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A QUOTIENT OF THE AFFINE HECKE ALGEBRA
IN THE BRAUER ALGEBRA

by V.F.R. JONES!)

ABSTRACT. The structure of a certain subalgebra of Brauer’s centralizer
algebra is given for all values of the parameter for which it is semisimple. The
algebra admits a trace functional whose weights on the simple components of
the algebra are calculated. The algebra may be exhibited as a quotient of the
affine Hecke algebra of type A, using generators and relations.

0. INTRODUCTION

Brauer’s centralizer algebra is defined abstractly as having a basis of
diagrams as below, multiplied in a rather obvious fashion (see [B]) which
involves a parameter 8. This algebra is an abstract model for the commutants
of the tensor powers of the defining representations of (odd) orthogonal
and symplectic groups, the parameter & in the algebra being + the dimension
of the space. For generic values of the parameter the Brauer algebra is
semisimple and its structure is known (see [W], [HW]).

O
Vel

A basis element of the Brauer algebra on four points.

The Brauer algebra on n points contains certain subalgebras defined by
“topological” conditions. The most obvious is the so-called Temperley-Lieb

1Y Partially supported by National Science Foundation grant DMS-91111411, U.S. Air
Force grant F49620-92-J-0067, and the Swiss Fonds National.
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algebra spanned by diagrams that are planar (have no crossings). It is a much
smaller algebra than the Brauer algebra and its structure is easy and extremely
well known, at least when semisimple (see [GHIJ], [GW]). In this paper we
analyse a slightly larger subalgebra of the Brauer algebra, namely that spanned
by diagrams that can be realised without crossings in an annulus; see below.

FIGURE 0: An annular diagram.

If we call B the Brauer representation into the commutant of O(k)
on & " CKk, it is known that the restriction of § to the Temperley-Lieb algebra
is faithful for k£ > 2. We show that the restriction to our annular algebra is
faithful for & > 3 (but not for k = 2). This shows that the annular algebra
is generically semisimple. For a value of & for which the annular algebra is
semisimple we show that the irreducible representations of the annular algebra
(over C) are parametrised by

(1) an integer ¢, 0 < ¢t < n with n + ¢ even,

(2) a t-th root of unity.

n
The dimension of the corresponding representation, called =, , is (g—_t)
2
1

fort>0andgj

n
( n ) for £ = 0 so that the dimension of the algebra is
2 2

1 )2 no\2
n i R D) t(ﬂ . ,) :
{2+1(2)} t + n even 2
0<t<gn
which is the same as the number of annular diagrams.
There is a trace functional on the annular algebra which can be defined

either via the Brauer representation or by counting the number of closed loops
when a diagram is closed by identifying the inside and outside circles. This
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trace is determined by its values on idempotents p, , whose principal left
ideals define the representations nt, .. Call the trace of such an idempotent
. /#Z(®, t). Then we show that ¢.#(w,t) is the integer valued polynomial
in & given by 22;;1wfcos(GCD(t, r)0), 2cos 6 = &. These also give the
multiplicities of 7, ., in B. In appendix 1 we give a table of the dimensions of
the irreducible representations of the annular algebra for n > 9, and a table
of the weights of the above trace.

The key to the analysis of the annular algebra is the observation that it is
filtered by ideals corresponding to the number of “through-strings’’. This idea
occurs in [B] (see [HW]) and we have taken the terminology from [MW]. For
us it was inspired by the first way of counting annular diagrams presented
in § 1, which was discovered by F. Jaeger, to whom the author is most grateful.
It was necessary to use this “through string” technique, which is, techno-
logically speaking, a backwards step from Wenzl’s paper [W], since the annular
algebras are nof unitally included in one another. This means that the ‘“basic
construction’ technique is not available.

A special system of generators of the annular algebra exhibits it as a
quotient of the affine Hecke algebra of type 121,7 with parameter
q® =2+ g+ g~ (see remarks after Theorem 2.8).

The original motivation for this work was to help calculate centraliser
towers in subfactors. Given an extremal (see [PP]) subfactor N of a II,
factor M, one forms the tower M; as in [J] with M;., = (M;,e;.,),
My, =M, M_, = N. Then there is an action of an affine Hecke quotient
on N' n M, according to the generators fi, fs, ..., fan.» defined by:

left multiplication by e;, 1<i<n

Ey, . (conditional expectation), for i=n + 1

right multiplication by e,,_;. n+2<i<2n+1
Ey, for i =2n + 2.

fi

They satisfy: f} = fi, fific1fi=<fis fif;= fif: if j#i+ 1, where the
indices are taken in Z/(2n + 2)Z, and where 7! is the index of N in M.
The result of this paper gives the structure of the algebra in the example
M = N® M;(C) — it is the oriented subalgebra of the annular algebra. In
general the affine Hecke modules occurring in N’ n M, depend sensitively on
the subfactor. We will present more results on this elsewhere.

I would also like to thank D. Levy (see [Le]) and C. Cibils for conversations
and S. Eliahou for some useful computer calculations.
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1. COUNTING DIAGRAMS
Definition 1.1. An (a, b) diagram D will be a partition of the union of
a set of size “a” and a set of size “b” into subsets of size 2 (so a + b is even).

If the set of size “a” consists of points on one line and the set of size “b”
consists of points on another, the diagram may be represented pictorially

as below:
%

FIGURE 1.2: A (4, 6) diagram a.

The set of all (a, b) diagrams will be denoted ¥ (a, b).

Definition 1.3. If ae€ Y(a,b) a through-string for the pictorial
representation of o is a line going from one of the top points to one of the
bottom ones. The number of through strings of a will be written #(a.).

If there is some way of identifying sets of a given size (such as if they are
points on a line or a circle), we may define an associative rule (a, )~ o © B
allowing one to multiply a Z(a, b) diagram by a & (b, c¢) diagram to get
a Y (a,c) diagram. No doubt the neatest way to define all this is in terms of
categories but we prefer to remain extremely concrete so we define the
associative rule pictorially by concatenation of diagrams, as below.

FIGURE 1.4. With a as in Figure 1.1 and B € Z(6, 2) as follows,

b e
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a © B is formed as follows:

When two diagrams o and B are multiplied, a certain number of closed
loops are formed which are forgotten in the product a © B. We call n(a, B)
the number of closed loops.

LEMMA 1.5. If ae€ Z(a,b),Be Z(b,c),ye Z(cd),
i) n(o,B) +n(aoB,y)=nB,v)+n(,poy)
(i) (o ©B) <min{s(a), 2(B)}

Proof. (i) Both sides count the number of closed loops in the figure
obtained by concatenating the figures of o, B and ¥.

(i) Obvious.

The diagram in & (n,n) is obviously an identity for o

and will be denoted 1.

—7

Definition 1.6. We will say that a diagram D € Z(a, b) is planar if a
figure representing the diagram has no crossings and all the connecting lines
do not leave the strip in the plane defined by the top and bottom lines.

We will say that D is annular if the a + b points are on the inside
and outside of an annulus with all connecting lines inside the annulus, and
without crossings as in Figure 1.7.
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FIGURE 1.7: An annular (3, 7) diagram with 1 through-string.

The set of planar (a, b) diagrams will be denoted #(a,b) and those
having ¢ through-strings #(a, b; t), and the set of annular (a, b) diagrams
/(a, b) and those having ¢ through-strings .2(a, b; t). It is well known

n+1 n

It will be convenient to fix two points on the inside and outside circle
respectively, call them #, and suppose they lie on a vertical line thus:

, 2n
that the set Z(n, n) has order cat(n) = 1 ( ) . We shall count .2/ (a, b).

FiGURE 1.8

Because of applications to subfactors we shall be interested in the case
</ (n, n), for which we say that a diagram is oriented if the curves joining
points may be oriented so that, at the boundary points, they point alternately
inward and outward, with the top * pointing outward and the bottom *
pointing inward. Thus Figure 1.9 is a figure of an oriented diagram.
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FIGURE 1.9

The set of oriented diagrams will be denoted 7 (n, n). Note that any planar
diagram is oriented. There are 22 oriented diagrams in .</'(4, 4) and 40 elements
altogether, which we enumerate in appendix 3 as they should be quite useful
in understanding the rest of the paper.

The difference between the planar and annular cases is that the curves in
the diagram may go round the circle. It is easy to guess that the element we
are about to define in .&/(n, n; n) will have a significant role to play.

Definition 1.10. The element u € .</(n, n; n) is the diagram of a cyclic
permutation represented by the figure below.

FIGURE 1.11: u € .</(6, 6; 6)

PROPOSITION 1.12.  For the semigroup structure on /(n,n) deter-
mined by o, u"=1.
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Proof. Although the figure represented by u” has a 360° twist, the
corresponding diagram is the identity. [

We now want to count annular diagrams. We begin with a preliminary

result which is well known but we include a proof for the convenience of
the reader.

n
LEMMA 1.13. Let { } = | P(n,p;p)|, the number of planar (n, p)
p

diagrams with p through-strings. Then

o)) (52 ).

Proof. Consider an element of Z(n + 1,p — 1; p — 1). The leftmost of
the bottom n + 1 points, call it x, is either connected to the top or the bottom.
If it is connected to the top it must be to the leftmost of those p — 1 points

since there are p — 1 through-strings. There are thus { } such. If x is

p—2
connected to the bottom, one may move x to the top to obtain an element

of #(n, p) as below:
&

FiGure 1.14

il anadi e B A

The process may clearly be reversed so that there are {
p

SR RS S

n
} such and
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n
Putting T\ 7 for p=0,1,... [—] we see that
D n—2p 2

n+ 1 <n> < n >
= + .
< D > p p—1
But the same recursion relations and boundary conditions are satisfied by
)=o)
p p—1
7 n n n n ( n ) ( n )
= — and —(n-p)Y=|n-p|—\n-pP-2].
<p> (p) (p B 1) p < 2 > 2 2
n n n—-2k+1(n+1
Also note ~ = .o
k k—1 n+1 k

n

COROLLARY 1.15. | «/(n,p;p)| :p(f_—_p) for p # 0.
2

Proof. Fix one of the p outside points. There are n ways to connect it
to the inside. Once connected, one may cut the annulus open along that string
and one is in the planar situation so

n-—1 w1 n
wtmpipri=n{l 1} -2 () -p(:) . O

p q
COROLLARY 1.16. ILQ/(p,q;t)|=t(1_ﬂ_—_f) (q_—_g) for t>0.

2 2

Proof. Given an annular diagram D with #(D) = ¢, one may push all the
curves connecting inner (resp. outer) boundary points to lie within a small
neighborhood of the inner (resp. outer) boundary circles. Then D may
be cut with a third circle, concentric to the others, which meets only the
through-strings. Thus we can write D = D; o D, with D, e & (p,t;1),
D, € /(t,q;t). Moreover given the pair D,,D,, it is immediate that
any other pair E,,E, with E, o0 E, =D is of the form E; = D, o u*,
E,=u"%o D, for some k =1,2,...,t(u € (¢, 1) as in Definition 1.10).
And all 7 such pairs (E,, E,) are clearly distinct. Thus

2 2

1 p q
| (P, q;1)| = ;l A (p, ;) || (8, q;50) | = t(p__f) (Q__f) .
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COROLLARY 1.17.

min . 2 2
| /@2p,2q) | = cat(p)cat(q) + zi:f”"”zz( q.) ( p.) and
g-i) \p-i

i 2p + 1 2qg + 1
| /@p +1,2g + )| = £™" P @i + 1) ( P ) ( " ) .
p—1 q— i
Proof. The only case not covered explicitly by Corollary 1.16 is the case
of zero through-strings. This can only happen if p and ¢ are even, and
then the argument of 1.16 shows that the number is | ./(2p, 0) | .27 (2q, 0) |
=|Z7@2p,0) | 72q,0)|. O
2 2
p) ( q) + cat(p)cat(q).
p q
It is possible to count the elements in .7 (2p, 2q) in a completely different
way which we now explain. This other way will not be used, but the truth of
the resulting binomial identity confirms the calculation.

p+tyq

S. Eliahou has calculated | .«7(2p, 2q) | = 2= (

To save on notation let d, , =|uU,;s0.22(2q,2p;t)| and let ¢, also
stand for cat (k).

First count all the elements of .27 (2q, 2p) with (the outer) * connected to
the inner circle. Clearly * can be connected to 2¢q points and, once connected,
there are cat(p + g — 1) ways of completing the diagram. There are thus
2qgcat(p + g — 1) such.

Now assume #* is connected to the outside. Then D is of the form (a)

or (b) in Figure 1.18:
| @Zk
()

FIGURE 1.18

(@)

Thus for the p — 1 possible points to which * is connected we must
count the two possibilities (which are distinct since there is at least one
through-string), which are clearly d, _ -1 4¢r and ¢, _ - ;d, 4. Altogether
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we get d,,=qcat(p+q—1)+codp-1,4t Cady_2,q+ "'+ Cp-2d1,4
-+ dl,qCp_z + ==+ Codp_l,q or

p—1

dyi1.4=qcat(p+q) +2 Y ocid, i
i=0

To get an explicit formula for 4, ,, we use generating functions.

Let CAT(x) = Y _,cat(n)x" = 1—_1—2%(_—“ and f,(x) = ¥, _odre1,0%"
Then

(X)) =q i cat(g + n)x" + 2xCAT(x) f;(x)
n=20

so that

1 oo}

fo(x) =q(l —4x) 2 Y cat(g+ n)x”

n=20
= [2r c 1 2n + 2q
o[ & () E e () )
r=0 \ ¥ n=on+qg+1 n+gq
Equating coefficients we see we have proven:

LEMMA 1.19.

p! 1 2n\ (2p+2+2g—2n—2
| /(@2p. 2q)| —cat(p)cat(q) =2q )} ————
n=0p+q—n\ n p+qgq—n—1

min (p, q) 2 2
R B v
r=1 p—1 q-—1

Finally we observe that oriented diagrams are easily counted from
nonoriented ones.

LEMMA 1.20. If p is even and ue </(p,p) is as in 1.10, then

for t>0, o~ ua is a bijection between ./(p,q;t) and unoriented
elements of </(p,q;t). Thus | Z(p,q;t)|=2|.Z(p,q;1)].

Proof. It suffices to show that, if a is oriented, ua is not, and vice versa.
The first assertion is obvious. So if «a is not oriented, choose a non-oriented
through-string. The same string extended through ua is then oriented. Cutting

along that string we are in the planar situation which is necessarily oriented
for obvious parity reasons.  []
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2. THE ABSTRACT ALGEBRAS

The (abstract) Brauer algebra with parameter & € C, B(n,d), is the
algebra with basis the set of all (n, n)-diagrams and multiplication law
af = 8P g o . We could say it is the twisted monoid group algebra for
the monoid (D(n, n),o,1) and the cocycle &”. We have thus at our
disposition two other series of abstract algebras with parameter, subalgebras
of the Brauer algebra:

P(n, 8) = The subalgebra spanned by planar diagrams
also called the Temperley-Lieb algebra T'L(n, d),
in fact invented as diagrams by Kauffmann ([K]).

A(n, 8) = The subalgebra spanned by annular diagrams.

The structure of the Brauer algebra has been studied extensively. See
[W], [HW] for much information, and P(n, &) is particularly well understood
(see [GW], [GHIJ]). In this section we will give the structure of A(n, )
whenever it is semisimple (over C). It will be worthwhile to call the algebra
simply A (n) in this section since we will only consider a fixed & (# 0).

Definition 2.1. (i) We call E(n, t) the diagram (in .«/(n, n;t))

(so that E(n, n) = 1).
(i) We call V(n, t) the diagram (in o7 (n, n; t))

t(‘

(so that u = V(n, n) and E(n,0) = V(n,0)).
Note: the role of * is unimportant, it serves only to have a well defined
| plgment.
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_(n—-1
LEMMA 2.2. Let e, € A(n) be d (2 )E(n, 1) and v, € A(n) be

n-—1
5—( ’ )V(n,t). Then
Q) e’ =e,.
(i) (v)' = e, (so e, v, = v,e).
(i) E(n,t)c o/ (n,n) o E(n,t) C U<, (n,nj)
u{V(n,nklk=0,1,2,..,t—1}.
(iv) If De </(n,n;t), thereare D, and D, in o/ (n,n,t) with
D=D,oE(n,t)°D,.
Proof. (i) and (ii) are evident from diagrams and the multiplication
structure in A (n).

(iii) For any D in /(n,n), x = E(n,t) © D © E(n, ) is as below.

where there is any annular diagram in the intermediate annulus (shaded). But
we see that if x has ¢ through-strings, the intermediate system must connect
all of the outer through-strings to one of the inner ones. Once one connection
1s fixed, all the others must follow in cyclic order, so x is a power of V
(with respect to °).

(iv) As in the proof of Corollary 1.16, we may write D = E, o E, with
E, e /(n,t;1), E, e </(t,n;t). But then pulling the strings around in
the middle and introducing 5~ isolated circles we see that D admits the
desired decomposition. [
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We proceed to determine the structure of A4 (n, 8) when it is semisimple.
Note first that the through-strings give a filtration of A (n) by ideals.

Definition 2.3. A(n;t) is the two-sided ideal linearly spanned by
diagrams with < ¢ through-strings.

Thus if A(n) is semisimple, it is isomorphic to the direct sum
@, _, —A;’(qn(,"—;_’)z—), and to determine its structure it suffices to determine that
of the quotients, which of course are all semisimple.

THEOREM 2.4. If & s such that A(n,d) is semisimple,
A matrix algebra of size cat (g) if t=0 and n even.
A(n,t—2) | The sum of t matrix algebras of size (n_—t) if t>0

(and n—t even). 2

Proof. Suppose first ¢t > 0. Let A stand for A(n,t)/A(n,t—2) for
short and let it be isomorphic to 69:.: , M, (C). Identify elements of A(n, ¢)
with their classes modulo A4 (n, f — 2). Then by (iv) of Lemma 2.2, the 2-sided
ideal generated by e, is all of @:: M4, (C) so we can write e, = @:z \Di
with p; a non-zero idempotent in each M, (C). But A is linearly spanned by
the diagrams in o/(n, n;t) so by (i) and (iii) of 2.2, e,Ae, is abelian of
dimension ¢. Thus each of the p;/s is a minimal idempotent, r = ¢ and of

n 2
course Zf.:ldf‘:t(n—f) by (1.16). But also &/(m,n;t) o E(n,t) is

2
exactly all diagrams of the form

=

>
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so that the ones representing non-zero elements of A are in bijection
n

with  .o/(n,t;t). Hence dim(Ae;) = | Z(n,t;1) | = ¢ (n_—_f) . However,

2
(®!_ M, (C) (®;_,py) is a vector space of dimension Zledu e
we have

t n t n
Y d?=t(n—r) and ) d,~=z(n__) .
i=1

-t
2 i=1 2

n

Thus each of the d;’s is equal to (g_—_f) (e.g. by the ‘“equality” case of
2

the Cauchy Schwartz inequality (Xd;-1) < |/Xd? /). This proves the
theorem for ¢ > 0. The case ¢ = 0 follows from the same argument, using
dim (.«/(n, n; 0)) = cat(n)? and dim(.</(n, n;0)ey) = cat(n). [

Note that one could avoid the slightly clumsy Cauchy-Schwartz argument
by showing that the commutant of C[Z/tZ] is A(n), which is not hard.

Remark 2.5. In fact it is clear from the proof that the algebra
e.(A(n, 1)/ A(n,t —1))e, is naturally isomorphic to the group algebra
C[Z/tZ], so that the various matrix algebras in A(n,?¢)/A(n,t—2) are
naturally indexed by the 7#-th roots of unity.

Remark 2.6. 1In view of 2.5, another way of stating Theorem 2.4 is to say
that, if 4 (n, d) is semisimple, its irreducible representations are parametrised
by

(i) the number of through-strings ¢

(i) a f-th root of unity m.

Moreover the irreducible representation n = n, , corresponding to (¢, ®) is

characterised by the fact that n(v;) = wn(e;), and may be given quite
explicitly as follows:

If W is the vector space spanned by .</(¢,n;t), W becomes an
A(n) — C[Z/tZ] bimodule under the left and right action:

DoEoF for De «/(n,n) and F € </(¢, t; t), identified
D-E-F= with Z/tZ .
0 if D o E has <t through-strings.

Then if P, =1Y,_, @0 ‘u’ (u as in 1.10), 7, is left multiplication
on VP,.

We give the structure of the subalgebra A4 (n) of 4 (n) spanned by oriented
diagrams. With obvious notation the result is
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THEOREM 2.7. If & is such that A(n,d) is semisimple, (n even),

n
A matrix algebra of size cat (2) if t=0.

A(n, 1)/ A(n,t = 2) = { The sum of 5 copies of a matrix algebra
n

of size (n_—t) if t>0.
2

Proof. One can simply repeat the proof of Theorem 2.4, the only diffe-

rence being that the role of the element v would be played by v2. One could

—

also deduce 2.7 from 2.4 in several ways. One is to note that .2/ (n) is the fixed
point algebra for an involutive automorphism of .&/(n) sending u to — u.

Another way is to observe that the irreducible representations of .o/ (n)
2l — lj)

n

parametrised by (¢, ) (£ > 0) remain inequivalent for w = exp(

—

Jj=0,1,...5 — 1 on restriction to .2/(n). This is because Uf = ?e¢, in that
representation. Then adding the sums of squares of the dimensions one gets
the number of oriented diagrams by 1.20. [

Finally we make some remarks about generators and relations. As we saw in
the introduction, if we put f; = u‘e,_,u~‘(and F; = wE(n—2;n—2)u"")

1

for i=1,2,...,n, the f’’s satisfy f2=fi, fifis1fi=8 2f; so that if
gi=qfi—Q~f) (for g+ qg~'+2=235?), the map T;~ g;, p~ u gives
a homomorphism from the affine Hecke algebra of type A, with para-
meter g onto the diagram algebra A(n,2 + ¢ + ¢ ~'). Thus in particular we
have constructed some very explicit irreducible representations of the affine
Hecke algebra, for certain values of g.

One reason, besides subfactors, for looking at oriented diagrams in the
even case is that they allow us to determine the subalgebra generated

by fl,fZ’ '“sfn (Or g1, '--9gn)‘

LEMMA 2.8. If n is even the following three algebras are equal (even
if A(n,d) is not semisimple).

(1) The subalgebra of A(n) generated by fi,f2s..cs [n-
(i) The two-sided ideal generated by f, in A(n).
(iii) A(n,n —2).

Proof. The equality of (ii) and (ii1) follows from a special (oriented) case
of (iv) of 2.2.
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The algebra of (iii) contains the f;’s by definition. That (iii) implies (1)
will follow if we can show that any element of U, ., </(n, n; t) is expressible
as a product of F,’s. That this is true for diagrams having a straight through-
string is a well known fact about the Temperley-Lieb algebra. But if D is an
oriented diagram with less than n through-strings, either D has zero through-
string and we are in the Temperley-Lieb situation, or D © u* has a straight
through-string for some even k. Thus Du* is a word on the F;’s and it
suffices to show that F;u2 is a word on the F;’s for all i. It follows from a
picture that F,u-2% = FF;, ... F,F\F, ...F;_,. [

Remark 2.9. We leave it to the reader to show that Lemma 2.8 is true
without the —’s if »n is odd.

Remark 2.10. 1t follows from 2.8 that the elements v, are in the algebra
generated by the F;’s for f < n. We record the expression

v:_,=F,0F 0F,0 --0F,,

n

Thus rotations are unavoidable even if one is only interested in the structure
of the algebra generated by the F;’s.

3. THE BRAUER REPRESENTATION

So far we have begged the important question of when the algebra A4 (», o)
is semisimple. We do not have a complete answer for this but we shall show
that it is semisimple whenever § is an integer > 3, (and that A(n, — 2) is not
semisimple for n > 3) by using a representation onto a C*-algebra which we
will show to be faithful for such &. That the representation is faithful for »
fixed and large integral (hence any large) 8 is rather easy.

Definition 3.1. Let V be a vector space of dimension k and basis
Wi, Wy, ..., Wi, If the diagram D e D(n,n) has n connecting edges
called g, define B(D) € End(® " V) by the matrix (with respect to the basis
{(We, @We, ® - @ w, |a;=1,2,...k} of ®"V)

BD)gritn = T 8(ase, aee)
£

where s(€), b(¢) are the two ends of the edge ¢, labelled from 1 to 2#, and,
just in this formula, & is the Kronecker 8.

LEMMA 3.2. D B(D) defines a homomorphism of B(n, k) (hence
A(n, k)) onto a C*-subalgebra of End(®"V).
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Proof. This is just the orthogonal case of [B]. The C*-structure is that
for which V is a Hilbert space with orthonormal basis {w;}, and it is clear
that the adjoint of D is just D read backwards.

Remark 3.3. Since finite-dimensional C*-algebras are semisimple, this
proves that B(B(n, k)) is always semisimple. Further note that B (A4 (n, k)) is
also a C*-algebra.

THEOREM 3.4. For k > 2, B vrestricted to TL(n,k) is faithful for
all n.

Proof. The normalized trace on End(&®"V) defines a Markov trace
on TL(n,k) with Markov parameter k2. Thus by the calculation of [J]
or [GHJ], the structure of B(7L(n,k)) is known and it has the same
dimension as TL(n, k).

THEOREM 3.5. For k >3, P restricted to A(n, k) is faithful for
all n.

Proof. Let x= Y pecvumipD (Ap € C) be such that B(x) = 0. We
have seen that .o/ (n, n; 0) actually consists of planar diagrams so by 3.4 we
may suppose that Ap # 0 for some D € o/(n,n;t), t > 1. Thus by pre- and
post-multiplying x by suitable powers of u, we may assume Ap # 0 for
some D with a straight line joining the inner and outer *’s. Now split V'
as Cw;, ® w;. Since dim V >2, dim w; >2. Let P be orthogonal
projection from ®”V onto w; ® (R "~ 'w;). If D is a diagram with the
inner and outer *’s not connected, PB(D)P = 0. Also, the set of diagrams with
a straight line between the *’s is in obvious bijection with Z(n—1,n —1).
Thus 0 =PB(X)P= Y pe #n-1.n-nApPB(D)P and not all the Ap’s
are zero.

But the matrix of PP (D)P with respect to the basis

{wl ® (Wa1 ® T ® Wan_l)[ai = 25 3a "'ak}

is clearly that of “B(D)” for parameters k—1 and n— 1. By 3.4 we
conclude ¥ pe #tn-1.n-1nApD =0, a contradiction. [

COROLLARY 3.6. ./ (n,k) and /(n,k) are semisimple fo k an
integer >=3.

The question naturally arises of finding those values of 6 and n for
which .27(n, 8) is semisimple. We observe that for 6 = — 2, the algebra
o/ (n, 8) is not semisimple for n > 2. This is because we may use the Brauer
representation corresponding to the symplectic case.
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Then B(f,) is represented on C2Q C* ® - & C?

0 0 0 O
0 1 -1 0 .
by the matrix % 0 —1 L 0 ® id

0 0 0 O

using a symplectic basis of C2, and B (u) is the obvious cyclic permutation on
C2® C2® --- ® C2. But then 2 — B(f1) is the transposition on C* & C?
® --- ® C? exchanging the first two copies of C2. Thus the image of
/(n, 8) is the same as that of the group algebra of the symmetric group.

4. THE CYLINDRICAL TRACE

There is a natural trace functional tr on A(n,8) defined by tr(D)
= 87D n(D) being the number of closed loops formed on the cylinder if the
inside and outside boundaries of the annulus are identified. We will call this
trace the cylindrical trace.

Note 4.1. This trace exists in fact on the whole Brauer algebra — it could
be defined in terms of partitions as tr (D) = 8" where n(D) is the number
of equivalence classes for the equivalence relation generated by D itself and
the relation which identifies each point on the top with the corresponding point
on the bottom.

Note 4.2. One has the relation n(D, © D,) = n(D, © D;) so one might
try to define a more general trace by replacing 6 by an arbitrary complex
number. But n(a, ) # n(B, o) in general so one is forced to choose §.

If & is a value for which A (n, §) is semisimple we know that A(n, 0) is
a direct sum of matrix algebras, so our cylindrical trace is determined by its
value on a minimal idempotent in each matrix algebra summand. We will
calculate these “weights” of the trace. In order to do this we will need detailed

information on the multiplicities of # in each irreducible representation
of A(n,d).

Definition 4.3. For n >t >0 the group Z/nZ X Z/tZ(= {(a,b)|a
=0,...,n—1;b=0,...t — 1} acts by linear transformations on .o/ (¢, n; t)
by (a, b) (D) = u® o D o ub, (The u’s on the left and right in this formula
are of course different if n +t.) Let F, ,(a,b) be the number of fixed
points for (a, b). Let F,(a) be the number of fixed points for the action
D—Dou?of aeZ/nZ on .o/(n,0).
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LEMMA 4.4. The multiplicity of an n-th root of unity m as an
eigenvalue of u in the representation m,, (0'=1) is % Zz;é 2;10

n‘w-F, (a,b) for t>0 and %EZ;(I) neF,(a) for t=0.

Proof.  From the definition of wr,, it is clear that the multiplicity is
trace (P (% Y n—”u“)). ]

Definition 4.5. For each ¢-th root of unity o let #(w,n) (or
M, ,(®, n) if it is necessary to specify that o is indeed a #-th root of unity
and not some other) be the cylindrical trace of a minimal projection in the
simple summand of A(n, 8) corresponding to ©, ,. To determine .#(w, n)
we will use the following easy result.

LEMMA 4.6. For each 0 <r<mn,r+ n even, there is an algebra
isomorphism ¢:A(r,d) > e,A(n,d)e, such that

(1) tr(p(x)) = tr(x), x € A(r, d).

(2) If p is a minimal projection in the summand of A(r,d) indexed
by (t,w), t<r, then ¢(p) is a minimal projection in the
summand of A(n,d) indexed by (t,®).

r—n

Proof. Define ¢ on diagrams by ¢ (D) = & 2 D’, D’ differing from D
by first inserting n — r interior and exterior points to the right of * and
connecting them up in adjacent pairs, very close to the boundary so as to not
interfere with the rest of the diagram. Then move * one to the right to ensure
that the identity of A(r, d) is mapped onto the element we have called e,.
The process of constructing D’ from D is illustrated in Figure 4.7.

L FIGURE 4.7 3
When closed on the cylinder D’ will have exactly “5~ more closed loops

than D so tr(¢(x)) = tr(x). The multiplicativity of ¢ also follows from the

factor & 2 in its definition. Injectivity of ¢ is obvious and surjectivity
follows by considering a diagram of E, © D o E, for D € </ (n, n).
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Finally, for ¢z <r, ¢(v;) = v, (with an obvious abuse of notation) and
®(e,) = e;,. The summand of A(r,8) or A(n,8) indexed by (¢, ®) is
characterized by v, = ®we; (when multiplied by a minimal central idempotent
corresponding to the summand). [

We are now in a position to give a formula that determines .#(®, n).
THEOREM 4.8. For r<n, M, ,(0,n)= #, (0,r) and, if r=n,

1 ¢ o
MM, n) ==Y 8§GCDU.myJ
nj=

1 n—-1t-1
- X ) ///(w,t){— Yy ¥ n‘“w‘bFn,t(a,b)}

n>t>0 ¢ ol =] nl 2=05=0
t+ neven

1 n-1

—= X MF.(a).
R a=0

Proof. Since the ¢ of Lemma 4.6 is surjective, a minimal idempotent
in A(r,d) is minimal in A(n, §) for r < n, so by 4.6 we are reduced to the
case r = n. If we fix an n-th root of unity 1, the trace we are trying to calculate
is tr (P% E;z  N/u/) where (1 —P) is the central idempotent of A(n, )
corresponding to all matrix summands indexed by (¢, ®) with 7 < n. Since the
trace of w/ itself is clearly §6¢PU.m one has

@) + (1 -P) ~ Y n-iud) =

1
— §GCDU.mp i
j=1 noj

1

>

Writing (1 — P)A(n, 8) (1 — P) as a sum of matrix algebras we get the result
by 4.4. [

Thus we only need to determine F(a, b) and F,(a).

THEOREM 4.9. If a=0,1,...,n-1,b=0,1,..,t —1(n>1t t +0),
let x = GCD(a,n), y = GCD(b, 1), then
[ 0 if f;&i—’ or 2%

ﬁ or x#+y mod?2

I =

! (u) otherwise (and a, b # 0)
0 if a or b=0, not both, or n+t odd

n
L'z(n—t) if a=b=0,
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ome1 [2M 2m + 1 _
r—,nH = if n=4m+2 and a=2m+1
m

m
X
(b) F,(a) :{ (-;i) if x iseven
1 n _ .
TEERN P if a=0 and n is even
\ 0 otherwise .

Proof. Let us prove (b) first as the method is the same for (a) but (b) is
simpler.

In the case n = 4m + 2, we first claim that for a fixed diagram some point
on the boundary must be joined to the point diametrically opposite. This is
easy by induction — it is trivial for » = 2, and if » > 2, just choose two
boundary points connected to each other. Either they are diametrically
opposite each other and we are done, or the disc is divided into three regions
as in Figure 4.10.

FIGURE 4.10

The boundary points inside A (hence B) are even in number so the number
of marked boundary points in the diagram is congruent to 2 mod 4. But the
original 180° rotation acts by a 180° rotation on these points so we are done
by induction.

Once we know that some point is connected to a diametrically opposite
point, the whole diagram, since it is fixed by the rotation of 180°, is determined

by the configuration in one half. There are ;.

2m ) )
such configurations,
m

and the diameter can be chosen in 2m + 1 ways.
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Now suppose x = GCD(n, a) is even. Then the n boundary points may be
divided up into n/x fundamental domains, each consisting of x consecutive
points on the boundary. The x points in a fundamental domain can be divided
into ones connected to points within the domain and ones connected to points
in other fundamental domains. Moreover the constraint of planarity clearly
implies that if a point is connected to a point in another fundamental domain,
that other domain must be adjacent to it. Thus we may speak of clockwise
and anticlockwise points and obviously, since the diagram is fixed, there are
the same number of clockwise as anticlockwise points for each domain. We
see that the whole diagram is completely determined by a single configuration
as in Figure 4.11.

to
anti-
clockwise to
points clockwise
points
FiGure 4.11

Also any such configuration determines a fixed point. Straightening out the

wavy radii into a single straight line we see that these configurations are in

X
bijection with U’?, #(x, 2i;2i) which has order (;) by Lemma 1.12.

2

Finally for part (b), if x is odd, there would be an odd number of points
in a fundamental domain, which is clearly impossible by the above argument.

Proof of (a). As in the proof of part (b), divide the »n outside points into
n/x “fundamental domains” for the rotation of ¢ units on the outside circle.
Each of the x points in a domain is then of one of four kinds: a ‘“through-
point” — attached to the inner circle; a clockwise point — attached to the
adjacent domain in clockwise order; an anticlockwise point — similarly; or
an internal point — attached to another point in the domain.
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The whole system of connections can then be extended to all the outer
points by rotating the fundamental domain by powers of the rotation
of @ units. The through-points can then be connected to the inside points in
any of ¢ ways which accounts for the factor of “#”’ in the formula. That any
fixed diagram must look like this follows by arguing only on the outside
points. The diagram will then be fixed by (a, b) if and only if the rotation
through a points on the outside effects a rotation of b points when restricted
to the through-points.

Now suppose there are r through-points per fundamental domain.
Obviously r -~ = ¢, and the rotation of a effects a rotation of = on the
through-points. Thus we must have - = b, r = ¢. Moreover the through-
points in a fundamental domain must be connected to inner points in a
fundamental domain for the rotation of b, so y = r. So the conditions

s = f and 2 = ﬁ are necessary for a fixed point. The equality of x and y mod 2

X
follows from the fact that there have to be as many clockwise points as
anticlockwise (as in part (b)) and the number of internal points is necessarily
even.

Finally, if all the conditions are satisfied, any configuration as below can

be extended in 7 ways to a fixed point for (a, b).

FIGURE 4.12: Two clockwise, two through and six internal points.

As in part (b), make the wavy line one straight line and we see there are

X
(X_—_y) such configurations by Lemma 1.12. [
2

Given the apparently erratic nature of F(a, b), the elegance of the final
formula for .#(n, n) seems to us quite remarkable. It will be most transparent
if we use the Fourier transform. These are characters rather than multiplicities.

Definition 4.13. For r=0,1,...,n -1, let M(r,n) =Y n".#(r,n),
the sum being taken over all n-th roots of unity 7.
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The following result was first obtained on a computer by S. Eliahou.

THEOREM 4.14. If T,(x) is the usual Tchebychev polynomial,
T,(cosB) = cos nb, then we have

)
M(©0,2) =8>-1=2T, (5) + 1

o)
M(1,2)=06—-1=2T, (5) -1
and for n > 2,
M(rs n) = 2'iTGCD(n,r) (§) .
2

Proof. Let us first obtain the recursive formula for M(r,n) from
Theorem 4.8:

n-2 -1
Y smmnr=860en_{ L L (o, t)—Zoa'bF,,,(rb)
n:n?=1 t>0 ow:ol=1 I b=0
t + neven
_Fn(r)
n-—2 -1

= §GCD(r,n) _ Z — Z M(t—b,t)F,,,,(r,b) —Fn(r) s

t>0 tb=0
t + neven
where the last term is only present if # is even.
We must show that the function defined in the statement of the theorem,
call it p(r, n), satisfies this recursion equation. Note first that if we set
P,(x) = 2T, (5) then (see [Lu]):

n
P,(x) =x"— Z (H—I)P(x)

0<i<n 2
I + neven

The case r = 0 is now rather easy: For n =1, M(0,1) =86 — F,(0) = &
since there are no diagrams with one boundary point. Also p(0, 1)
=P =96. For n=2, M@UO2)=08%2—-F,0) =562-1=u(,1).
For n > 2 we have (first for n even).

1 | n n
=x— ¥ - n,t(o,O)u(o,t)+;Fn,z(0’°)(52‘”‘*(f)_("‘—‘l)
2

n>t>2 2
f even

n n
w(0,n) =P, =x"— }, ("‘f)u(o 1) + ( )(82 2)+(

n>t>2 2 2
t even

oY N
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but since F, (0, b) = 0 for b # 0, we get

t—1
wO,n) =x"- Y 12 F, (0,b)u(t— b, 1) — F,(0) .

n>t>0 b=0
t even

The case where n is odd is even easier.
Now consider the case where r is arbitrary. Since GCD(b, 1)
= GCD(t — b, t) we must show

n—2 1 t—1
w(r,n) =386chm ¥ — % (b, t)F, (r,b) — Fu(r) .
1>0 b=0
t + neven

Let us find all pairs (¢,0), 0 < b <t -1, 0< ¢t < n, for which F, ,(r, b) #0.
Let g = GCD(r,n). Then from 4.6 we must have ¢ =<, b=%, o + g
even and o < g, for a = GCD(r, n). On the other hand, if we are given an
o with o + g even and 0 < a < g, then GCD(%,%) = o so if we put

t=an/g,b=0r/g,0<t<n 0<b<tand GCD(t,b) = a. Thus since
F, .(r,0) =0 for r # 0, the equation to check becomes

g2 ar an g
H(’”,”)ZSg— Z H(_,_) (g—a)—Fn(r),
a>0 g g &

o + geven

On the other hand,

g =2 g g
P,(8) =8¢ — ) Py, (é‘_) - (g)
a>0 2 2
o + geven

where the last term is present in the even case (for g) only.
Thus we are done if g is odd since then F,(r) = 0 and there is no
difference between these recursion relations. The sum in the expression for p

can only contain n(1,2) if n = 2r so g = r and a = 1. In this case g is odd,

g
so we are done in the case g even since then F,(r) = ( g) and n(a, b)
2

= Zccp, by DY definition for all terms in the sum for p. Finally there is the
case n = 2r g(=r), odd. Then all the terms in the recursions are the same
except the last two — for p(r, n) we have

g g g g g
u(l,Z)(g—l) + (g—l) :(Pl—l)(g—l) + (g—l) =P1(g—1)
2 2 2 2 2

which is the same as the last term in the formula for P,(5). [
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COROLLARY 4.15. The traces of minimal idempotents in the matrix
algebra summand corresponding to (o, t), #(w,t), are given by:
For t=1, #7Z({,1)=1

82 +6 -2 52— §
For t=2, 4(,)=-——"—", M(-12)=

1! 8
For t>2, ./(,t)=- Y 2Tscpe,n (5) o’

r=20

2 d
= — Z Z (Dk Tk(——) .
{ dlt k:GCD(n,k)=d 2
k<n

Proof. Just invert the Fourier transform. ]

COROLLARY 4.16. The multiplicity of the representation ™w,, Of
A(n, k) in the Brauer representation B (§3) is .#(w,t)(k), for
k>3. (So . #(w,k)>0 for k=>=3.)

Proof. For k > 3 the algebra is semisimple and the trace induced by the
usual trace of End(®”V) is the cylindrical trace, with parameter
§=k U

If we look at the oriented subalgebra A (n, 8) (with n even), the irreducible
representations are parametrised by even #’s and the first /2 ¢-th roots of
unity ®. Obviously .#(w, t) = .#(w, t) since GCD(r,n) = GCD(n—r,n).
Let . /7 (w,t) denote the cylindrical trace of a minimal idempotent in the
summand corresponding to w(#, ).

COROLLARY 4.17. . (,1) =*¥' " Tocpa.m (—2—) o', for n>2.

Proof. On restriction to A(n, 8) the representations of A parametrised
by ® and — ® become equivalent.

COROLLARY 4.18. The Brauer representation B is not faithful for
k=2 and n > 3.

Proof. T,(1) =1 so for ® # 1, .#(w,t) = 0, and this is sufficient to
imply that the matrix algebra corresponding to  is in the kernel of B.
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APPENDIX 1

Table A.1.1

The dimensions of the irreducible representations of A (n, )
(grouped according to the number of through strings)

dimension

1

1 11

3 111

2 44 1111

10 555 11111

5 1515 6666 111111

35 212121 77777 1111111

14 56 56 28282828 888888 11111111

126 84 84 84 3636363636 9999999 111111111
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Table A.1.2

The multiplicities in the Brauer representation. !) %)

n n multiplicity
1 1 1
2 1 k? 4+ k — 2
~1 k*—k
3 1 k3 —k
exp(2im/3) k3 — 4k
4 1 k4 —3k*+ 2k
l k*—5k*+ 4
-1 k* — 3k? - 2k
5 1 k3 —5k3+ 9k
exp(2in/5) k3 — Sk* + 4k
6 1 k6 — 6k* + k3 + 11k*? —k — 6
exp(in/3) k¢ — 6k* — k3 + 8k* + 4k
exp(2in/3) k6 — 6k* — k3 + 11k2+ k — 6
7 1 k7 — 7k’ + 14k — k
exp(in/7) k7 — 7k’ + 14k3 — 8k
8 1 k8 — 8k® + 21k* — 18k? + 4k
exp(in/4) k8 — 8kS + 19k* — 12k2
i k8 — 8k® + 21k* — 22k2 + 8
-1 k8 — 8k6 + 21k* — 18k? + 4k
9 1 k® — 9k7 + 27k> — 28k3 + 9k
exp(2in/9) k® —9k7 + 27k’ — 31k3 + 12k
exp(2in/3) k® — 9k7 + 27k3 — 28k3

1Y Since M, (t, ®) = M,(t, ®) we record just M,(n,n) for n an nth root of unity.
2) The table entry gives nM, (n,n) for a root of unity of order d for each divisor d of n.
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APPENDIX 2: RESTRICTION TO THE TEMPERLEY-LIEB ALGEBRA

The Temperley-Lieb algebra P(n,d8) (see §2) is contained (unitally) in

A(n, d) (indeed in A (n, 8)) by simply connecting the inside * to the outside *,
which reduces the rest of the annulus to a disc. The structure of P(n, )
is very well known, particularly when it is semisimple (see [GHJ], and [GW]
in the non-semisimple case). This structure is very easily re-obtained by the
method of this paper. We have that there is one irreducible representation of

n n
P(n, d) for each ¢, 0 < ¢t < n, t + n even, of dimension (n_~t) - (n—t—z) .
2 2

Call these representations ;.

THEOREM. For >0,

T w|Pn,d) = @ Wik
t<k<n
k + teven

and when t =0,
Tolp@n,s) = VYo
(when both algebras are semisimple).

This is easily proved by induction using Theorem 2.8 and Lemma 4.6. It
is reassuring to note that the dimensions add up in an obvious way:

amin 9= (1) {59 - (52 {0 ) - (52}
s{l)

Similarly one may check that the formulas for the traces of minimal
idempotents add up.

Our first attempt to derive the structure of A (n, 8) was using the unital
inclusion of the Temperley-Lieb algebra. The only stumbling block was in
trying to show that the “trivial” representation y, (of dimension 1) is
actually contained in 7, .
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