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92 M. KERVAIRE
7. COMMENTS

In this section we give some details on the construction and on the proof
of uniqueness of the even unimodular lattices of rank 32 with root systems
8A, 8A;, 10A, 2Eq, 13A, H E¢, and 8A,.

The first example, 8A; 8A;, involves a rather heavy analysis,
requiring some overview of the self-orthogonal codes in 7' (8 A;) which is also
necessary in order to treat the other root systems containing 8A;.

The last three examples are hopefully more attractive.

(1 8A; HH 8A3

Here we have deficiency 8 and any metabolizer M must be of order 212,

If M is an admissible metabolizer and P = P(x, y) its weight enumerator
polynomial, the duality theorem of Section 4 provides an underdetermined
linear system for the coefficients of P. The coefficients ¢, a, B, vy of x6y8,
x8y6, x%y7 and x®y?® respectively can be taken as parameters and all other
coefficients are then linear expressions in c, a, [, v.

Let the polynomial P be

P,y) =1+ ciy*+cp° + e300 + ey’ + sy + ...,

where the dots stand for the terms which are divisible by x.
Then, the coefficients ¢y, ..., ¢s satisfy the equations

ci=-37+ o+ 2B + 3y,
c, = 68 —20 —3p — 4y,
C3 = a,

4 = B,

Cs = Y.

This shows that 1 + ¢, + ¢; + ¢3 + ¢4 + ¢s = 32. If M C T(8A, H 8A3)
is an admissible metabolizer, then 1 + c¢;y* + ¢, ¥° + ¢c3¥6 + ¢c4p7 + cs5)8

can be interpreted as the weight enumerator of N = M n T(8A;).
Thus | N| = 32.

STEP 1. We will first show that N is uniquely determined up to a (norm
preserving) automorphism of 7T(8Aj).
Let N = Nn 2T(8A3). Consider the exact sequence

0N >NS>N'"-0,
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where 7 is the restriction to N of the projection T(8A;) = T(8A3)/2T(8A3),
and N” = n(N) C T(8A3)/2T(8Aj3).

The map v : N = N’ given by y(x) = 2y, where n(y) = xis well defined,
linear and injective. Hence, | N” | <|N’| and since |N|=|N"|-|N"|, it
follows that there are 2 cases to be examined:

(1) | N’
) | N’

=16 and |N”
= 8 and |N”

=2,
=4,

In case (1), there is just one possibility for N’, namely

N =<(,2,2,2,0,0,0,0), 2,2,0,0,2,2,0,0),
2,2,0,0,0,0,2,2), (2,0,2,0,2,0,2,0)>

and there are 2 corresponding possibilities for N, depending on whether
VN =<2,2,2,2,2,2,2,2)> or y(N')=<(2,2,2,2,0,0,0,0) >.
Note that there is a single orbit of vectors of weight 4 under the group of
permutations of the 8 coordinates in 7(8A3) preserving N’.

The 2 cases are specified by N = N, or N,, where

No=<(1,1,1,1,1,1,1,1), (2,2,2,2,0,0,0,0),
(2’ 2’ O’ O, 2’ 2’ O, O)’ (25 O, 25 O’ 2’ O’ 2’ O) >’

and

NZ = <(1913 1,1,2, 0’ 03 O)a (2: 29 03 0325 29 09 O)s
(2, 29 O, 09 O, 05 29 2)3 (25 09 23 09 2; O, 2a 0)>

For N;, the weight polynomial is
Pi(0,y) =1+ 14y* + 17y8 .
For N,, the weight polynomial is
Py(0,y) =1 + 14y* + 8y5 + 8y7 + y8 .

However, in the second case, the polynomial coefficients of P,(0, y)
would imply

a=0 pP=8, vyv=1

and thus ¢, = — 18 for the coefficient of y* in P(x, y). This case is therefore
impossible and we retain only the possibility N = N; and

Py(0,y) =1+ 14y* + 17y8.

As we shall see, it will actually turn out that the above subgroup N, is the
only acceptable choice for N = M N T(8Aj).
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In case (2), i.e. |[N'|=8, | N”|=4, the possibilities for the weight
polynomial of N’ are
2.1 Py =14+ 5y4+ 2y% or
(2.2) Py =1+ 6y4+ y8, or
(2.3) Py =1+ 7y*.

Moreover, in each case, N’ is unique up to permutation of coordinates:

2.1) N'=<(2,2,2,2,2,2,0,0), (0,0,2,2,2,2,2,2), (2,0,2,0,2,0,2,0) >,
(2.2) N'=<(2,2,2,2,0,0,0,0), (0,0,0,0,2,2,2,2), (2,2,0,0,2,2,0,0) >,
2.3) N'=<(2,2,2,2,0,0,0,0), (2,2,0,0,2,2,0,0), (2,0,2,0,2,0,2,0) >.

In these cases, the image of y: N’ = N’ is a plane i.e. |y(N")|= 4
and since the admissible vectors of weight 6 in 7(8 A3) are not divisible by 2
in the set of admissible vectors, it follows that y (N’') contains only vectors
of weight 0, 4 or 8.

In case (2.1), there is just one orbit of planes with all non-zero vectors of
weight 4 under the action of the group of permutation of coordinates pre-
serving N’, namely the orbit of <(2,2,0,0,0,0,2,2), (2,2,0,2,0,2,0,2,0) >.
However, it is easy to see that none of the admissible vectors v € T(8Aj3)
such that 2v = (2,0, 2,0, 2,0, 2,0), is compatible with N’. Typically, if
v=(1,2,1,0,1,0,1,0), thenv + (2,2,2,2,2,2,0,0) = (3,0,3,2,3,2,1,0)
which has norm 5 and therefore is not admissible. Thus, in fact, case (2.1)
cannot occur.

In case (2.2), where

N =<(2,2,2,2,2,2,2,2), (2,2,2,2,0,0,0,0), (2,2,0,0,2,2,0,0) >

there are 2 orbits of planes in N” under the action of the automorphism group
of N':
— The orbit [uy, us], [uy,us]l, [uy,u + us] consisting of the planes
containing u; = (2, 2, 2, 2, 2, 2, 2, 2) which is fixed by every automorphism.
— The orbit consisting of the planes [u,, us], [u; + Uy, usl, [uy, u; + us],
[u, + u,, u; + uz] not containing u, .

Here, we have set u, = (2,2,2,2,0,0,0,0) and u; = (2,2,0,0,2,2,0,0).

Thus, we have two possible choices for the plane y(IN'’), namely [u,, u,]
or [u,, us].

If w(N"') = [u,, u,] is chosen, an enumeration of the possibilities shows
that we can then assume N to be of the form

N=<(@U,1,1,1,1,1,1,1), (1,1,1,3,0,2,0,0), (2,2,0,0,2,2,0, 0) >.
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The resulting weight polynomial for N, namely
Py=1+6y*+ 8y>+ 8y7 + 9y?
determines the coefficients a, B, vy as
a=0, p=8, =9,
and then, throwing in the monomials containing x, P,, becomes

Py(x,y) =1+ 6y*+ 8y> + 8y7 + 9y8 + 24x2y3 + cx?y*
+ (400 — 4c)x2yS + 6¢cx2yS + (472 — 4c)x2y7 + cx?y?®
+ 32x%y2 + (344 — 2¢0)x*y* + (112 + 8¢c)x*y3
+ (1232 — 12¢)x*y® + (112 + 8¢c)x*y7 + (408 + 2¢c)x*y?®
+ 24x%y3 + cx8y* + 8x8yS + 8x8y7 + 9x8y8,

where ¢ still has to be determined.

In order to calculate ¢, we examine the possible vectors of weight x2y’
in M. It is easy to see, considering the norm, that the only candidates must
have the form (1,1,0,0,0,0,0,0;2,2,2,2,2,2,2,0) up to permutation of
coordinates. But it is immediate that any such vector fails to be compatible
with the vector (0,0,0,0,0,0,0,0;2,2,2,2,2,2,2,2) € N C M because
their sum would have norm 2. Therefore, the coefficient of x2y’7 in Py,
must be 0.

This forces ¢ = 118. Unfortunately, the coefficient of x2y3 then becomes
negative. Hence, there is no admissible metabolizer with this choice of
N=Mn T@BA).

The other choice (still under case (2.2)) is w(N"') = [u,, u;]. Here, an

examination of the possible choices for N leads to either
N = < (19 15 15 13 23 Os 09 O)s (la la 2) 23 la ls 09 2)5 (Oa 09 Os Oa 23 2> 23 2) >

b

or
N=<(,1,11,2,0,0,0), (1,3,0,2,1,1,0,0), (0,0,0,0,2,2,2,2) > .
In both cases, the weight polynomial for N is
Py=1+6y*4+ 12y + 12y7 + y8

and this determines the parameters o = 0, B = 12, y = 1, contradicting the
equation ¢; = — 37 + o + 2B + 3y.
There remains the case (2.3), where

N'=<(2,2,2,2,0,0,0,0), (2,2,0,0,2,2,0, 0), 2,0,2,0,2,0,2,0)> .
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In this case, it is easy to see that there is just one orbit of planes in N’
under the action of the group of coordinate permutations preserving N'.
Hence, we may assume y(N”') = [u;, u,], where u; = (2,2,2,2,0,0,0,0)
and u, = (2,2,0,0,2,2,0,0) and there are 4 choices for N:

They are < N;,u;>, i=1,2,3,4, where u; =(2,0,2,0,2,0,2,0) and

N =<(1,1,1,1,2,0,0,0), (1,1,0,0,1,1,2,0) >,
N,=<(1,1,1,1,2,0,0,0), (1,1,0,0,1, 1,0, 2) >,
Ny =<(1,1,1,1,0,0,0,2), (1,1,2,0,1, 1,0,0) >,
N,=<(1,1,1,1,0,0,0,2), (1,1,2,0,1,1,2,2) >.

The resulting polynomials Py are 1 + 7y* + 18y° + 67 in the first case,
and 1 + 7y* + 10y3 + 14y7 in the last 3 cases.

In both instances, the values of the parameters a, B,y contradict the
equation for c;.

Summarizing this first phase of the analysis, we necessarily have

N = <(1’ 19 1: 13 13 15 la 1)5 (27 2> 2; 29 0) 09 Oa 0)9
2,2,0,0,2,2,0,0), (2,0,2,0,2,0,2,0) >,

and the vanishing of the coefficient of x2y7 (because any vector of weight
x?y7 is incompatible with (0,0,0,0,0,0,0,0;2,2,2,2,2,2,2,2) € N)
forces the weight polynomial to be as announced:

P(x,y) =1+ x84+ 56x%y? + 14y* + 112x%2y* + 112x%y* + 112x%p*
+ 14x8y4 + 896x%y> + 672x2y°® + 56x4y® + 672x6y6
+ 896x*y7 + 17y8 + 112x2y% + 224x%y® + 112x°y8 + 17x8y8.

Thus the weight enumerator of any putative admissible metabolizer is
uniquely determined after all, and more importantly N = M n T(8A;) is
uniquely determined as

N=<({,1,1,1,1,1,1,1), 2,2,2,2,0,0,0,0),
2,2,0,0,2,2,0,0), (2,0,2,0,2,0,2,0)>.

STep 2. Now, since |M|= 2! and | N|= 25 the projection of any
metabolizer M into T(8A;) must be a 7-dimensional subspace. Since the
polynomial P, contains only monomials with x to an even power, the
projection of M into T(8A;) consists exactly of the vectors of even weight.
Let e; € T(8A,) = F} be the vectors with coordinates i and i + 1 equal to 1
and all others 0(i=1,...,7). If v e T(8A3), we use the (hopefully) self-
explanatory notation e; + v € T(8A,) T(8A;). Obviously, M admits a
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system of generators consisting of vectors of the form e, + v;,, k=1, ...,7
together with N.

There is a list of 28 classes v + N modulo N of vectors v such that e; + v
is compatible with N, i.e. such that the subgroup of T(8A;) T(8A53)
generated by e; + v and N consists entirely of admissible vectors.

Each class has a representative with all non-zero coordinates equal to 1
or 3 and first non-zero coordinate equal to 1. The list reads as follows:

vo =(0,0,0,0,1,1,1,1), v, =(0,0,0,0,1,1,3,3),
v; =(0,0,1,1,1,1,0,0), vs =(0,0,1,1,3,3,0,0),
v, =(0,0,1,1,0,0,1,1), vy =(0,0,1,1,0,0, 3, 3),
U3 0,1,0,1,0,1,0, 1), vio=(0,1,0,1,0,3,0, 3),
vy =(0,1,0,1,1,0,1,0), vi; = (0,1,0,1,3,0,0, 3),
vs =(0,1,1,0,1,0,0, 1), v =(0,1,1,0,3,0,0, 3),
ve =(0,1,1,0,0,1, 1, 0), vi3 = (0,1,1,0,0, 3, 3, 0),
vis = (0,0,0,0,1,3,1,3), v, = (0,0,0,0,1,3,3,1),
vis =(0,0,1,3,1,3,0,0), v, = (0,0,1,3,3,1,0,0),
vig =(0,0,1,3,0,0, 1, 3), V3 = (0,0,1,3,0,0,3, 1),
vi7 =(0,1,0,3,0,1,0, 3), vy = (0,1,0,3,0,3,0, 1),
vig =(0,1,0,3,1,0,3,0), Vs = (0,1,0,3,3,0, 1, 0),
vio =(0,1,3,0,1,0,0, 3), v = (0,1,3,0,3,0,0, 1),
vy =(0,1,3,0,0,1,3,0), V.7 =(0,1,3,0,0, 3,1, 0).

Thus any admissible metabolizer M is generated by N C T(8A;)
C T(8A, H 8A;), where

N=<(1,1,1,1,1,1,1,1), (2,2,2,2,0,0, 0, 0),
2,2,0,0,2,2,0,0), (2,0,2,0,2,0,2,0) >,
and 7 vectors of the form
S = €, +Uk1,52:€2+Uk2,...,S7=€7+Uk7,

where vy, Uk, ..., Uy, are taken from the above list.

A septet (ky, ..., k7) such that the subgroup M = <S8y, .0y 87> + N i
an admissible metabolizer (i.e. consisting only of vectors of integral, even
norm #2) will be called an admissible septet and the corresponding
metabolizer < sy, ...,5;,> + N will be denoted M((iy, ..., i7).

In order to determine the admissible septets it is not necessary to handle

28
the ( ” ) X 7! = 5967561600 cases. One first makes a list Py of pairs (i, )
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such that
M,"j: <eée;+v;,e3 +v;> + N

is an admissible subgroup. The list P, contains 210 unordered pairs (420 if
(i,j) and (j, i) are counted for 2).

The machine can then easily sort out the (unordered) quadruples (i, j, k, /)
such that the 6 pairs (i, ), (i, k), ..., (k, [) belong to Py, a condition which is
necessary for (i,j,k,/) to appear as i =i,,j=1i3,k =1is,/ =1i; in some
admissible septet (i, iy, i3, ..., 7). A list Q of 105 quadruples comes out.

Note that if (i, i, ...,i7) is an admissible septet and (i}, i3, is,i7) 1S
any permutation of (i, i3, s, i7), there is a new triple (i;, i,, i¢) such that
(i1,15,103,...,1¢,17) is again an admissible septet and the corresponding
metabolizers M, M’ yield isomorphic lattices.

For instance, if M = <e; + v;,...,e; + 0;;> + N, then the permu-
tation m = (1 3) (2 4) on the first 8 coordinates (permuting the factors 7(A;))
and leaving T(8Aj;) fixed, carries M to

M = <e;+v;,,e;+e+es+v,,e +V,e+0,,..,e;,+0,>+N
= < e +U,-3,e2+u{2,e3+u,~1,e4+ui4,...,e7+v,-7> + N,

where v = v;, + v;, + U;;. Then, 0{2 must be a vector Uiy of the above basic
list (up to addition of a vector of N). Therefore, (i3, i5, i1, 14, Is,is,17) 1S an
admissible septet. Thus, any equivalence class of admissible metabolizer can
be represented by a septet (i;, i», i3, i4, I5, Ig, I7) Such that i} < i3 < i5 < I7.

Now, let G be the group of permutations of the last 8 coordinates in
T(8A; HH 8A3) generated by

a=01234, B=B5¢46, y=01072Y, p=(16)3%8

permuting the 8 factors T(A3) in T(8A; H 8A;).

The group G has order 1344 and it operates on the set of classes mod N
of the 28 vectors of the above basic list. It operates therefore also on the
set O of quadruples. The 105 quadruples forming Q are then divided into
3 orbits under this action, represented by the quadruples

qo = (0,7, 14,21) with Ggq, of cardinality 7,
g, = (0,7, 16,23) with Ggq; of cardinality 42,
g, = (5, 10, 20, 25) with Gg, of cardinality 56.

Next, let P; be the set of pairs (i, ) such that

M;;=<e +v,e+ ;> + N
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is an admissible subgroup of T(8A;[H 8A;), i.e. consisting entirely of
vectors v such that the norm n(v) of v is an even integer # 2. The set P,
contains 336 ordered pairs (obviously (i,j) € P, implies (J, i) € Py).
Any admissible septet (i, ...,I;) must be such that (i, 1is,Iis,i7) € Q,
and (ig,ix+,) € Py for k=1,...,6, in addition to (it,i;) € Py for
\k—1]>2.

Given a quadruple g = (i1, i3, i5s, i7) € Q, it is not hard to sort out the
set T, of triples (i,, i4, is) such that (i1, i, ..., i;) satisfies all the conditions
on the pairs (ix, 7). We need to do this in fact only for the above
3 quadruples g, g1, q,, since any admissible septet can be carried by the
action of G to a septet (iy, i, ..., I7) completing q,, g; or g, in the sense that
({15 03,195,07) = qo,q1 OF Q.

It turns out that for each of these 3 quadruples g = (iy, i3, Is, i7), there
are 16 triples in the set 7.

The resulting set of 48 septets can in fact still be reduced using the action
of G. The subgroups of G fixing qq, q; or g, are respectively of order 8, 4
and 1 and we are left with the following septets:

0,1,7,20, 14, 22, 21), 0,1,7,20, 14, 23, 21)
completing qo;

©,1,7,20, 16, 21, 23), 0, 1,7, 20, 16, 22, 23)
0,9,7,20, 16, 21, 23), 0,9,7, 20, 16, 22, 23)

completing g, ;
and with the quadruple g, = (5, 10, 20, 25) there are the 16 triples

©,14,7), . (0, 14, 17), 0, 19, 16), 0, 19, 26),
(13,14,7),  (13,14,17),  (13,19,16), (13,19, 26),
4, 11,7), 4, 11, 17), 4, 8, 16), (4, 8, 26),
23,11,7), (23,11,17), (23,8, 16), (23, 8, 26),

forming the septets (5, 0, 10, 14, 20, 7, 25), etc.
Denote by M (i, iy, 3,14, s, ig, i7) the subgroup
M@, ....i7) = <ey + Vi, ...,e; + v, > + N,
We finish exploiting the operations of the permutation group Sg acting
on T(8A; H 8A3) by permuting the first 8 coordinates.

It is easy to check that 6, = (1 2) € Sg acts on admissible metabolizers of
the form M (i,, i, 15, ...,1i7) by

GIM(il,iZa i3s neny l7) = M(il’ léa i33 sy 17) ’
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where 7 is the uniquely determined element in the basic list such that
Vig = U; + Uiy modulo N.
Similarly,

or M(iy,...,17;) = M(i{, ..., i7),
where i;=1i,forl#+#k — 1, k + 1 and

Vi

i%_ g = Vi, _, + Vi, modulo N, Ui1,<+1 = V;, + Vi, modulo N,

for k=1,2,...,6;
G7M(i1, seey 17) = M(11 g soey i5, lé, 17) ’

where Vis = Vi + Uiy modulo N.

Using ©,,03,05 and o, one first observes that all M(i,, i,, ..., i7)
with the same quadruple ¢ = (i, i, is,i7) are equivalent. Hence, the
equivalence class of any admissible metabolizer is detected by its basic
quadruple which can be g, g; or g,. However, the permutation o4 carries
M@©,1,7,20,14,22,21) to M(O,1,7,20,16,22,21). Similarly, the
permutation w =(74563218) takes M(,0,10,14,20,7,25) to
M, 8,7,27, 14, 16, 21) which is equivalent to M (0, 1, 7, 20, 14, 22, 21).

It is easy to let the machine verify that M (0, 1, 7, 20, 14, 22, 21) actually
is an admissible metabolizer and to pass from it to the filling set displayed in
the table.

Thus, there is a single isomorphism class of 32-dimensional even,
unimodular lattice with root system 8A; H 8Aj;.

) | 10A, H 2E¢

The only weight enumerator polynomial P(x,y) for an admissible
metabolizer in 7T(10A, B 2E4) which is compatible with the duality
theorem 1is

P(x,y) =1+ 60x° + 20x° + 60x*y + 240x7y + 24x'%y + 144x°y?
+ 180x8y2 .

Thus in T(10A,) = F°, the intersection M, = M n T(10A,) contains
exactly 10 pairs {x, — x} of vectors of Hamming weight 9.

Two distinct such pairs {x, —x} and {x’, —x’} cannot have their
vanishing coordinate at the same place. Indeed, suppose that for
some i, we have x/=x;,=0. Set J={je{l,..., 10}|xjf= x; # 0} and
K={ke{l,.., 10}|x, = —x;,#0}. Then |J|+|K|=9, and w(x + x)
=|J|, w(x—x")=]|K|. The polynomial says that |J|# 3, |K]|=#3.
Hence the only possibility is { | J|, |[K|} = {0,9} and x" = + x.
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By numbering the 10 pairs {x®, —x®}, ..., {x19, —xU9} correctly,
we can thus assume that the i-th coordinate of x® is 0. Let us choose
{0, — 1,1} as integer representatives of the residue classes mod 3. The
vectors x(, ..., x19 can be thought of as the (reduction mod 3 of the)
rows of a 10 x 10 integral matrix C such that

ci.i=0, ¢ ;==xlfori#/.

I claim that C is a conference matrix, i.e. C*.C = C.C" = 91, where [
is the 10 X 10 unit matrix.

For i#j, let S={se{l,...,,10}|x” =xY}. Clearly i,j ¢ S. Since
w(x® + x)y =2 +|8§|, and wx® — xD) =2+ (8 —|S|), and the only
possible values are 6 or 9, we conclude that | S l = 4. It follows that the scalar
product of two distinct rows of C is zero.

Up to conjugation by a signed permutation matrix there is exactly one
10 x 10 conference matrix. Thus M, is uniquely determined.

It is easy to verify that there is then no choice left for the last two filling
vectors (up to isomorphism of the lattices).

3) 13A; B Eg

Here, not only is the weight polynomial determined by the duality theorem,
but if we single out one of the factors T(A,), the polynomial P(x;, x,,¥)
corresponding to the decomposition 12A, H A, H E¢ is still uniquely
determined and reads

P(xy,x3,y) =1 + 84x% + 152x) + 6x1°
+ (sum of monomials divisible by x, or y) .

This means that if M is an admissible metabolizer, then for any choice of
coordinate (among the first 13) there must be exactly 3 pairs of vectors of
weight 12 having precisely this coordinate zero.

[t is then straightforward to see that we may assume these 3 pairs of vectors
to be +s5,, £5,, =53, where

51:(1,1,1,1,1, 17191s131313190;0)9
52:(13 131 191313292s232:292,0;0)9
sy=1(1,1,1,2,2,2,1,1,1,2,2,2,0;0).

2,
[t now turns out that the vectors with vanishing 12-th coordinate in M can
then be assumed to be

s¢=1(1,2,1,2,1,2,2,1,2,2,2,0,1; 0)

ss=1(1,1,2,2,2,1,2,2,1,2,2,0,1; 0)
S —52—53+S4+S5:(1,2,2,2,1,1,2,1,1,1,1,0,2;0)
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and their opposites, where s, s,, 53, 54, S5 are linearly independent and form
a basis of an admissible S-dimensional subspace in T(13A,).

Indeed, among the first 11 coordinates of these 6 vectors, there must be
either 4 ones and 7 twos or 4 twos and 7 ones. Since we can change the sign
of the last (13-th coordinate) at will, we may assume that s, has the form
(14,27,0, 1), meaning 4 ones and 7 twos among the first 11 coordinates.

11
From the list of ( . ) = 330 such vectors, a sublist of 27 vectors only

are compatible with s,,5,,5;. Moreover, these represent a single class
modulo permutations of the coordinate indices {1, 2, 3}, {4, 5, 6}, {7,8,9}
which preserve the subspace generated by s, s,, s;. Having chosen

Sq = (1929 192"1’2,2, 152323290’1;0) ’

we must select among the remaining 26 vectors compatible with s;,s,, 83
together with the 27 vectors of the form (14,27,0,2;0), those which are
compatible with s;,s,, 53, s4. Of these, only 8 candidate vectors come out.
They form a single class modulo the group generated by the permutations (1 3),
(4 6), (7 9). Hence, the choice of

ss=1(1,1,2,2,2,1,2,2,1,2,2,0,1; 0)

is also essentially unique.

Observe that M n T(13A,) has to be 6-dimensional because the sum of
the coefficients of the monomials not containing y in the weight poly-
nomial of M is 729 = 3°. The search for a 6-th and last basis vector for
M n T(13A,) shows that the choice is limited to

s¢ =(1,1,2,1,2,2,2,1,2,2,0,2,1;0)

and its 6 transforms under the group of permutations of coordinates generated
by the permutations (2 3) (5§ 6) (8 9)and (1 23) (4 56) (7 89) which preserves
the subspace generated by sy, 52, 83,4, Ss.

Thus, there is essentially only one choice for M n T(13A,). The
metabolizer M itself is then easily seen to be uniquely determined.

The transformation

P(Xo, .-y X12) = (— X2, = X11, X7, — X0, X5, = X1,X5,X4, — X, — X105 X3, X6, X12)

carries M, as just described to the cyclic code of the table in Section 6.
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) 8A4

Let e, =(1,0,0,0), e; =(0,1,0,0), e; =(0,0,1,0), es = (0,0,0,1).
Any metabolizer must have a basis of the form {e; + v;,i =1, 2, 3,4} for
some vectors v; € Fg of weight 3 or 4.

Hence, we may assume that the first basis vector is either s; = e
+({1,1,1,)ort,=¢; + (0, 1,2, 2).

If we start with s,, there are essentially only 2 ways of completing s, to
an admissible metabolizer with 3 vectors forming with s; the rows of the
matrix S exhibited in the table and the matrix S’:

1 0001 111
, 01 0010 2 2
=1o00101 20 2

00011220

If we start with #; there is essentially only one way to complete to a
metabolizer:

100001 22
o1 0010 3 2
=10 0103 3 0 1

00012310

All these metabolizers are equivalent. The permutation p defined by
P(Xo, ..., X7) = (X4, X1, X2, — X3, X7, X5, X, Xo)

sends S’ to S and ¢ defined by

G(X(), ...,X7) = (x59x19x49x03x7ax2ax33x6)

sends S to S.

Thus the lattice described by the filling set S is the only one with the root
system 8Ay.
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