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196 A. CONSTANTIN AND B. KOLEV

The endpoints of y determine on C, an arc & disjoint from J° and such
that & N J = 06. We note that there is an at most countable family of such
arcs v, noted (7y;);e » and that diam(y;) — 0 as i = o. The boundary of J is
the simple closed curve obtained from C, when substituting the arcs y; for the
arcs 8; and J is a topological disc by the Jordan-Schoenflies theorem. [l

The following remarkable property of periodic homeomorphisms which is
a direct consequence of 2.4 is true in a more general setting than the plane
R?, namely in topological manifolds of dimension 2 because of its local
nature. We will give it in that context since we will use it for the disc and the
sphere, repeatedly in this article.

LEMMA 2.5. Let f:S8—S be a periodic homeomorphism of an
arbitrary 2-dimensional topological manifold S andlet x € Fix(f), a fixed
point of f. Then for any néighbourhood N of x, there exists a
topological disc A, such that:

I. A, CN,
2. A, is a neighbourhood of x,
3. f(Ay) = A,.

Proof of 2.5. We can first assume that N and its image under f, f(N),
are contained in some local chart U homeomorphic with R? and will continue
to call x and N the corresponding point and set in R2. Let D, be an euclidean
disc of centre x and radius n where n > 0 is chosen such that f¥(D,) C N
for k=0,1,..,n — 1 and let C, be its boundary. Let A, be the closure
of the component of the invariant set M} _; f¥(D?) which contains x.
By 2.4, A, is a topological disc which is invariant under f (components are
sent to components by a homeomorphism) and satisfies the three assertions
of the lemma. [

Remark. The boundary y, of A,, which is an invariant simple closed
curve, is contained in U} Z g f4(Cy).

3. PERIODIC HOMEOMORPHISMS OF THE DISC

THEOREM 3.1. Let f:D?— D? be a periodic homeomorphism. Then
there exists re OQR) and a homeomorphism h:D?— D? such that
f=hrh-1.
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Before attacking the proof of the result above, let us first look at a special
case of Theorem 3.1, namely:

PROPOSITION 3.2. Let f:D?— D? be a periodic homeomorphism such
that f/sp2=1d. Then f = Id.

Proof of 3.2. Let d be an arbitrafy diameter of D? with endpoints A
and B and let A be one of the two connected components of D? — d.
The set:

E= N f1(A°)

i=1

1s invariant under f and the closure of each of its components is a
topological disc.
A

d

f(d)<

B
FIGURE 2

Let AB be the arc of circle joining A to B in the boundary of A.
Since f ”(A??) AB for all I, there exists a component of E, say J°, whose

closure J contains AB (see Figure 2). By 2.4, J is a topological disc which is
invariant under f.

We can write 8J = AB U & where & is an f-invariant, simple arc with
endpoints 4 and B such that:

d C knJ fid) .
i=1

Since f(A) = A and f(B) =B, f/5=1d. Let x be a point of the arc §.
There exists i€ {l,...,n} such that x € fi(d) and x=fr-i(x)ed so

LU S,
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that 8 = d and f/, = Id. Since the diameter d was chosen arbitrarily, we
have shown that f = Id on D2. [

From now on, f will denote a periodic homeomorphism of the disc of
period n with n > 1. In the sequel of this section, we prove Theorem 3.1, first
investigating the structure of the fixed point set of f.

PROPOSITION 3.3. Suppose f:D?— D? s a periodic homeomorphism
of period n (n>1); then:

1. if f is orientation-preserving, Fix(f) is reduced to a single point
which is not on the boundary of D? and for 1<i<n-—1,
Fix(f') = Fix(f),

2. if f is orientation-reversing, f>=1d and Fix(f) is a simple arc
which divides D?* into two topological discs which are permuted by f.

Proof of 3.3. Suppose first that f is orientation-preserving. By
Brouwer fixed point theorem, f has at least one fixed point. Since f/jp2
is orientation-preserving and periodic, f has no fixed point on 9D?2.
Otherwise f would be the the identity map on 8.D? and using 3.2, f would
be the identity map on the whole disc which is excluded by hypothesis.
Therefore, f has at least one fixed point in D?\90.D? which we can assume
to be, up to conjugacy, O, the center of the disc.

Let A = D?2\{O}. A is a half open annulus which is invariant under f.
Suppose now that an iterate f/ of f has a fixed point x, € 4. Let x, be a lift
of x, to the universal covering space A of A and G be the lift of f’ such
that G(x,) = xo. G" is a lift of Id which fixes one point, thus G” = Id. In
particular, G/47 is a periodic and orientation preserving homeomorphism of
the line, thus G = Id on dA. Therefore, fi = Id on 9D? and, according
to 3.2, f! = Id on the whole disc, so that 7 is a multiple of n according to
the definition of n.

Suppose now that f is orientation-reversing. In that case, f has exactly two
fixed points on d.D? which we denote by A and B and f? is the identity map
on dD?2, therefore, by 3.2, f?=1d on D? .

We assert that Fix(f) is connected. For if not, we can find two nonempty
compact sets K; and K, such that

FiX(f)ZKIUKz, K10K2:®.

If A €K, and B € K,, it is then possible to construct a simple arc vy in
D2\ (K, u K,) which intersect 8D? only on its endpoints and which
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separates A from B. Using the same argument as the one used in the proof
of 3.2, we can show the existence of an f-invariant simple arc:

n—1

8 C U fily) C D*\Fix(f)
i=0

which separates A from B. But f must then have a fixed point on & which
gives a contradiction. Therefore we can suppose that one of the two compact
sets, say K, is contained in D2\9D?. In that case, it is possible to construct
a simple closed curve ¢ C D?\9dD? which does not meet K; U K, and such
that the topological disc it bounds contains at least one point of K. Using
similar arguments as those of the proof of 2.5, we can find an f-invariant
topological disc in D?\dD? whose boundary contains no fixed point. This
gives again a contradiction, since any simple closed curve which bounds an
invariant disc has exactly two fixed points of f.

The previous arguments applied to an arbitrarily small invariant
topological disc around a fixed point given by 2.5 shows that Fix(f) is also
locally connected and by 2.2, Fix(f) is therefore pathwise connected. In view
of 2.1, there exists a simple arc v in Fix(f) which joins A and B. This arc
divides D? into two topological discs A, and A, by the Jordan-Schoenflies
theorem. D2\y is obviously invariant under f and the two arcs on 8?2
delimited by A and B are permuted by f, therefore f(A) = Ay, f(A;) = A,
and Fix(f) is reduced to y. [

Proof of 3.1. Suppose first that f is orientation-preserving. By 3.3,
we can suppose that Fix(f) = {O}, the center of the disc. Since f/4p:
is a periodic homeomorphism of period n, the rotation number of
S/ap2, p(f/sp2) = k/n, where k and n are coprime. We are going to
prove that f is conjugate to a rotation by angle 2k7n/n around the origin.
Without loss of generality, we can assume that k& = 1. Indeed, suppose
the result holds if p(f/sp2) = 1/n. Then, if k > 1 we replace f by f/ where
J €N 1s such that jk = 1(modn). Then p(f//sp2) = 1/n, thus S/ is
conjugate to a rotation by angle 271/ n around the origin and since (f/)* = £
it follows that f is conjugate to a rotation by angle 2kn/n.

Let us consider the quotient space D2/ r where two points are identified if
they belong to the same orbit under f. D2/ 7 1s endowed with the quotient

topology. It is a compact and pathwise connected metric space, the metric
being defined by:

d(n(x), n(y)) = inf — {d(f*(x), f1 ()},

0K<h, kg<n—-1

where n: D? — D2/, is the canonical projection.
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By 2.1, we can find a simple arc y from m(O) to an arbitrary point
on m(dD?2). Since the group of homeomorphisms generated by f acts
freely on D? except at O it follows that m: D% — D2/, is a regular branched
covering (see [10] page 49). Therefore, m ~!(y) is the union of n disjoint
simple arcs (with the exception of their common endpoint O)
Yos Yis ---» Yn—1, Which divide D? into n disjoint sectors, Ay, Ay, ..., An_1.
The hypothesis p(f/sp2) = 1/n implies that v; = fi(y,).

FIGURE 3

Let 4 be a homeomorphism between A, and R,, the fundamental region
in D? of the rotation by angle 2n/n around the origin, and such that
h\Yl = rh\yo. We can extend /4 to a homeomorphism of D? by defining A/ 4,
as rihf —!, r being the rotation of centre O and angle 2n/n. It is easy to
verify that 4 is an homeomorphism of D? and that f = A~ !rh.

Suppose now that f is orientation-reversing. By 3.3, Fix(f) is a simple
arc vy which divides D? into two topological discs A; and A, which are
permuted by f. Let & be a homeomorphism between A; and the upper half
disc D;. We define # on A, in the following way:

h(y) = Sh/a, f(¥), Yy € Ay,

where S is the reflection about the x-axis. It is then easy to verify that 4 is
a homeomorphism of D2 and this gives a conjugacy between f and S. [

Remark. Using 3.1, it can also be shown that any periodic homeo-
morphism of the annulus is topologically equivalent to an euclidean isometry
(modulo a flip of the boundary if it is not boundary-preserving).
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