Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 40 (1994)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LES RÉSEAUX DANS LES GROUPES SEMI-SIMPLES NE SONT PAS

INTÉRIEUREMENT MOYENNABLES

Autor: de la Harpe, Pierre / Skandalis, Georges

Kapitel: 4. Preuve des résultats de l'introduction

DOI: https://doi.org/10.5169/seals-61115

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Pour tout $g \in G$ de projection canonique $\dot{g} \in H_j \setminus G$, l'image $(v_j)^g$ par g de la mesure v_j sur Ω ne dépend que de \dot{g} , et nous avons noté $(v_j)^{\dot{g}}$ cette mesure image. Il est à nouveau évident que $(\lambda_j) \mapsto \sum v_j \star \lambda_j$ est une application lipschitzienne, et qu'elle est G-équivariante pour les actions à droite naturelles de G à la source et au but.

On obtient par composition l'application $\mathcal{H}_1 \to Prob(\Omega)$ annoncée, qui applique un vecteur unité $f = (f_i)_{i \in J}$ sur la mesure de probabilité

$$v_f = \sum_{j \in J} \int_{H_i \setminus G} (v_j)^{\dot{g}} |f_j(\dot{g})|^2 d\mu_j(\dot{g}).$$

Supposons alors qu'on ait

$$1_G \prec \bigoplus_{j \in J} \operatorname{Ind}_{H_j}^G(1_{H_j})$$
.

Il existerait dans \mathcal{H}_1 une suite de vecteurs

$$(f_n)_{n\geqslant 1}=\big((f_{j,\,n})_{j\in J}\big)_{n\geqslant 1}$$

asymptotiquement G-invariante au sens où

$$\lim_{n \to \infty} \sup_{k \in K} \sum_{j \in J} \| Ind_{H_j}^G(1_{H_j}) (k^{-1}) (f_{j,n}) - f_{j,n} \|^2 = 0$$

pour toute partie compacte K de G. Il en résulterait que la suite correspondante $(v_{f_n})_{n \ge 1}$ de $Prob(\Omega)$ serait aussi asymptotiquement invariante au sens où

$$\lim_{n \to \infty} \sup_{k \in K} \| (\mathsf{v}_{f_n})^k - \mathsf{v}_{f_n} \| = 0$$

pour toute partie compacte K de G. Quitte à passer à une suite extraite, on obtiendrait à la limite une mesure de probabilité G-invariante sur Ω , en contradiction avec les hypothèses du lemme. L'hypothèse de contenance faible ci-dessus est donc impossible, et la preuve est achevée.

4. Preuve des résultats de l'introduction

Enonçons d'abord le raffinement suivant du théorème A.

Théorème B. On considère des groupes localement compacts G_H , G_T un réseau

$$\Gamma \subset G = G_H \times G_T$$

et un sous-groupe S de G contenant Γ , ayant les propriétés suivantes.

- (a) Le groupe G_H agit par homéomorphismes sur un espace compact Ω et il n'existe aucune mesure de probabillité G_H -invariante sur Ω . De plus, pour tout $x \in G_H \{e\}$ tel que $(x, e) \in S$, il existe une mesure de probabilité $Z(x, G_H)$ -invariante sur Ω .
- (b) Le groupe G_T possède la propriété (T) de Kazhdan. De plus, pour tout $x \in G_T \{e\}$, le centralisateur $Z(x, G_T)$ n'est pas de covolume fini dans G_T .

Alors S n'est pas intérieurement moyennable.

Preuve. Notons β_{Γ} la restriction à Γ de la représentation α_{S} définie au chapitre 2. Soit Σ un système de représentants des orbites de l'action de Γ sur $S - \{e\}$ par $(\gamma, s) \mapsto \gamma s \gamma^{-1}$. On a

$$\beta_{\Gamma} = \bigoplus_{s \in \Sigma} Ind_{Z(s,\Gamma)}^{\Gamma} (1_{Z(s,\Gamma)}).$$

Si S était intérieurement moyennable, on aurait $1_S \prec \alpha_S$, donc $1_\Gamma \prec \beta_\Gamma$ par restriction à Γ . Il suffit donc de supposer que $1_\Gamma \prec \beta_\Gamma$ et de montrer qu'on obtient une contradiction.

Si on avait $1_{\Gamma} \prec \beta_{\Gamma}$, on aurait par induction de Γ à G (comme au lemme 4) la relation

$$1_{G} \prec \bigoplus_{s \in \Sigma} \operatorname{Ind}_{Z(s,G)}^{G}(1_{Z(s,G)}).$$

Pour tout $s \in \Sigma$, écrivons

$$s=(s_H,s_T)\in\Sigma\subset S\subset G=G_H\times G_T\,.$$

Posons

$$\Sigma^H = \Sigma \cap (G_H \times \{e\})$$

ainsi que

$$\Sigma^T = \Sigma - \Sigma^H.$$

Le membre de droite de la relation (\star) se décompose naturellement en une somme de deux termes, chacun étant lui-même une somme sur l'un des ensembles Σ^H , Σ^T . Or une relation de contenance faible de la forme $1_{\Gamma} \prec \bigoplus_{1 \leq n \leq N} (\pi_n)$ où N est un nombre *fini* implique que $1_{\Gamma} \prec \pi_n$ pour l'un des n au moins. Il résulterait donc de (\star) que l'une au moins des relations

$$(\star_H) \qquad \qquad 1_G \prec \bigoplus_{s \in \Sigma^H} \operatorname{Ind}_{Z(s,G)}^G(1_{Z(s,G)})$$

$$(\star_T) \qquad 1_G \prec \bigoplus_{s \in \Sigma^T} Ind_{Z(s,G)}^G(1_{Z(s,G)})$$

aurait lieu.

Supposons d'abord que (\star_T) ait lieu. Pour tout $s = (s_H, s_T) \in \Sigma^T$, posons

$$H(s) = G_H \times Z(s_T, G_T)$$
.

Le lemme 4.ii implique que l'on aurait

$$1_G \prec \bigoplus_{s \in \Sigma^T} Ind_{H(s)}^G(1_{H(s)})$$

et donc aussi la relation équivalente

$$1_{G_T} \prec \bigoplus_{s \in \Sigma^T} Ind_{Z(s_T, G_T)}^{G_T} (1_{Z(s_T, G_T)}).$$

Comme $s_T \neq e$ pour tout $s \in \Sigma^T$, les hypothèses du théorème stipulent que $Z(s_T, G_T)$ n'est pas de covolume fini dans G_T . La dernière relation de contenance faible ci-dessus serait donc en contradiction avec le lemme 5.

Supposons alors que la relation (\star_H) ait lieu. Le même argument que plus haut implique que l'on aurait aussi

$$1_{G_H} \prec \bigoplus_{s \in \Sigma^H} Ind_{Z(s_H, G_H)}^{G_H} (1_{Z(s_H, G_H)})$$
.

Vu les hypothèses du théorème B, il existe sur Ω une mesure de probabilité $Z(s_H, G_H)$ -invariante. La dernière relation de contenance faible ci-dessus serait alors en contradiction avec le lemme 6 appliqué à G_H agissant sur Ω .

Preuve du théorème A. Il suffit de vérifier que les hypothèses du théorème A impliquent celles du théorème B lorsque $S = \Gamma$. Soit $x \in G_H - \{e\}$ tel que $(x, e) \in \Gamma$. L'hypothèse (c) du théorème A implique que x est d'ordre infini; comme Γ est discret dans G, cela implique que x^Z n'est pas relativement compact. L'hypothèse (a) du théorème A implique donc l'hypothèse (a) du théorème B. Comme les hypothèses (b) coïncident dans les deux théorèmes, ceci achève la preuve du théorème A. \square

Preuve de la proposition 2. Soit $G = \prod_{\alpha \in A} G_{\alpha}$, avec $G_{\alpha} = \mathbf{G}(\mathbf{k}_{\alpha})$ simple non compact et de centre réduit à $\{e\}$, comme à la proposition 2. On peut supposer les notations telles que $A = B \coprod D$, avec G_{β} de rang déployé un pour tout $\beta \in B$ et avec G_{δ} de rang déployé au moins deux pour tout $\delta \in D$. On pose alors $G_H = \prod_{\beta \in B} G_{\beta}$ et $G_T = \prod_{\delta \in D} G_{\delta}$. On considère un réseau sans torsion Γ_0 de $G = G_H \times G_T$. Vérifions les hypothèses du théorème A.

(a) Pour chaque $\beta \in B$, le groupe G_{β} agit par isométries sur un espace X_{β} qui est un espace hyperbolique approprié (lorsque \mathbf{k}_{β} est archimédien) ou un arbre (dans les autres cas). Notons Ω_{β} le bord de X_{β} (à la Gromov). Soit $g_{\beta} \in G_{\beta}$ tel que $g_{\beta}^{\mathbf{Z}}$ n'est pas relativement compact dans G_{β} . Alors g_{β} a exactement un ou deux points fixes dans Ω_{β} , et il existe sur Ω_{β} une mesure de probabilité $Z(g_{\beta}, G_{\beta})$ -invariante (à support ces un ou deux points).

Le groupe G_H agit sur la réunion disjointe $\Omega = \coprod_{\beta \in B} \Omega_{\beta}$ par $((g_{\beta})_{\beta \in B})x = g_{\beta_0}x$ pour $x \in \Omega_{\beta_0}$.

Soit μ une mesure finie G-invariante sur Ω ; pour tout $\beta \in B$, la mesure induite μ_{β} sur Ω_{β} est G_{β} -invariante, donc réduite à zéro puisque G_{β} n'est pas moyennable; par suite $\mu = 0$. Soit $g = (g_{\beta})_{\beta \in B} \in G_H$ tel que $g^{\mathbf{Z}}$ ne soit pas relativement compact dans G_H ; il existe $\beta_0 \in B$ tel que $(g_{\beta_0})^{\mathbf{Z}}$ ne soit pas relativement compact dans G_{β_0} , et par suite il existe comme ci-dessus une mesure de probabilité $Z(g_{\beta_0}, G_{\beta_0})$ -invariante sur Ω_{β_0} ; en prolongeant cette mesure par zéro sur $g_{\beta \neq \beta_0} \Omega_{\beta}$, on obtient une mesure de probabilité $Z(g, G_H)$ -invariante sur Ω . L'action de G_H sur Ω vérifie donc bien les hypothèses (a) du théorème.

- (b) Le groupe G_T a la propriété (T) car c'est un produit direct de groupes qui ont cette propriété. D'autre part, pour tout $\delta \in D$ et pour tout $x_{\delta} \in G_{\delta} \{e\}$, le centralisateur $Z(x_{\delta}, G_{\delta})$ n'est pas Zariski-dense dans G_{δ} . Il résulte donc du théorème de densité de Borel que $Z(x_{\delta}, G_{\delta})$ n'est pas de covolume fini dans G_{δ} (voir [Zim, Theorem 3.2.5] si le corps local \mathbf{k}_{δ} est archimédien, et [Wan] sinon). Par suite, si $x = (x_{\delta})_{\delta \in D} \in G_T \{e\}$, on a $Z(x, G_T) = \prod_{\delta \in B} Z(x_{\delta}, G_{\delta})$ et $Z(x, G_T)$ n'est pas de covolume fini dans $G_T = \prod_{\delta \in D} G_{\delta}$.
- (c) Cette hypothèse du théorème A est strictement contenue dans les hypothèses de la proposition 2.

Le théorème B permet par exemple de généraliser comme suit l'énoncé de la proposition 2. On considère un groupe $G=\prod_{\alpha\in A}G_{\alpha}=G_H\times G_T$ comme dans la preuve précédente.

PROPOSITION 2^{bis} . Soit G comme ci-dessus et soit Γ un réseau de G tel que $\Gamma \cap (G_H \times \{e\})$ soit sans torsion. Alors tout sous-groupe S de G contenant Γ est non intérieurement moyennable.

Notons d'une part que S n'est pas nécessairement fermé dans G, et d'autre part que l'assertion de non moyennabilité intérieure porte sur S vu comme «groupe discret».

Preuve de la proposition 1. Elle résulte de la proposition 2, comme indiqué dans l'introduction.

Avant d'entreprendre la preuve de la proposition 3, considérons un corps \mathbf{k} muni d'une valeur absolue

$$\left\{ \begin{array}{ccc} \mathbf{k} & \rightarrow & \mathbf{R}_{+} \\ \lambda & \mapsto & |\lambda| \end{array} \right.$$

par rapport à laquelle \mathbf{k} est un corps local (c'est-à-dire est localement compact et non discret). On sait qu'une telle valeur absolue possède un prolongement unique à une clôture algébrique \mathbf{k}_{α} de \mathbf{k} [Wae, Section 18.4] et donc à la complétion correspondante \mathbf{K} de \mathbf{k}_{α} . La droite projective $P_{\mathbf{K}}^1$ hérite ainsi de \mathbf{K} une topologie qui rend continue l'action naturelle de $PGL(2, \mathbf{k})$. (On prendra garde que $P_{\mathbf{K}}^1$ n'est en général pas compact, car \mathbf{K} n'est en général pas localement compact.)

Soit $x \in PGL(2, \mathbf{k})$, $x \neq e$ un élément représenté par une matrice $\tilde{x} \in GL(2, \mathbf{k})$ de valeurs propres $\lambda_1, \lambda_2 \in \mathbf{k}_\alpha$. Rappelons que x est dit hyperbolique [respectivement parabolique, elliptique,] si $|\lambda_1| \neq |\lambda_2|$ [resp. $\lambda_1 = \lambda_2$, $\lambda_1 \neq \lambda_2$ et $|\lambda_1| = |\lambda_2|$]. Ainsi x possède exactement deux points fixes sur $P_{\mathbf{k}}^1$ si x est hyperbolique ou elliptique, et un point fixe si x est parabolique.

Pour un élément hyperbolique $h \in PGL(2, \mathbf{k})$, on note ω_h le point fixe correspondant à la valeur propre λ_{ω} de h telle que $|\lambda_{\omega}| = \max\{|\lambda_1|, |\lambda_2|\}$, et α_h l'autre point fixe de h dans $P_{\mathbf{K}}^1$. Etant donné des voisinages A_h , Ω_h de α_h , ω_h dans $P_{\mathbf{K}}^1$, il existe alors un entier n_0 tel que

$$h^n(P^1_{\mathbf{K}} - A_h \cup \Omega_h) \subset A_h \cup \Omega_h$$

pour tout n tel que $|n| \ge n_0$.

LEMME 7. Soient \mathbf{k} un corps local et S un sous-groupe de $PGL(2, \mathbf{k})$. On suppose que

- (i) S ne contient pas de sous-groupe résoluble d'indice fini,
- (ii) S contient un élément hyperbolique.

Alors S n'est pas intérieurement moyennable.

Preuve. Soit $h_0 \in S$ un élément hyperbolique de points fixes $\alpha_0, \omega_0 \in P^1_K$. Le groupe S est Zariski-dense dans $G = PGL(2, \mathbf{k})$, car les sous-groupes algébriques connexes de G distincts de G sont résolubles. Il existe donc $x_1, x_2, x_3 \in S$ tels que les huit points α_0, ω_0

et $x_j(\alpha_0)$, $x_j(\omega_0)$ $(1 \le j \le 3)$ sont distincts. Pour $j \in \{1, 2, 3\}$, on pose $h_j = x_j h_0 x_j^{-1}$ et on note α_j , ω_j ses points fixes. Quitte à remplacer chacun des éléments h_0 , h_1 , h_2 , h_3 par une puissance convenable, on peut alors trouver

des voisinages E_j de $\{\alpha_j, \omega_j\}$ disjoints deux à deux $(1 \le j \le 3)$ et un domaine fondamental D pour l'action de $h_0^{\mathbf{Z}}$ sur $\mathbf{P}_{\mathbf{K}}^1 - \{\alpha_0, \omega_0\}$ contenant les E_j

tels que

$$h_j^n(P_{\mathbf{K}}^1 - E_j) \subset E_j$$
 pour tous $n \in \mathbf{Z}, n \neq 0$ et $j \in \{1, 2, 3\}$.

Posons

$$C = \mathbf{P}_{\mathbf{K}}^{1} - D$$

$$T = \left\{ s \in S - \{e\} \middle| \begin{array}{c} s \text{ possède un point fixe dans } C \\ s \text{ ne possède aucun point fixe dans } E_{1} \cup E_{2} \cup E_{3} \end{array} \right\}$$

On vérifie qu'on a

$$S - \{e\} = T \cup h_0 T h_0^{-1} \cup h_0^{-1} T h_0$$

$$(\star) \qquad T, h_1 T h_1^{-1}, h_2 T h_2^{-1}, h_3 T h_3^{-1} \text{ disjoints deux à deux }.$$

En effet, tout élément $s \in h_1 T h_1^{-1}$ possède un point fixe dans E_1 (par suite $s \notin T$) et n'en possède aucun dans $E_2 \cup E_3$, sinon $h_1^{-1} s h_1 \in T$ en posséderait dans $h_1^{-1} (E_2 \cup E_3) \subset E_1$, contrairement à la définition de T (par suite $s \notin h_2 T h_2^{-1} \cup h_3 T h_3^{-1}$); les autres vérifications sont analogues.

Il résulte de (\star) que S n'est pas intérieurement moyennable. (Voir [HaS]; un argument de ce type apparaît dans la preuve du théorème 5 de [BeH], mais n'y est pas correct, car une transformation elliptique de l'arbre de Bruhat-Tits concerné peut posséder *plusieurs* points fixes.)

Remarques. (1) Si \mathbf{k} est de caractéristique nulle ou impaire, on sait qu'il existe une extension *finie* de \mathbf{k} contenant les racines de tous les polynômes du second degré à coefficients dans \mathbf{k} , donc les valeurs propres de toute matrice $\tilde{x} \in GL(2, \mathbf{k})$. Mais ceci n'est pas vrai lorsque $\mathbf{k} = \mathbf{F}_2(t)$, d'où l'introduction du corps \mathbf{K} ci-dessus.

(2) Considérons le sous-groupe $S = PSL(2, \mathbb{Z})$ du groupe $G = PSL(2, \mathbb{Q}_p)$. Le groupe S ne contient pas de sous-groupe résoluble d'indice fini, et ne contient pas d'élément hyperbolique (car S est contenu dans le sous-groupe compact $PSL(2, \mathbb{Z}_p)$ de G). Pour la preuve ci-dessus, on ne peut donc pas supprimer du lemme 7 l'hypothèse (ii).

On peut sans doute supprimer (ii) en raisonnant comme au lemme 4.1 de [Tit], ce qui pour l'exemple ci-dessus revient à plonger $PSL(2, \mathbb{Z})$ dans $PSL(2, \mathbb{R})$. Mais la preuve du cas général sans l'hypothèse (ii) dépasse l'ambition du présent travail.

Preuve de la proposition 3. L'assertion pour d=2 résulte du lemme 7. L'assertion pour $d \ge 3$ résulte du théorème B. \square

Le premier auteur remercie Bachir Bekka, Marc Burger et Alain Valette pour d'utiles commentaires.

RÉFÉRENCES

- [BeH] Bedos, E. et P. de la Harpe. Moyennabilité intérieure des groupes: définitions et exemples. L'Enseignement math. 32 (1986), 139-157.
- [Dix] DIXMIER, J. Les C*-algèbres et leurs représentations. Gauthier-Villars, 1969.
- [Efr] Effros, E.G. Property Γ and Inner Amenability. *Proc. Amer. Math. Soc. 47* (1975), 483-486.
- [Eym] EYMARD, P. *Initiation à la théorie des groupes moyennables*. Springer Lecture Notes 497 (1975), 89-107.
- [EyL] EYMARD, P. et N. LOHOUÉ. Sur la racine carrée du noyau de Poisson dans les espaces symétriques et une conjecture de E.M. Stein. *Ann. scient. Ec. Norm. Sup. 8* (1975), 179-188.
- [Fur] FURSTENBERG, H. A Poisson Formula for Semisimple Lie Groups. *Annals of Math.* 77 (1963), 335-383.
- [GiH] GIORDANO, T. et P. DE LA HARPE. Groupes de tresses et moyennabilité intérieure. Arkiv för Mat. 29 (1991), 63-72.
- [Gre] Greenleaf, F.P. Invariant Means on Topological Groups. Van Nostrand, 1969.
- [HaJ] DE LA HARPE, P. et K. JHABVALA. Quelques propriétés des algèbres d'un groupe discontinu d'isométries hyperboliques. In: *Ergodic Theory* (Séminaire, Les Plans-sur-Bex, 1980), *Monographie de l'Enseignement Math.* 29 (1981), 47-55.
- [HaS] DE LA HARPE, P. et G. SKANDALIS. Un résultat de Tarski sur les actions moyennables de groupes et les partitions paradoxales. *L'Enseignement Math. 32* (1986), 121-138.
- [Lu1] LUBOTZKY, A. Trees and Discrete Subgroups of Lie Groups over Local Fields. Bull. Amer. Math. Soc. 20 (1989), 27-30.
- [Lu2] Lattices in Rank One Lie Groups over Local Fields. Geom.-Funct.-Anal. 1 (1991), 406-431.
- [Mar] MARGULIS, G.A. Discrete Subgroups of Semisimple Lie Groups. Springer, 1991.
- [Pat] PATERSON, A.T. Amenability. Math. Surveys and Monographs 29, Amer. Math. Soc., 1988.
- [Ra1] RAGHUNATHAN, M.S. Discrete Subgroups of Lie Groups. Springer, 1972.
- [Ra2] Discrete Subgroups of Algebraic Groups over Local Fields of Positive Characteristics. *Proc. Indian Acad. Sci. Math. Sci.* 99 (1989), 127-146.