All volumes

L'Enseignement Mathématique

L'Enseignement Mathématique Band 40 (1994)
Heading Page
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Titelseiten
Titelseiten
Register
Titelseiten
Inhaltsverzeichnis 1
Titelseiten 2
Artikel: THE PROUHET-TARRY-ESCOTT PROBLEM REVISITED 3
Kurzfassung 3
Kapitel: 1. Introduction 3
Kapitel: 2. Elementary Properties 5
Kapitel: 3. Ideal and Symmetric Ideal Solutions 7
Kapitel: 4. Related Problems 14
Chapter: 5. Perfect Solutions of Prime Size 21
Chapter: 6. Open Problems 26
Bibliography 26
Article: LE CODAGE DU FLOT GÉODÉSIQUE SUR LA SURFACE MODULAIRE 29
Abstract 29
Abstract 29
Chapter: 0. Introduction 29
Chapter: 1. La transformation des fractions continues 31
Chapter: 2. Le flot géodésique sur la surface modulaire 34
Chapter: 3. Une autre présentation du flot géodésique 36
Chapter: 4. Un système de coordonnées sur l'espace des réseaux 37
Chapter: 5. Le codage du flot géodésique 39
Chapter: 6. La constante de Lévy et le volume du fibré tangent à la surface modulaire 43
Chapter: 7. Un codage du flot géodésique sur un alphabet fini 45
Bibliography 47
Article: PROOF OF MARGULIS' THEOREM ON VALUES OF QUADRATIC FORMS, INDEPENDENT OF THE AXIOM OF CHOICE 49
Chapter: 1. Preliminaries 50
Chapter: 2. Proof of the Theorem 53
Appendix: Appendix: Recurrent points 56
Bibliography 57
Article: UNIMODULAR LATTICES WITH A COMPLETE ROOT SYSTEM 59
Chapter: 1. Introduction 59
Chapter: 2. Relationship with codes 60
Chapter: 3. The Witt class associated with a root system 63
Chapter: 4. Weight enumerators of finite scalar product modules 69
Chapter: 5. The deficiency 72
Chapter: 6. The tables 73
Chapter: 7. COMMENTS 92
Bibliography 103
Article: NOTE ON TABLE I OF "BARKER SEQUENCES AND DIFFERENCE SETS" 105
Bibliography 107
Article: CORRIGENDUM TO "BARKER SEQUENCES AND DIFFERENCE SETS" 109
Bibliography 111
Article: AN EXPOSITION OF POINCARÉ'S POLYHEDRON THEOREM 113
Chapter: 1. Introduction 113
Chapter: 2. Convex polyhedra 116
Chapter: 3. Conditions for Poincaré's Theorem 125
Chapter: 4. Developing maps 136
Chapter: 5. Defining a metric 144
Chapter: 6. Completeness 148
Chapter: 7. Algorithmic aspects 156
Chapter: 8. SPECIAL CASES 161
Chapter: 9. Literature review 164
Appendix: 10. Appendix 167
Bibliography 169
Article: ENUMERATIVE COMBINATORICS AND CODING THEORY 171
Abstract 171
Chapter: 1. REDUCTION TO ONE SPECIAL EQUATION 172
Chapter: 2. Coding theory 173
Chapter: 3. The code associated with f 174
Chapter: 4. ON THE LEAST VALUE OF f 178
Chapter: 5. The number of Hadamard matrices of order n 179
Chapter: 6. The number of proper 4-colorings of a graph 182
Bibliography 185
Article: CYCLIC DIFFERENCE SETS WITH PARAMETERS (511, 255, 127) 187
Bibliography 192
Rubric: BULLETIN BIBLIOGRAPHIQUE 1
Back matter
Back matter
Back matter
Back matter
Issue 3-4: L'ENSEIGNEMENT MATHÉMATIQUE
Front matter
Table of Contents
Front matter
Article: THE THEOREM OF KERÉKJÁRTÓ ON PERIODIC HOMEOMORPHISMS OF THE DISC AND THE SPHERE 193
Abstract 193
Chapter: 1. Introduction 193
Chapter: 2. Background and Definitions 194
Chapter: 3. Periodic Homeomorphisms of the Disc 196
Chapter: 4. Periodic homeomorphisms of the sphere 201
Bibliography 203
Article: UNITS OF CLASSICAL ORDERS: A SURVEY 205
Abstract 205
Abstract: Contents 205
Chapter: 1. Introduction 205
Chapter: 2. Elementary Properties 208
Chapter: 3. Finite generation: classical reduction theory 209
Chapter: 4. PRESENTATIONS I: THE THEORY OF TRANSFORMATION GROUPS 222
Chapter: 5. PRESENTATIONS II: INDEFINITE QUATERNIONS OVER THE RATIONALS 227
Chapter: 6. PRESENTATIONS III: $K_2$ 229
Chapter: 7. Cohomology 231
Chapter: 8. Congruence subgroups and normal subgroups 236
Chapter: 9. The Bass unit theorem 238
Chapter: 10. What is a unit theorem? 242
Bibliography 246
Article: AN ERGODIC ADDING MACHINE ON THE CANTOR SET 249
Abstract 249
Chapter: I. Introduction 249
Chapter: II. Ergodic measures for F 255
Chapter: ACKNOWLEDGMENTS 266
Bibliography 266
Article: ON HAUSDORFF-GROMOV CONVERGENCE AND A THEOREM OF PAULIN 267
Abstract 267
Chapter: Introduction 267
Chapter: Section 1 : Hausdorff-Gromov Convergence 269
Chapter: Section 2: The Proof of Paulin's Theorem 277
Chapter: Section 3: Convex Hulls 285
Chapter: Section 4: Concluding remarks 286
Bibliography 288
Article: LES RÉSEAUX DANS LES GROUPES SEMI-SIMPLES NE SONT PAS INTÉRIEUREMENT MOYENNABLES 291
Abstract 291
Abstract 291
Chapter: 1. Introduction 291
Chapter: 2. Rappels et preuve de la proposition 4 295
Chapter: 3. Lemmes préliminaires 299
Chapter: 4. Preuve des résultats de l'introduction 304
Bibliography 310
Article: QUOTIENT OF THE AFFINE HECKE ALGEBRA IN THE BRAUER ALGEBRA 313
Abstract 313
Chapter: 0. Introduction 313
Chapter: 1. COUNTING DIAGRAMS 316
Chapter: 2. The abstract algebras 324
Chapter: 3. The Brauer representation 329
Chapter: 4. The cylindrical trace 331
Appendix: Appendix 1 340
Appendix: Appendix 2: Restriction to the Temperley-Lieb algebra 342
Appendix: Appendix 3: The elements of A(4, 4). 343
Bibliography 344
Rubric: COMMISSION INTERNATIONALE DE L'ENSEIGNEMENT MATHÉMATIQUE (THE INTERNATIONAL COMMISSION ON MATHEMATICAL INSTRUCTION) 345
Chapter: PERSPECTIVES ON THE TEACHING OF GEOMETRY FOR THE 21st CENTURY DISCUSSION DOCUMENT FOR AN ICMI STUDY 345
Chapter: 1. WHY A STUDY ON GEOMETRY? 345
Chapter: 2. Aspects of geometry 346
Chapter: 3. IS THERE A CRISIS IN THE TEACHING OF GEOMETRY? 348
Chapter: 4. Geometry as reflected in education 349
Chapter: 5. New technology and teaching aids for geometry 350
Chapter: 6. KEY ISSUES AND CHALLENGES FOR THE FUTURE 351
Chapter: 7. Call for papers 356
Rubric: BULLETIN BIBLIOGRAPHIQUE 31
Back matter
Back matter