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The associated Witt class is

W(E6) = <1> in W(F3) i

CASE R = E;.
The definition is
ZE, ={Y% xie;:2x;€eZ,xi—x;€Z, ¥;_, x;=0}.
Here,
(ZE)* = ZE; Ul (ZE; + 24) ,
where
zi=;(er+testes+est+es+es—3(er+e))

satisfies (z1, 21) = % and is of minimal scalar square in its class mod ZE;.
Again, z, is noted x,(E4) if convenient.
The Witt class w(E;) is the generator (1) of W (¥F,) = Z/2Z.

CASE R = Egs.

Here, T(Eg) = 0. The associated Witt class is 0.

4. WEIGHT ENUMERATORS
OF FINITE SCALAR PRODUCT MODULES

Let 7 be a finite abelian group with a non-degenerate bilinear form
b:TXT—Q/Z.

Suppose that we have a decomposition of 7T as an orthogonal direct sum
of subgroups 7, ..., Ts:
T=T1 T2 TS.

Then we can define the weight x¥® e Z[x,,...,x;] of an element
ue T by tabulating its non-zero components in the decomposition
U=u, + U, + ...+ u;, u,T;, as

xw@) = x‘;"(m) . x;’(llz) - xW(”s)

N b

where

( ) 0 ifui=0,
wilu;) =
1 ifu,-th.
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If M is a subset of T, the weight enumerator of M is the polynomial

PM(xl, ...,XS) = ZueMXW(u) .

We denote by ¢q;, i = 1, ..., s the order of the subgroup 7;.
We show in this section that MacWilliams duality is still valid in this more
general setting:

THEOREM. Let M C T be a subgroup of the scalar product module
T=T, T, .. B T,. Set gq;,=Card(T)), and let M+ be
the subgroup orthogonal to M. Then, we have the formula, where
| M| = Card(M):

Pr(xy,.0,%) =
1 2 1 —x; 1 — x
_H (1 +(gi— x;)* Py N '
| M| = 1+ (g —1)x; I+ (gs— 1)xg
Note that if some of the subgroups 77, ..., Ty are mutually isomorphic

(or more generally have the same order), then we can write the decomposition
of T in the form

T = anl n2T2 anr,
where n;T; stands for the orthogonal sum
n,-T,~ = T,' T,' T,‘

of n; copies of T;.
The weight of an element

u= W +..tu )+ .o+ WU+ .ot u,)

is then defined as

Vr
ros

XV = x{t e xte o x

where v, is the number of non-zero components of #; ; + ... + u; ,, in n;7T;.
The duality theorem then takes the seemingly more general form

PM_L(xl, ...,x,) =

1 d 1—x1 1-x,
——— I @ +(gi= Dx)"- Py - ,
Card(M) i1 1+ (g1 — Dx; 1+ (q,— Dx,

This identity can be viewed as a system of linear equations for the
coefficients of the weight enumerator polynomial P;, of any putative
metabolizer M = M~+. If M exists, this system must be solvable in
non-negative integers.
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Proof of the duality theorem. One of the classical proofs of MacWilliams
duality in a vector space over a finite field goes over with only insignificant
changes. We repeat the argument for the reader’s convenience.

Let ¥:Q/Z— C* be the character given by x(a) = e?™*, Set

B(u,v) = x(b(u,0)).
We cook up the function f: T — C[x,, ..., X5] given by
fw)y =Y, Bu,v) x¥®

and evaluate Y, _,, f(u) in two different ways, using the following lemma:

LEMMA.

Card(M) ifveM+,

ZueMB(u’U):{O 1fU$MJ-

We first recall the proof of the lemma.

If veM*, then B(u,v) =1 for every u € M, thus Y e Bu,0)
= Card (M) as stated in this case.

If v ¢ M+, there is an element u; € M such that b(u;,v) # 0, and then
B(u,,v) # 1. We have

EuEMB(u9 U) = EHEMB(Z’II + U, U)
= ZueA{B(uI:U)B(ua U) = B(ul’U)ZuEMB(ua U) .
This implies the statement of the lemma for v ¢ M.

We now proceed to the proof of the duality theorem.
Firstly,

LuemSW) =X, L, rBuwv) x*® = Yoer (X, enBu,0) - xv®
= Zuez\/ﬂ- Card(M) : xw(u) = Card(M) . PMJ_(XI, '“5x5) .
Secondly,

f(U) = EUETB(us U) s x )
= ZmeTl,...,useTSB(ul’Ul) T B(uS’US) ' XXV(UI) BETER x;V(US)
S
= I1i (Zy e Bui,0) - X7y,
where u = u; + ... + u, is the decomposition of u e T = T, T,.
Using the lemma again, we have
1+ (q,-— l)x,- if u, =0,

ZUETiB(ui’U) .x;V(U) N {
1—Xi if u; 0.
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Thus,

Su) = H (1+(g:—Dx;) - H 1-x,

ieS ieS’

where S C {1, ..., s} is the set of indices i for which #; = 0, and S’ C {1, ..., s}
the set of indices i for which u; # 0.
Another way of writing f(u) is

Sfu) = f[ (1 =x)»@0 - (1 + (g;— Dxp)! =~ 7o
P=1

Plugging this formula into ), _,, f(u), we get

s - x; w(u;
LyemS (M) = Hj=1(1 +(gi — Dx;) - zueMﬂi:l (1+(q,-—1)x,~) o
s 1—-x 1 — x5
=], (0 +(q;i— l)xi)'PM(1+(ql—11)xl>“"1+(qs~1)x5) :

Comparing the two expressions for }  _,, f(u), we get the theorem.

5. THE DEFICIENCY

The main further necessary condition for a root system to be contained in
an even unimodular lattice of the same rank is provided by the notion of
deficiency (Defekt) introduced and studied in [KV].

If R is a root system of rank #n, the deficiency of R, denoted d(R),
is the difference n — m, where m is the maximal cardinality of a set
{ay, ..., a,} C R of mutually orthogonal roots

(a[,aj)=26,'j, for all 1 gl,jém

We use this notion only if all roots in R have the same scalar square 2.
If R=R,HR,, then d(R) =d(R,;) + d(R,). The values of the
deficiency for the irreducible root systems are

dA) = [3]
0 for / even,

dD,) =
) {1 for / odd ,

dE¢) =2,dE;) =dEs) =0.
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