yy) ^ £*(*) ~ c~l
pour tout j e {1, c}, donc l=||^ji et ^'(x)^2c_1
pour tout k ^ k0. L'entier c étant arbitraire, la suite (^(x))k^ i tend bien

vers 0.

Deuxième pas. Le sous-ensemble de /1 (F) o, i formé des fonctions à

supports finis est dense dans /1 (F) J j. On ne restreint donc pas la généralité
de ce qui suit en supposant a priori les fonctions à supports finis. Soit
alors (kn)n>\ une suite strictement croissante d'entiers strictement positifs.
Pour tout n ^ 1 on pose

S„ U support (^.) C T
1 < j < n

(c'est une partie finie de T) et on note %n la fonction caractéristique de S„.
Montrons que, pour un choix convenable de (kn)n ^ x, on peut définir une

suite asymptotique invariante {^rn)n ^ î de /1 (F) J, i de ft-ième terme

(avec Xo 0) de telle sorte que les supports des t>'n sont alors finis et disjoints
deux à deux.

On pose k{ 1, donc £,[ puis on procède par récurrence sur n
en supposant ^,n_l déjà définis. Par le premier pas, on a

lim Z U'W 0 •

k -> oo xeS„_i

On peut choisir kn> kn-X tel que

I ^ I.
c'est-à-dire tel que || - ^knin-i Iii ^ TLyp > La définition ci-dessus de \'n
a donc un sens, et la suite (£>rn)n&\ a évidemment les propriétés annoncées.

Troisième pas. Soit (t>n)n> i la suite définie à la Cesàro par

Cette suite satisfait évidemment les conditions (i) et (ii) du lemme (on a
même || ||

oo ^ ~ pour tout n ^ 1). Comme || £ II* ^ Il £ ||i || £ H» pour tout
£ e ll(T), elle satisfait aussi la condition (iii).
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Lemme 2. Soit r un groupe intérieurement moyennable et cci, et soit
(^n)n^ i une suite asymptotiquement invariante de ll (r)^ \ possédant les

propriétés du lemme 1. Soit (r\n)n>i la suite définie par rj „ £*
et soit r0 un sous-groupe de T d'indice f [T:T0] fini. Alors

liminf £ r\nM >-
y e Tq -{e}JPreuve. Désignons par %s: T {0, 1} la fonction caractéristique d'une

classe à gauche 5er/r0. Posons

T{(X,y)er x r Ix-^y e T0} II (sr0 x sTo)
5 e r/r0

où II désigne une réunion disjointe. Pour tout n ^ 1 on note T\'n la restriction
de r\n à r0. On a

I "H «
II I E ln{x)ln{y)E E M M

(x,y)eT seT/F0 x e F, y e F

E (lU-xJi)*
5 6 r/r0

ainsi que

î

i II Uli E E (Il^x.ili)2 1/7 (h;Iii/)'
5 g r/r0 \j e r/r0 /

(on a utilisé l'inégalité de Cauchy-Schwarz pour la somme sur r/r0).
Par suite

h h
1

IhJli > y
pour tout n ^ 1. Par ailleurs, il résulte du lemme 1 que v\n{e) || \\
tend vers 0 lorsque n tend vers l'infini. La conclusion du lemme 2 en

résulte.

Notons que les lemmes 1 et 2 ci-dessus sont des raffinements des

lemmes 3 et 4 de [GiH].
Dans la situation du lemme 2, posons de plus

Ç* h* - T|«(^)ô

pour tout n ^ 1, où ô désigne la fonction caractéristique de {e} dans T. Notons
Çn la restriction de C,„ à F0 et | ^ Il sa norme dans ll(T0). Le lemme 2 se
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reformule en les inégalités || Ç« Il ^/_1, et on peut définir une suite

asymptotiquement invariante (©|©[":1)^i dans ^(^0)0,1- ^ en résulte

que r0 est intérieurement moyennable, ce qui achève la preuve de la

proposition 4.

3. Lemmes préliminaires

Soit d'abord F un groupe discret. Notons Conj'(T) l'ensemble des classes

de conjugaison de T distinctes de {e}. Avec les notations du début du chapitre

précédent, on a

O-T© ar,c
C e Conj'(T)

où © désigne une somme orthogonale. Pour tout C e Conj'ÇT), choisissons

de plus un élément yc e C; notons Wy {yc) c e conj'n) le sous-ensemble

de T ainsi spécifié. Pour tout C e Conj'(T), la classe C s'identifie à

l'espace homogène Z(yc,r)\r et on a

ar,c ~ IndlZ{yÇt n (lz(Yc,r))

où Z(yc,r) désigne le centralisateur de yc dans T et où « indique
l'équivalence unitaire des représentations. On a donc

ar ~ © IndlZ{yY) (1 z(y,d) •

Y £

Lemme 3. Soit T un réseau dans un groupe localement compact G.
Si T est intérieurement moyennable, on a

1 g © IndZ{yG) Oz(y,g)) •

ye

Preuve. Par hypothèse, on a

lr "< © IndrZ{y r) (1 z(y,r>) •

Y e

En induisant à G on obtient

Ind°(lT)-< © IZ(Y,r))
Y 6 rr r

Par ailleurs, 1G est une sous-représentation de car T est un réseau
dans G. La conclusion résulte donc de l'assertion (ii) du lemme suivant.

Le lemme qui suit est essentiellement le «principe de majoration de
Herz» [EyL].
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