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5. Presentations II: indefinite quaternions over the rationals

Suppose that H operates discontinuously on the manifold T. If the

operation is in addition fixed-point free, then every t e T has an open
neighbourhood U such that U n Uh 0 for h ^ 1, and one says that //operates
properly discontinuously. The orbit space X - 77//is then a manifold, and

if T is simply connected, H is the fundamental group of X. If X belongs to
a class of manifolds the fundamental groups of which are known from other

sources, then we know H. Using this principle, Eichler [El] obtained a

description of the unit groups of orders in indefinite quaternion skew

fields D over Q. (In the definite case, the unit groups are finite.)
We begin by recalling a few facts from the arithmetic of such D. Let A

be a maximal order in D. We want to make sure that T contains no torsion
elements except ± 1. This will be the case if D does not contain the 4-th and
6-th roots of unity (the only ones of degree 2 over Q). For this, it is sufficient
that discr A contains a prime factor 1 mod 4 and one 1 mod 3. Namely,
let K Q (/). Then K C D if and only if K splits D. If p is a prime ramified
in D (that is, dividing discr A), then K splits D at p if and only if
I Qp(0 : Qp I 2, and this is equivalent to p s 3 mod 4. For the field of
6-th roots of unity, one argues analogously. So we make the above

assumption. The only element of order 2 in the norm-one-group ST is - 1

(because if there were another one, it would generate a subfield containing
two elements of order 2), and PST ST mod (± 1) is torsion free.

By assumption, DR M2(R), and the isomorphism maps ST to a discrete
subgroup of SX2(R). PST operates discontinously, and in the well-known
manner, on the space H+ SO(2)\SL2(R), which is identified with the
upper half-plane. The operation is fixed-point free, because the stabilizer
of a point would be in the intersection SO(2) n ST (± 1). Hence
26= H+/PST is an oriented surface. By Theorem 1, X is compact. The
compact oriented surfaces and their fundamental groups are well-known; we
have a presentation

PST Ti i (26) <al9bl9...9ag,bg\Tl[ai9b& 1>

It remains to determine the genus g, which, as the cognoscenti will guess,
turns out to be a function of the discriminant. This is accomplished by
Eichler (following Hey) with a truly marvellous argument, which we now
describe.
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Let Fq be a fundamental domain of ST in SL2(R). The cone C(F0) is then

a fundamental domain of ST in M2(R) DR. Let

F {x e C(F0) I - 1 ^ nr(x) ^ 0}

The idea is to calculate vol F (in Lebesgue measure) in two ways. The first way
is to show that vol F is the residue at 5 1 of the zeta function of D. This
rest (a) on the fact that A is a principal ideal domain (see e.g. [R], 35.6),
and (b) on a theorem of Dirichlet, which expresses the residue at S 1 of
certain functions of "zeta type", associated to a lattice in Euclidean space,

by the determinant of the lattice; see [BS], p. 344. Since the zeta function is

known (see e.g. [De], p. 130), one gets

712 <p(rf)
vol F

12 d

(A general formula has been .obtained by Käte Hey; cf. the discussion in
[De], p. 133.) Here d denotes the fundamental number of D, i.e. the product
of the ramified primes, which equals the square root of | discr A |.

For the second calculation, view D as a cyclic crossed product

D (L I Q, complex conjugation)

L/Q imaginary quadratic. Then one can write

a,b e C

and in this representation ST operates on the unit circle in C. In the integral
for vol/7, two of the integrations can be carried out, and there remains an

integral over a fundamental domain for ST in the unit circle, with respect to
the invariant measure. But for this, one has the Gauss-Bonnet formula. The

final result is

<P (d) ^g ir
If ST contain nontrivial torsion elements, one may apply a variant of this

reasoning to a torsion-free congruence subgroup.
Soon afterwards, Hull [Hul] gave another treatment, avoiding the analytic

argument but making fuller use of the theory of Fuchsian groups; this has the

advantage that torsion elements cause no additional problems. The core of the

arguments is the genus formula

122 - 2g v + - e2 + - £3 5

2 3
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where u is the volume of a fundamental polygon in the upper half plane,
and et denote the number of elliptic cycles of angles 2n/i. For u, there is a

formula due to Humbert. The et correspond to conjugacy classes of elements

of order i in PST, these in turn to classes of embeddings of fourth and sixth
roots of unity into D; there are formulae for these as well. For an updated
presentation of all of this, we refer to [Vi].

Meanwhile, Eichler's somewhat breathtaking «tour de force» has been

turned into a standard argument with the calculation of a Tamagawa number
as its core. Here is a rough sketch. Denote by G the algebraic group
(linear, semisimple, anisotropic) defined over Z by the norm one elements

of Dx ; thus, G(Z) ST and G(R) SL2(R). Let A be the adele ring of Q
and view G (Q) and G(Z) as subgroups of G (A) via the diagonal embedding.
Let

C n °(zp) and U G(R) X C.
p prime

Then

G (A) G(Q) U and G(Q) n Z)

This induces a bijection of homogeneous spaces

G(A)/G(Q) Z)

preserving the volumes with respect to the Tamagawa measure. Now the
volume on the left is, by definition, the Tamagawa number, and equals 1,
whence the equation

vol (G(R)/ G(Z)) (vol C) ~1

Here, the volume on the right is easy and equals 1. The left side
can be translated into the volume of a fundamental of G(Z) in the upper half
plane, and Gauss-Bonnet brings in the genus. The details can be found
in [Vi, ch. IV],

6. Presentations III:

As a byproduct of their computations, Kirchheimer and Wolfart [KW]
obtained a description of K2(R) for the rings R they treated. Conversely, if
K2(R) happens to be known from another source, one can derive presentations

of SLn(R), n^3. This idea has been pursued in a series of papers
by Hurrelbrink ([Hul]-[Hu3]). The general argument runs as follows.
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