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REMARK 3.31 (stronger local finiteness). There is an alternative version
of the local finiteness condition, used for example in [Mas71]: recall from
Remark 3.6 that Q(#, R, A) is the quotient space of L_JPE »P, the disjoint
union of the convex cells in 2. We might assume that the inverse image under
the quotient map of any point in Q(Z, R, A) is finite. This obviously implies
LocallyFinite(#, R, A). It will turn out that LocallyFinite(Z, R, A) together
with Cyclic(Z, R, A) implies this stronger condition (see Theorem 4.14).

EXAMPLE 3.32 (irrational). Here is an example when the weaker
condition of local finiteness is true, but not the stronger condition. Of course,
Cyclic(#, R, A) is not true in this case. We take two codimension-one spherical
subspaces of S3. These meet along a common S!. Let P be one of the four
complementary three-dimensional regions, and let 2= {P}. Then P has two
faces, each of which is a hemisphere. Suppose we glue one of these hemispheres
to the other, inducing an irrational rotation on the common circle boundary.
Then we have LocallyFinite(#, R, A) and Finite(#”), but the strong version
of local finiteness just stated is false.

Another similar example in H* is given as follows. Take the intersection
of two half-spaces, such that the boundaries of these half-spaces intersect in
a hyperbolic plane. There are two codimension-one faces F; and F,, each of
which is half of a three-dimensional hyperbolic space, and one codimension-
two subspace S, which is a hyperbolic plane. We take as a face-pairing a
rotation keeping the codimension-two face S pointwise fixed and taking F; to
F,, followed by an isometry T of H*. T sends S to itself and is elliptic,
rotating S through an irrational angle. If we take H* to be embedded as one
sheet of the hyperboloid (v,v) = — 1in a five-dimensional vector space with
indefinite inner product of type (4,1), then 7 is the identity on S*t.
Cyclic(Z, R, A) is false, LocallyFinite(Z, R, A) and Finite(Z#) are true, but
the quotient space Q is not hausdorff.

4. DEVELOPING MAPS

As in the previous section, let Z2 be a set of thick convex cells in X7, and
let (R, A) satisfy Pairing(Z, R, A). We define a graph I' (Z/, R) in the following
way. The vertices of the graph are the elements of 2. We have an edge, which
we call either e(F,P) or e(F’,P’), joining P and P’ if and only if
R(F,P) = (F',P’). So there is one edge for each face-pairing. Clearly,
Connected(Z, R) if and only if T'(#, R) is connected.
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Now let 7 be a maximal tree in I'(%, R). Consider the equivalence
relation ~ on the disjoint union ||, _ ,P of the elements of &, generated
by x ~ AF,P)(x) if (F,P)e Z(#),e(F,P) C T and x € F. We define
the space Y (%, R, A, T) and the quotient map ny: l__|p€ P> Y(Z#R,A,T)
by identifying each equivalence class to a point. We have Connected(Z, R) if
and only if Y(&, R, A, T) is (arcwise) connected. Since in 7 no edge
is a loop, all elements of # are naturally embedded in Y(#, R, A, T) — that
is, the restriction to any component of the domain of the projection
l_JPG +P—=>Y(# R, A, T) is injective. It is straightforward to see that
Y(Z, R, A, T) is contractible if it is connected — a deformation retraction to
a point can be constructed inductively, cell by cell, working along the edges
of T.

For the rest of this section we will assume that Pairing(<, R, A),
Connected(Z, R) and Cyclic(Z, R, A) are satisfied.

The following lemma is easy to prove.

LEMMA 4.1 (developing Y). For any choice of P, € & there exists a
unique mapping Dy:Y(Z#,R, A, T) — X", which we call the developing
map associated to (%, R, A, T), with the following properties:

* Dylp, is the identity;

e foreach Pe 2, Dy
we denote by yp),

o if (F,P)e ¥(#) and e(F,P)CT joins P to P', then

Vpr AF, P) = yp.

A different choice of the initial convex cell P, or a different choice of the
way it is embedded in X" leads to the mapping v © Dy for some
v € Isom(X").

Changing the positions of the convex cells P e & (see Remark 3.1 (a)),
we may take each \yp to be the identity and then A(F,P) is the identity
Jor each edge e(F,P) in T.

From now on, we will assume that yp is the identity for each P e Z.

p IS the restriction of an isometry of X" (which

DEFINITION 4.2. We define an abstract group G(#,R,A,T) as the
group generated by the set of symbols:

{G(F,P)i(F, P) e ?(@)}

subject to the following relations:
® U.(F,p):id if E(F,P) Cc 7.

i L S N SN S
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e if (F,P)e 7(¥), e(F,P) ¢ T and R(F,P) = (F’, P’) then we have
the relation g pyQ (s, p-y = id. In particular, if R(F, P) = (F, P) then
o(r, py has order two.

e for each P, € Z and for each codimension-two face C; of P,, in the
notation of Conditions 3.7 and 3.13, we have the relation

(O(rz, Py " Oy, pp)™ =1d .

REMARK 4.3. According to Remark 3.14, given P, e & and a
codimension-two face C; of P;, we obtain an equivalent relation starting
from either of the codimension-one faces of P, containing C,, or from any
of the faces F; or F;.

LEMMA 4.4 (holonomy). We assume Pairing(¥’, R, A), Connected(%’, R)
and Cyclic(?, R, A). For any choice of developing map Dy associated to
(Z, R, A), there exists a unique homomorphism h:G(Z#,R,A,T)
— Isom(X") with the following property: if (F,P)e ¥(Z¥) then
h(o py) = AWF,P). A different choice of Dy leads to the homo-
morphism g yh(g)y ! for some vy € Isom(X").

Proof of 4.4. Given Dy, the position in X” of each Pe & is
determined. For each (F, P) € .7 (¥?), the face-pairing A(F, P) is then also
determined. We define (o r py) = A(F, P). According to Pairing(Z, R, A)
and to Lemma 4.1 the relations defining G starting from the generators o p)
hold for the corresponding A(F, P)’s in Isom(X”), and then A4 can be
extended to a homomorphism of the whole of G(Z, R, A, T')). Uniqueness is
obvious. The last assertion is readily deduced from Lemma 4.1. [

DEFINITION 4.5. We abbreviate as follows: Y =Y(# R, A, T)
and G = G(Z, R, A, T). We give G the discrete topology, and consider
the space G X Y with the product topology. We consider on G X Y
the equivalence relation ~ generated by: (go(r p), X) ~ (g, A(F, P) (x))
whenever g € G, (F,P)e (%) and xe FC P &Y. We will denote by
Z =7Z(Z7,R, A, T) the quotient space of G X Y- by this equivalence relation,
and by nz: G X Y — Z the quotient map.

REMARK 4.6 (Y not subset Z). It is false in general that the restriction
to {id} X Y of the projection G X Y — Z is injective — see Example 4.12.

G acts on Z in an obvious way, and G acts on X” via the homo-
morphism 4.
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LEMMA 4.7 (developing Z). For any choice of Py in 7, there exists
a unique G-equivariant mapping Dz:Z — X" such that the element of Z
represented by (g,y) € G x Y is mapped to h(g) (Dy(»)), where Dy
and h are given respectively by Lemma 4.1 and Lemma 4.4. A different
choice of the initial convex cell and its position in X" leads to the
mapping y © D, for some y € Isom(X").

Proof of 4.7. We only have to check that if (g, ) ~ (g’,»") in G X Y
then 4(g) (Dy(»)) = h(g’) (Dy(y")), and this is readily deduced from the
definition of ~ and from the definitions of Dy and A. [l

COROLLARY 4.8 (P embeds in Z). For each Pe # and ge G the
mapping
Pax—nz(g x)e”Z
Is injective.

REMARK 4.9 (Z independent of 7). The definition of Z given above
depends on T. However, this dependence is not real. To see this we define
< to be a groupoid (a small category in which every morphism has a two-sided
inverse). We take # to be the set of objects of ¥. We take a(r py to
be a morphism from P to P’, where R(F,P)= (F',P’). In general,
the morphisms are formed from compositions of these, subject to the
same relations as those used in the definition of G above, except that we
now take 7= . We give the set M of morphisms of ¥ the discrete topology,
and we take the obvious topology on || pc »P. To define Z, we fix Py, € 7,
and let M(P,) be the set of morphisms with range P,. We then take all
pairs (g, x) € M(P,) X l_lpe,/,P, where xe P,Pe  and g:P— P,.
We identify (gos p),x) with (g, A(F, P)x), provided x e FC P and
g: P’ — Py, where R(F, P) = (F', P’). We define Z to be the identification
space just defined. If we change P,, the resulting Z is unchanged. An
isomorphism between the two versions of Z is given by choosing a word in
the a(x, py’s relating the choices. The isomorphism is therefore determined up
to the action of an element of M.

The only reason for using the definition given previously, in terms of a
group, rather than that given now, is that the concept of a group is more
familiar than the concept of a groupoid. The construction of the group G from
the groupoid ¢ is the standard construction of a group from a connected
groupoid. We are therefore justified in writing Z(#, R, A) instead of
Z(#,R,A, T), if the occasion demands.
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REMARK 4.10 (cell structure of Z). For each g € M(P,) and each face E
of P, we obtain the subset g(E) = n,({g} X E) of Z. To see that g(£) is an
isomorphic copy of E, we apply the developing map D;. So g(E) is a convex
cell of the same dimension as E. Since the identifications respect the face
structure (see Condition 3.2(c)), we see that Z is the disjoint union of the
relative interiors of these convex cells of various dimensions. Of course, g and
E are not determined by the cell; g(F) is just one representation. The left action
of G preserves the cell structure of Z. If x and y are interior points of the same
top-dimensional cell of Z and if gx = y for some g € G, then x = y and g is
the identity element.

It is easy to see that Connected(Z, R) is equivalent to Z being (arcwise)
connected.

DEFINITION 4.11 (boundary and interior of Y). We write Y = Y(Z,R, A, T).
The boundary of Y, denoted 0Y, is the union of the faces F such that
(F,P)e 7(#) and e(F,P) ¢ T. The interior of Y is the complement
of the boundary.

FIGURE 10.

Face pairings.
A set of polyhedra in Euclidean two-space, and a description of their face-pairings.

EXAMPLE 4.12 (fundamental domain not embedded). Let & be the set
of polyhedra in E? shown in Figure 10, and let the face-pairing (R, A) be
defined by the arrows in the picture, in such a way that the orientation of the
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edges is preserved. All the conditions described in Section 3 hold for (Z, R, A).
It is evident from Figures 10 and 11 the developing map Dy:Y— E?is not
injective.

FIGURE 11.

The space Y. .
We illustrate the space Y arising from Figure 10.

THEOREM 4.13 (modelled on X”). Let n>2, let & bea set of thick
convex cells in X" and let (R,A) be a face-pairing such that:

(a) Pairing(%, R, A);
(b) Connected(?, R);
(¢) Cyclic(#,R, A),

(d) LocallyFinite(?, R, A) (recall from Condition 3.29 that this condition
is automatically true if n = 2).

Let T be a maximal tree in T(# R), set Y=Y R,AT),
G=G(#R,A, TY and Z=Z7Z(# R,A,T), and let Dy:Y—> X",
h:G— Isom(X"), D;:Z — X" be the developing maps as in Lemma 4.1,
Lemma 4.4 and Lemma 4.7. Then Z is endowed with an X"-structure with
respect to which Dz:Z — X" is a local isometry. Also the convex cell
structure of Z (see Remark 4.10) is locally finite. Furthermore the action
of the group G on Z s proper discontinuous. Let p be a point in the
interior of a top-dimensional cell P of Z. Then the stabilizer of p is
trivial, and the orbit of p contains no other point of P.

This result will be proved by induction on n, assuming the following result
in dimensions less than n. In Section 5, we will complete the induction

by showing how Theorem 4.13 in dimension n implies Theorem 4.14 in
dimension n.
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THEOREM 4.14 (Poincaré’s Theorem Version 1). Let n>2, let &
be a set of thick convex cells in X" and let (R, A) be a face-pairing such
that:

(@) Pairing(Z, R, A);
(b) Connected(?, R),
(¢) Cyclic(#,R, A);
(d) Metric(2).
Let T be a maximal tree in T'(Z, R), set

Y=Y(ZRAT), G=GZR,AT), Z=2Z(7R,A,T)

and let Dy:Y—> X", h:G— Isom(X"), Dz:Z— X" be mappings
as in 4.1, 4.4 and 4.7. Then the following conclusions hold:

(e) LocallyFinite(#, R, A) is true in its strong form (see Remark 3.31);

(f) Z is endowed with an X"-structure with respect to which Dz :Z — X"
is a (bijective) isometry;

(&) h:G— Isom(X™) s injective and its image is a discrete subgroup
of Isom(X");

(h) Dy:Y — X" isinjective on the interior of Y (see Definition 4.11), so
that Dy(Y) or its interior can be considered as a fundamental domain
for the action of h(G) on X", depending on the precise definition
of that concept;

(j) the convex cell structure of Z (see Remark 4.10) is locally finite.

The hypotheses (and hence the conclusions) hold in particular if we add
to conditions Pairing(%, R, A), Connected(#’, R) and Cyclic(?, R, A)
either of the following additional conditions:
(X) X"=E" or S" and Finite(?),
(1) X" =Hn", Finite(??) and FirstMetric(?);

Proof of 4.13. We will assume that Theorem 4.14 has been proved in
dimensions less than n.

For n = 2, Theorem 4.13 is a consequence of Condition 3.19. To see this,
note that each point in n,'(z) lies in some C; (1 <j<r) of one particular
cycle, where the notation comes from Condition 3.10. Let m > 0 be as in
Condition 3.13. A priori, we do not know that there are m distinct copies
in Z of each of the r dihedral regions at the various C; C P;, though we do
know that there are no more than these mr regions around z € Z, because of
the way Z is constructed. The existence of D, shows that there are also no
fewer than mr regions. This completes the proof for n = 2.
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We now prove Theorem 4.13 for n > 2, assuming Theorem 4.14
in dimensions less than n. Let mz(g,x) =2z and let x e Rellnt(£),
where E is a face of Pe & of codimension i. Since we are assuming
LocallyFinite(Z, R, A), we have a finite graph I'r which is the component
of Ti(#, R, A) containing (E, P) as a vertex (see Definition 3.28). Each
vertex of 'z is a pair of the form (E’, P’), where E’ is a codimension-i face
of P’ € Z. The link (see Definition 2.14) of E' in P’ is a convex cell in S~ 1,
which is well-defined up to isometry.

Let Z: be the finite collection of links arising from the finite set of
vertices of I's. These are convex polyhedra in S”~!, defined up to isometry.
For each vertex (E’, P') of I'g, we choose a point u” € Rellnt(E’). We make
no attempt to choose these points consistently — indeed, in general consistency
of choice is not possible. The position of a link in S”-! is determined by
fixing an isomorphism between R” and the tangent space at u’. The given
face-pairing (R, A) induces a face-pairing (Rg, Az) on Zr as follows.
Suppose E’ is a face of F', R(F',P’) = (F",P"), and AF’, P") 1s the
corresponding face-pairing. Let E” = A(F’, P")(E"). Let u’ € Rellnt(E’) and
u'" € Rellnt(E'") be the points we have chosen. We define the face-pairing
Ag(E',F’', P") by applying A(F’, P’) to the tangent space at u’, and then
parallel translating from A(F', P")(u") to u”. This definition of the face-
pairing is clearly independent (in the appropriate sense) of the choice of the
points " and u". It is easy to check the truth of Pairing(%s, Rg, Ag).

Connected(#g, Rg) follows from the connectedness of TIg.
Cyclic(Zg, Rg, Ag) follows immediately from Cyclic(Z, R, A). Metric(Zg)
follows from Remark 3.24, applied to Zr. We apply Theorem 4.14 in dimen-
sion n — 1 to deduce that the developing map Z(%g, Rg, Ag) = S"~!is an
isometry. The induction also tells us that the cell structure of Z(%s, Rg, Ag)
is finite.

We choose z € Rellnt(£), and identify £ with id(E), in the notation of
Remark 4.10. Each cell of Z(#g, Rg, Ag) corresponds to a triple of the form
(h, E', P") where h is a member of the finite groupoid (#r, R, Apg). The
face-pairings identify z with the point n;(z"), where z’ € Rellnt(E’) depends
on (h, E', P"). Since the setup is finite, we can choose & > 0 simultaneously
for all (4, E’, P’) so that the only faces of P’ met by the 8-neighbourhood
centred at z’ are those that contain E’.

There is a map of Z(%s, R, Ag) into the d-neighbourhood of z in
Z(#, R, A), since each of the groupoid relations relevant in the definition of
the first space will also apply to the second. Any identification of a point of
RelInt(E) with another point, when Z(Z, R, A) is formed, can only be formed
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as a result of face-pairings which are also in (Rg, Ag). Thus the strong form
of local finiteness (see 3.31) is satisfied by (%, R, A).

The composition of D;:Z(%#, R, A) — X" with the obvious map from
Z(Z?5,Rg, Ag) to Z(Z, R, A) can be identified with the developing map
Z(Zg,Rg,Ar) > S"~! by a change of scale in the range. By induction,
this developing map is an isometry. Therefore the obvious map of
Z(Zg,Rg,Ag) to Z(%, R, A) is injective and the image of Z(#r, Ry, AE) is
mapped injectively by D,. It follows easily that a neighbourhood of z in
Z(#,R,A) is the cone on S”-!, which is mapped isometrically to X~
by D,. [

The main part of the induction step for Theorem 4.14 will be proved in
Section 5. At this point, we prove only a small part of this result.

LEMMA 4.15 (locally finite). LocallyFinite(%’, R, A) follows from the
hypotheses of Theorem 4.14 and the inductive hypothesis that Theorem 4.14
is true in dimensions less than n.

Proof of 4.14. In the proof of Theorem 4.13 we used Locally-
Finite(Z, R, A) in order to show that the link of z is embedded in Z(Z, R, A)
and that the local picture is as we expect. Here we are trying to prove
LocallyFinite(#, R, A), so the argument needs to be modified. Note that
Metric(#), which we are now assuming, implies SecondMetric(%?), which in
turn implies Metric(Zg).

The version of Theorem 4.14 for S”-! is already known inductively, and
so we know that Z(%g, Rg, Ag) = S"~1. We deduce that the tessellation of
Z (7%, Rg, Ar) is finite. This means that we have proved the strong form of
LocallyFinite(%, R, A) (see 3.31). [

5. DEFINING A METRIC

If Pairing(%, R, A) and Connected(Z, R), we obtain the connected
quotient space Q = Q(Z, R, A) defined in Remark 3.6. We can define a
“metric”” on Q in the obvious way: Given two points z; and z, in Q, we join
them with a special kind of path in Q. The path is divided into a finite number
of subpaths, and each subpath is the image of a rectifiable path in some P € #.
The distance between z; and z, is defined as the infimum over all such paths
of the sum of the lengths of the subpaths. We get the same infimum if we
restrict to subpaths starting and ending in the interior of a codimension-one
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