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UNIMODULAR LATTICES 69

The associated Witt class is

w(E6) < 1 > in W(F3).

Case R E7.

The definition is

ZE7 { Ez8= i X/E; : 2x/ E Z, A/ - X/ e Z, j X/ 0}

Zl 4 (^1 + ^2 + £3 + £4 + £5 + ^6 — 3 (e7 + eg))

satisfies (zi,Zi) \ and is of minimal scalar square in its class modZE7,
Again, Zi is noted Xi(E7) if convenient.

The Witt class w(E7) is the generator < 1 > of W(F2) Z/2Z.

Case R E8.

Here, T(E8) 0. The associated Witt class is 0.

Let T be a finite abelian group with a non-degenerate bilinear form
b:Tx T-+ Q/Z.

Suppose that we have a decomposition of T as an orthogonal direct sum
of subgroups Ti, Ts:

Then we can define the weight xw{u) e Z[xi, x5] of an element

u e T by tabulating its non-zero components in the decomposition
u u 1 + u2 + + uS) U; e Ti, as

Here,

(ZE7)* ZE7 U (ZE7 + Z\)

where

4. Weight enumerators
of finite scalar product modules

T= Ti ffl T2 BB ffl Ts

xw(u) — • X2
("2) *

••• ' X^("5)

where
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If M is a subset of T, the weight enumerator of M is the polynomial

PM(xu...,xs) lueMx»w.
We denote by qi9 i 1, 5 the order of the subgroup Tt.
We show in this section that MacWilliams duality is still valid in this more

general setting:

Theorem. Let M C T be a subgroup of the scalar product module
T Tx EB T2 EH EE Ts. Set qt Card(Tt), and let ML be

the subgroup orthogonal to M. Then, we have the formula, where

\M\= CardiM):

1 -ir / 1 — JCi 1 - xs \
— n (1+(«/-!) xJ PmI- 7 —)\M\i i \l+(ç,-l)xi l+(qs-l)xsJ
Note that if some of the subgroups Tx, Ts are mutually isomorphic

(or more generally have the same order), then we can write the decomposition
of T in the form

T= nx T\ ffl n2T2 ffl ffi nrTr

where ntTi stands for the orthogonal sum

niTi Tt ffl Ti ffl ES Tt

of nL copies of Tt.
The weight of an element

u (^1,1 + + ux>ni) + + (ur>x + + ur>nr)

is then defined as

xw(u) _ XV\ xv2 ^ xvr
^

where V/ is the number of non-zero components of uitX + + u^n. in ntTi.
The duality theorem then takes the seemingly more general form

Pm±(XI,

n I—*
Card{M) i=\ \ 1 H- (<^i — l)^Ti \ + (qr-\)xrj
This identity can be viewed as a system of linear equations for the

coefficients of the weight enumerator polynomial PM of any putative
metabolizer M ML. If M exists, this system must be solvable in
non-negative integers.
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Proof of the duality theorem. One of the classical proofs of MacWilliams

duality in a vector space over a finite field goes over with only insignificant
changes. We repeat the argument for the reader's convenience.

Let %:Q/Z->C* be the character given by %(a) e2nia. Set

ß(",f) x(b(u,v)).
We cook up the function f:T->C[xi,...,xs\ given by

/(") - S„<=rßO> y) " xW(u)

and evaluate EW6M/(w) in two different ways, using the following lemma:

Lemma.

Card {M) if v e M1,
0 if v $ ML

We first recall the proof of the lemma.

If ueM±, then ß(w, u) 1 for every u e M, thus £weMß(w,
Card (M) as stated in this case.

If u $ M1-, there is an element u{ e M such that b(ux, v) ^ 0, and then
ßOj, y) 1. We have

S„eMß(Wi,y)ß(W, y) ß(Hi,U) EueMß(W,

This implies the statement of the lemma for u $ ML.

We now proceed to the proof of the duality theorem.
Firstly,

I«*/(") I„eMIUerß(".y) •*W(B} E„er(E„6^(">U>) ^'W
EpeM-L Card(M)• Card(M) PM±(xlt

Secondly,

/(") E„6rß(w> y) • *w(")

L.er, „sSTsß(«l,y,) • • HUs.O.) -x^
n;=1(i0Eriß("/,y)-xr<e)),

where uuj+ + usisthe decomposition of T, ES EB

Using the lemma again, we have

1 + - 1 if 0,

1 - X,- if 0
E ttTlMu„o)-x?w



72 M. KERVAIRE

Thus,

/("> n o + iii-i>x') - n —
»

/ e 5 / e 5'

where 5 C {1, 5} is the set of indices i for which ut 0, and S' C {1, s}
the set of indices i for which wz 0.

Another way of writing f(u) is

/(H) J! (1 -*,)•"<»'> • (1 + (<?;- 1 }X,)1-M,<ai) •

; 1

Plugging this formula into E„sM/("), we get

E„**/(") iiî-.a+ (?/-!)*/)• (1+(g;-i)x,)>>("')

II 1 0 + (<7/ — 1)^/) ' Pm (1
+ (?] - l)x, ' •••' 1 + (qs - l)xs) •

Comparing the two expressions for £M6M/(w), we get the theorem.

5. The deficiency

The main further necessary condition for a root system to be contained in
an even unimodular lattice of the same rank is provided by the notion of
deficiency (Defekt) introduced and studied in [KV].

If R is a root system of rank n, the deficiency of R, denoted d(R),
is the difference n — m, where m is the maximal cardinality of a set

{#!, am} C R of mutually orthogonal roots

(at, aj) 25/7, for all 1 ^ i, j ^ m

We use this notion only if all roots in R have the same scalar square 2.

If R Ri EE R2, then d(R) d{R\) + d(R2). The values of the

deficiency for the irreducible root systems are

d(A,)[I]

(0
for I even,

1 for / odd

d(E6)2, d(E7)Eg) 0


	4. Weight enumerators of finite scalar product modules

