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4. Periodic homeomorphisms of the sphere

The main result of this section is

Theorem 4.1. Let f:S2-^S2 be a periodic homeomorphism. Then

there exists r e 0{3) and a homeomorphism h:S2^S2 such that

f= hrh-K

Proof of 4.1. We will divide the proof of Theorem 4.1 into two cases

according to whether or not / has at least one fixed point.
Suppose first that / has a fixed point. Using 2.5, we deduce the existence

of an invariant simple closed curve c which divides S2 into two invariant
discs D i and D2.

If / is orientation preserving and f 4= Id, then / has no fixed point on c

(cf. 3.2). Therefore, by Brouwer's fixed point theorem we know then that /
has at least two fixed points; after a conjugacy, we can suppose that / fixes

the two poles TV and S of S2. Using the results of last section, we are able to
find n arcs joining N and S such that their union is an invariant set under /.
As in Section 3, we can then construct a conjugacy between / and a rotation
by angle 2kn/n around the South-North axis.

If / is orientation-reversing, then / has two fixed points on c. In each of
the invariant disc Dl and D2, the fixed point set of / consists of a simple arc
which joins the two fixed points of / on c. The union of these two arcs is a

simple closed curve which coincides with the fixed point set of / on S2. It is

then easy to construct a conjugacy between / and the reflection about the

equator.
Let now suppose that / has no fixed point on S2. Up to conjugacy, we

can assume that the second iterate of /, f2 is a periodic rotation around the
North-South axis. In particular the points N and S are exchanged by /.
For t (- 1, 1), let Ct be the circle obtained by cutting the sphere by the
plane z t, Dt the disc bordered by Ct on S2 which contains N and:

/0 inf{T e - 1, 1) ; Dt n f(Dt) 0}

We write D Dto and C CtQ for convenience. Then D meets f(D) on its
boundary and only on its boundary (see Figure 4). Let P0 e C n /(C) and
Pi,P2, Pn-i, the orbit of P0 under /. The points P0,P2,...iPn and
Pl5JP3, ...,Pn_! are distinct because f2 is a rotation of period n/2.

Suppose that there exists / e {1,3,..., n - 1} such that P0 and Pt /''(P0)
coincide. Then P0, S and N are fixed by f2i so f2i Id. Therefore 2i n.
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Let bo be the arc of great circle that joins N to P0 in D and bn/2 its image
under fn/2. Then b Z?0 u bn/2 is a simple arc joining TV and S and not
meeting its first(«/2) - 1 iterates under / away from N and S. These arcs
divide the sphere into n/2 sectors and we can build a conjugacy between /
and the composition of a rotation of period n/2 around the North-South axis

with a reflexion about the equator.
Suppose now that the points P0l Pj, j are distinct. Let b0 an arc

of great circle joining N and PQ in D and b'Q an arc joining S to PQ in /(D)
disjoint from /(Z?0) and from its first n — 1 iterates (which is possible
since f2 is a rotation). The union of these two arcs is again a simple arc

joining N and S which does not meet its first n — 1 iterates under / away
from N and S. The union of this arc and its iterates divides the sphere S2

into n disjoint sectors. In that case, / is topologically equivalent to the

composition of a rotation of period n around the North-South axis with a

reflexion about the equator.

Corollary 4.2. Let /:R2->R2 be a periodic homeomorphism.
Then f is topologically conjugate to a finite order rotation around the origin
or to the reflexion about the x-axis.

Proof of 4.2. We can extend / to a homeomorphism of the Sphere S2

by identifying the plane R2 with the complement of the North pole using the

stereographic projection. Looking at the proof of 4.1, / is either equivalent
to a rotation around the North-South pole or to a reflexion about a great circle
which we can assume to pass through the north pole N. It is not difficult to

N

S

Figure 4
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show that the conjugacy can be chosen to fix also the North pole N. This

equivalence induces, therefore, a topological equivalence between / and a

rotation or a reflexion about the x-axis.

Remark. The investigation of periodic homeomorphisms on surfaces of

positive genus has been studied extensively. We cannot give here a complete

bibliography on the subject. We would just like to cite original works of

Kerékjârto [4] and Nielsen [13] which lead to the conclusion that a periodic

homeomorphism of a Riemannian surface of positive genus is conjugate to a

conformai isometry.
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