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A pyramidal cell in R”~! corresponds to a convex cell in H” together with
an ideal point p in its boundary, such that any two faces with closures
containing p meet inside H”. A non-pyramidal cell corresponds to a convex
cell in H” and an ideal point p contained in the closures of two non-
intersecting faces of the convex cell. The hypothesis needed in order to apply
Theorem 10.1, that there are only a finite number of orbits of non-pyramidal
cells, comes from the fact that there are only a finite number of pairs of faces
and therefore only a finite number of pairs of non-intersecting faces which
meet at infinity. )

It follows that the inverse image in X of any point of Q is finite.
Moreover the number of points in the inverse image is bounded by_a fixed
integer N. Two points x, y € X are mapped to the same point of Q if and
only if there is a sequence (xq,...,X,) such that x = x,, ¥y = x, and
Xiv1 = AWF;) (x;), where x; € F;and x;.; € R(F;). (Here (R, A) is the glueing
data.) We may take n < N. It follows easily from compactness and_the
finiteness of the situation that the map X — Q is closed. Therefore Q is
hausdorff. [
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