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UNITS OF CLASSICAL ORDERS: A SURVEY

by Ernst KLEINERT

ABSTRACT: This survey describes the principal methods and results in the
theory of units of orders.

CONTENTS
1. INtroduCtION ....cvvvvunueessenneessasunesosnuennnnsnnsenss 205
2. Elementary properties . ... ......ovuuiuininrenenneneneenennns 208
3. Finite generation: classical reduction theory ................. 209
4. Presentations I: the theory of transformation groups ......... 222
5. Presentations II: indefinite quaternions over the rationals ..... 227
6. Presentations III: Ky, ..o 229
7. COROMOLOZY . o vt i i e e e e e 231
8. Congruence subgroups and normal subgroups ............... 236
9. The Bass unit theorem . ..........outiittiinnennnenn 238
10. What is a unit theorem? ...... ... ... i 242

1. INTRODUCTION

We consider units of orders in semisimple algebras A of finite dimension
over Q. The ‘“algebraic background” for this (a formulation due to
Zassenhaus) is the classical theory of algebras, where we find as basic results
the Wedderburn decomposition plus the exact sequence

1-BK)~ [ BKy) > Q/Z~0,
p
K denoting a number field and B(K) the Brauer group. (For notation and

commentary, see [R], §32). This sequence, which has been called the ‘“Main
Theorem in the theory of algebras” ([N], p. 244), in fact contains a full
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classification of the algebras under consideration and is surely one of the most
substantial abbreviations of pure mathematics, incorporating the Hasse norm
theorem (exactness on the left for cyclic algebras) as well as the reciprocity law
for the norm residue symbol (exactness in the middle) and, implicitly, Hasse’s
classification of local skew fields (exactness on the right). By an order A C A
we mean a subring containing 1, consisting of Z-integral elements and such
that QA = A. Natural examples of orders are the integral domains 7k of
number fields K, full matrix rings over %, crossed product orders
(7L/ 7k, f), where L/K is Galois with group G and f € H*(G, 7)) a factor
system with values in #;, and, as a non-simple example, the integral group
ring ZG, G finite. The arithmetic of such A has two natural parts, namely
the theories of modules and of units. The module theory, known as integral
representation theory, has been developed systematically and has grown out
powerful techniques; lattices over orders enter in various class groups which
in turn figure in canonical sequences, or live in almost split sequences which
can be arranged to Auslander-Reiten quivers. For maximal orders, the lattice
theory can be reduced to a ray class group in the central field, by theorems
of Fichler and Swan, and is thus passed to algebraic number theory. In the
general case, however, we are at least able to tell why the subject is hopeless:
most orders have wildly infinite representation type, which means that their

lattices cannot be classified by presently existing methods.
The unit theory is not in such a state, and we still have to subscribe to

Eichler’s statement in the introduction to his 1935 paper [E1]: “Allein die
Einheitentheorie ist noch in keiner Weise abgerundet.” There are still very few
general results which substantially add to the basic information that unit
groups of orders are finitely presentable. This can, of course, not be ascribed
to a lack of interest. The point is that classically the interest in integral matrix
groups has been concentrated on reduction theory, quotient manifolds and
automorphic forms rather than on ‘“the groups themselves.” It seems
characteristic that neither Siegel in his definite paper [S1] (where he “finished
the job”, as Weyl put it) nor Weyl in his paraphrase [W] explicitly mention
the finite generation, let alone the finite presentation which is effectively
proved there; their interest was in finiteness theorems concerning reduction
theory of quadratic forms. These classical lines of research have, as everyone
knows, been pursued further and have led to the vast and deep generalizations
now established in the theory of arithmetic groups, an immense body of
methods and results and a meeting ground for more or less the whole apparatus
of number theory, algebraic geometry, topology and analysis. Yet it looks
strange that for many years no paper seems to have appeared combining the
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words “units” and “orders” in the title. And it is noteworthy in this
connection that most of the results (significant exception: the Bass unit
theorem) generalize to larger classes of arithmetic groups and thereby
ignore the fact that A is the unit group of a ring — surely a strong
condition on a group. For instance, it should be fruitful to study the
natural map ZA* — A from the integral group ring.

The purpose of this survey is to collect the principal methods and theorems
about units of orders as far as they refer ‘“more directly” to the structure of
these groups (I am aware of the fact that this phrase is not well defined).
Scattered and incomplete as the results may be they surely deserve to
be presented in some sort of connection. Let us view Dirichlet’s unit
theorem as a starting point; we will describe three generalizations of it
(Theorems 1, 4, 9) which arise from its topological, cohomological,
and K-theoretical aspects. In the last section, we present some thoughts about
what should be expected from a “General Unit Theorem” which would have
satisfied Eichler — certainly a long range project. The reader will also come
across a number of more concrete problems which can be attacked with
reasonable hope of success.

Any reader will miss something in a survey on a theme which stretches over
more or less the whole area of pure mathematics. (I will be grateful to receive
criticism as well as hints to further results which fit the theme). On the other
side, there will be few to whom I can offer absolutely no news. I readily admit
that there are more competent mathematicians who could have written a survey
on this subject; however, non possunt omnes omnia.

The following notation will be used throughout (unless otherwise
specified): A is a semisimple algebra of finite dimension over Q. If 4 is simple,
we write 4 = M, (D), D the skewfield part, K = Z(A) = Z(D) the center
and R = 7 the ring of integers of K. A C A is a Z-order (equivalently,
R-order) in A,T" = A* the unit group. We exclude from our considerations
S-arithmetical and local cases (the former causing complications, the latter
being wholly different). Also, we do not treat the specific problems and results
for integral group rings which come from the existence of a group base and
require special techniques — the isomorphism problem and the Zassenhaus
conjecture in its various forms, which are a world of their own and for which
I refer to [Ro], and the results due to Hoechsmann, Ritter, Sehgal, and others

concerning generators of subgroups of finite index in (Z2G)*, for which I
refer to Sehgal’s book [Seh].

I would like to thank Jean-Pierre Serre for his comments on an earlier version
of this paper.
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2. ELEMENTARY PROPERTIES

(1) Let N denote the regular norm A* — QX. It is easy to see that
I ={xeA|N2(x)=1}.

If we specify a Z-basis of A, this becomes a polynomial equation in the
coefficients of x with respect to this basis, and the elements of I" correspond
precisely to the integral solutions. This shows that I' is an arithmetic group,
and thereby makes available all the general results on this class of groups.
(A reference ideally suited to the present theme is Serre’s survey article [Se4];
we also mention [Pl].) In fact, a good deal of the present paper will be
concerned with specifying the general results to the case of unit groups.

(2) Let ACA be orders in A with unit groups T,I''. Then
L =T"NnA, and |T":T| is finite.

Proof. For any x € I we have x ~! € Z[x] since x is a zero of a monic
integral polynomial with constant term =+ 1. This proves the first statement.
For the second, assume that, for x, y € I'’, we have

x—y=mz, where m=|A:A|,ze A" .
Then
xy'=14+mzgy-'el'nA=T.
This shows that
IT":T| < |A :mA|= (dimA)™ .

(2) allows us to reduce all questions concerning virtual properties
of I' to arbitrary orders in simple algebras. (A group is said to have a property
virtually if a subgroup of finite index has that property). Finite presen-
tability is such a property: if I'y C T, |I": Ty | finite, has a finite presentation,
then so has, by Reidemeister-Schreier, the intersection of its conjugates,
which is normal; now use the fact that the class of finitely presented groups
is closed under extensions ([J], p. 187, Th. 1).

(3) T is virtually torsion free.

Proof. 1t is easy to see that there is an upper bound, and consequently
a lowest common multiple N for the orders of torsion elements x € 4*; all
such x # 1 satisfy

xN-1 4 xN-2 4+  +x+1=0.
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For n € N let
I'(n) = kernel of (T = (A/nA)>)

the congruence group mod #; this is a normal subgroup of finite index.
Obviously I'(n) is torsion free for n > N. With more effort, one can do much
better: the regular representation injects I'(n) into the congruence group
mod » in GL,,(Z), m = dim 4, and Minkowski has shown that this is torsion
free for n > 2 [Mi].

(4) T contains only finitely many isomorphism classes of finite subgroups.

Proof. 1f Ty < T is torsion free and normal of finite index, then every
finite subgroup of I is isomorphic to a subgroup of I'/T’.

Later, we will show more: I' contains only finitely many conjugacy classes of
finite subgroups.

(5) T is residually finite, that is, for every x € I',x # 1, there is a normal
subgroup T, of finite index such that xé&l.

Of course, almost all I'(#) will do. It follows that I" is hopfian, that is, not
isomorphic to a proper factor group (see [MKS], p. 116).

(6) Finally, let us mention here the following result due to Zassenhaus [Z2]
(although it is not entirely elementary): I" contains a solvable subgroup of finite
index if and only if the Wedderburn components of A are number fields or
definite quaternions over Q.

Sketch of proof: the problem is readily reduced to simple A. The “If” part
is then trivial.

Conversely, if matrices are involved, one knows that I' has infinitely many
subfactor groups of the form SL,(F), where F is a finite field. The same is
therefore true of any subgroup of finite index. In the skew field case, the
argument is more intricate; we refer to [Z2].

3. FINITE GENERATION: CLASSICAL REDUCTION THEORY

The most basic fact about I' is that it is finitely generated; this is even valid
for arbitrary arithmetic groups, as has been proved by A. Borel and
Harish-Chandra in the fundamental paper [BHC]. Here I shall describe the
classical approach, carried out by Siegel [S1], who completed earlier work of
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Minkowski, Humbert, Weyl and Eichler. The leading idea is to make I'
operate on a suitable topological space; if this operation is “good enough”,
then generators can be read off form it, even, as we shall see in the next section,
defining relations. Let us begin with the basic definitions.

Let the group H operate on the topological space 7 as a group of
homeomorphisms. For a non-empty subset F C T define

EF)={heH|FNnFh+g}.

If we think of Fas a fundamental domain, then E(F) consists of those elements
which carry F to a ‘“neighbor”. The following basic observation occurs
in [S1, section 9].

BASIC LEMMA. Assume that

1) FH=T;

(i) FE(F) is a neighborhood of F; and
(iil)) T is connected.

Then E = E(F) generates H.

Proof. Let H, be the subgroup generated by E and {4;} be a set of right
coset representatives of H mod H,. Then the sets X; = FHyh; are disjoint,
open and form a cover of 7. Since T is connected, there can be only
one of them.

Let us illustrate this at once with the most classical case of
H =T = SL,(Z). In accordance with previous terminology, this is half the
unit group. In order to obtain finite generation one has to find 7 and F such
that F is not too small (otherwise (i) or (ii) might fail) and not too large
(otherwise E might be infinite).

A plausible condition for E being finite is that H operates discontinuously,
that is, no H-orbit has a cluster point. (If x is a cluster point of fH,
write x = f'h, f' € F; if there is a neighborhood f'e U C F, then Uh
contains infinitely many fh; and k;h~! € E). This rules out the most near-at-
hand choice of 7, the natural space R”. (Convince yourself for n = 2, that
" does not operate discontinuously on R?!) A possible choice, however, is
T=G=SL,(R), T' operating by right multiplication. I' is a discrete
subgroup of G. For £ > 0, w > 0 define

D, = {diag(a, ...,a,) € G|0 < a; < ta;;}

N, = {(u;) strict upper triangular with | n,;| < w}

and

St,w = SO(”)D[NW C G .
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This is called a ¢‘Siegel domain’’. One now proves two things:
(1) for ¢t > 2/15, w 2% we have S, ,.I = G;
(2) for all #, w the set
{yeT[S,wn S wy# T}
is finite.

Proofs can be found, e.g., in Borel’s book [B2, §1]. It is not difficult to
apply the lemma, and hence T is finitely generated.

Remark on terminology: by a fundamental domain we mean a set
containing a system of orbit representatives and such that H-translates of it
intersect at most on the boundaries. It is equivalent to (i) of the Basic lemma
that F contains a fundamental domain. Property (2) (and its generalizations)
is called ““Siegel’s property” by Borel; (1) and (2) constitute what Borel calls
“ensemble fondamental”. Other authors require other properties or
distinguish between ‘‘fundamental set’ and ““fundamental region”. Note that
a Siegel domain is not a fundamental domain in this sense! See [Te, 4.4] for
Minkowski’s classical fundamental domain of SL,(Z).

Let us briefly indicate (although this goes beyond our theme) how the argument
generalizes to arithmetic groups. SO(n) is a maximal compact subgroup
of G, the set D of diagonal matrices in G is a maximal torus (a torus is a group
isomorphic to a direct product of copies of R *), and the set N of strict upper
triangular matrices is a maximal unipotent subgroup of G. Such groups are
reasonably unique, and one has the Iwasawa decomposition

SO(n) X DX N> G
(0, d, n) - odn ,

which is a diffeomorphism of manifolds. Let D operate by conjugation on the
vector space g consisting of n-by-n matrices of trace zero, the Lie algebra
of G. The character group Hom (D, R ¥) is generated, say, by the first n — 1
coordinate functions and is isomorphic to Z”~!; for a character A define

¢* ={xeg|ldxd!=A(d)x, all de D}

and call A a root if g* # 0. Among the roots one can distinguish simple roots
which can be choosen to be
Ai: diag(d,, ..., d,) = d:d )}

i+1-

Thus,

D, ={d e D|\(d) < t,\ simple, d positive} .



212 E. KLEINERT

N, is simply a ‘“generic” compact subset of N. Now all of these concepts
— maximal compact subgroups, tori, unipotent subgroups, Iwasawa
decomposition, roots and simple roots — generalize to reductive real algebraic
groups G. Hence Siegel domains can be defined completely analogously, and
one can prove the analogues of (1) and (2) for arithmetic subgroups I of G;
this has been done in [BHC]. By elementary property (1), this applies to unit
groups of orders.

Secondly, let us pursue the connection of these concepts with reduction of
quadratic forms. In applying the lemma it is natural to look for a manifold
of least possible dimension which possesses a suitable F. In the case
of I' = SL,(Z), the observation that SO(n) N T' = compact and discrete,
hence finite leads to the expectation that the operation of I" on the coset space
SO(n)\ G still does the job. By linear algebra, the map

{ G — symmetric positive matrices of determinant 1
!

g 7 g'g

is surjective; this implies that the operation of G on these matrices,
(g, x) — g'xg, is transitive. The stabilizer of 1, is SO(n); hence SO(n)\G
identifies with that space, which in turn is identified with the space of positive
definite quadratic forms of determinant 1. If g = kdn is the Iwasawa
decomposition, then from

n(g) = n'dk'kdn = n'd*n

we see that S; , is mapped to the Siegel domain

ﬁz,w = {n'dn|d € D;2, n € N,,}

in the space of forms. Hence (1) translates to Minkowski’s “reduction
theorem” saying that every positive form of determinant 1 is a I'-translate of
an element of S;,; ;,,. It is clear that E(S;> ,) is still finite.

Hence we can (in principle) obtain a finite set of generators from the
I'-operation on a space of dimension

n(n—l)_n(n+1)_1
2 2

n2—1-—

But now the attentive reader will object that this is somewhat like putting
the cart before the horse because reduction theory doubtless has an interest
in its own right whereas it is elementary to write down a finite set of generators
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for SL,(Z). In fact, such a set can be given for SL,(R) if R is euclidean and
finite over Z (see [Ne], p. 107) and for SL,(Z) one can do with

1 1 ( O(1)1 \

and . ;

1

\ (=Dt 0 )
as Hua and Reiner have shown [HR]. Hurwitz [H] treated SL,(R), where R
is the integral domain of a number field, and remarked that the procedure can
be generalized to SL,(R), giving a sketch for n = 3. The most general form
of the argument was given by O’Meara [O’M]. The finite generation of
SL,(R) can be derived directly from the finiteness conditions incorporated in
the notion of number field, and there is no need to employ the geometry. This
should also hold for the case in which skew fields are involved although a
purely algebraic treatment of this case has — as far as I know — not
been given.

The reply is that finite generation as such is a very weak information and
gives hardly any insight into the structure of our unit groups. It is the raison
d’étre of groups to operate on sets having an internal structure, and it is by
understanding the operation that we understand groups. With regard to units
of orders, this has been stressed by Eichler [E1]:

,,Von der Uberzeugung ausgehend, daB die Begriffswelt der Zahlen-
geometrie die geeignete Grundlage fir den Aufbau eines tragenden Gertists fur
die hyperkomplexe Einheitentheorie abgibt, beschaftige ich mich hier mit
Darstellungen der Einheitengruppen durch affine Abbildungen eines Raumes
auf sich. In dieser geometrischen Gestalt trat sie erstmals in der analytischen
Zahlentheorie auf und fiihrte auf geometrische Untersuchungen, die bis
heute nicht in befriedigender Weise abgeschlossen werden konnten. Die
Hauptaufgabe der FEinheitentheorie sehe ich nun in der Auffindung von
Invarianten dieser Abbildungsgruppen.‘

Needless to say, this is still the adequate view on units of orders.
Furthermore, as we shall see later, the geometric method leads at least
theoretically to defining relations among the generators thus found; in the only
case where these can be derived purely algebraically (SL,(Z)) this derivation
has an artificial and a-posteriori character, and doubtless the most natural way
to the presentation

SL>(Z) = C4=x<c2 Cs

is by letting the group operate on a tree [Sel].
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Moving towards general orders we first deal with the case where A = D
is a skewfield, in which the number geometric method works particularly
smoothly. Put Dg = R ® ¢ D and

G ={xeDF|Nx)?*=1},

N denoting the regular norm D — Q. Clearly, I' C G is a discrete subgroup.
The following result was proved by Kdte Hey in her doctoral thesis (Hamburg
1929) and reappears in [Sch], [El], and [Z1].

THEOREM 1. G/T is compact.

Proof (according to [Z1]). We work with a Z-basis of A, so that
in Dr = R¢, g = dimD, A appears as Z2.

Let C be any convex, 0-symmetric compact set in R¢ such that vol(C) > 24,
By Minkowski’s lattice point theorem, C contains a nonzero a € A. If
x € G, then vol(Cx) = vol(C) because of | N(x) | = 1, and Cx is still convex
and O-symmetric, hence contains a nonzero a, € A.

Now let (x,) be a sequence of elements in G. Then there are a; € A\{0}
such that

a; = cix;, cie C.

It follows that | N(a;) | is bounded because N is bounded on C. Because D is
a skew field, we have

|N(CI,)|=|AQ,A|¢O

Since there are only finitely many right ideals of bounded index, there is a sub-
sequence (ay) such that

ar\ = a A\ (say) ,
hence
ay = 1€y, €, €I
Further,
| N(cx) | = | N(ag) | = | N(a)|> 0.

Since C is compact, (c,) contains a convergent subsequence (c;). The last
inequality shows that (¢, ') is convergent. From

-1 -1

we now read off that G/T" is compact. Note that we have used, so to speak,
only half of the lattice point theorem in that there was no need to specify C.
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This is our first generalization of Dirichlet’s unit theorem, the most
classical result on units of orders, in that it contains what one calls the hard
part of this theorem. In fact, let D = K be a number field and write, in usual
notations,

Kg=Ri X Crz2, ri+2r,=g8;
we have

G = {(xla ceey xr1+r2) € KR } (Xl ...x,l) |x,1+1 |2 ixr1+r2 !2 = 1} ]
The logarithm map

G - R,r=ri+r,—-1
g
(x)) = (og|xi|,...,log | x|, 21log| %, +1],..rr 210g [ Xp 4w ry—1])

is a homomorphism, continuous, surjective and has compact kernel.
Since T is discrete in G, log|I has finite kernel, and logI' is discrete in
log G = R”, hence a lattice. It follows that
I'=WK)XZ', r=rklogl <r,

W (K) denoting the roots of unity in K. This is the easy part of Dirichlet’s
theorem, the hard one being that 7= r. In the standard presentations of the
theorem, one now has to go through some unperspicous trickery (involving,
of course, the lattice point theorem) in order to establish the existence of
sufficiently many independent units. But clearly 7= r is equivalent to the
compactness of log G/logI’, which follows at once from Theorem 1.

The generalization of Theorem 1 to arithmetic groups is as follows:
let G C G/, be a reductive algebraic group defined over Q,I" an arithmetic
subgroup. Then Gr/T is compact if and only if G° (= connected component
of identity) has no nontrivial Q-characters and all elements of Gq are
semisimple (see [B2], p. 55ff.). The reader might try to verify that the
hypotheses of this result are satisfied if G is the algebraic group defined over
Q by the norm-1-elements of a skew field.

The finite presentation of I" can be extracted from Theorem 1. Let K C G
be a maximal compact subgroup; then I' n K is finite, hence T'" contains a
subgroup I'y of finite index such that I'o» K = 1. Then K\G/T, is a
compact manifold, and since K\ G is a homeomorphic to a Euclidean space,
I’y is its fundamental group. But the fundamental group of a compact

manifold is always finitely presented (a proof of this fact can be found
in [Ra], p. 95).

The two ““extreme cases” 4 = M,(Q) and A = D are comparatively easy;
unfortunately, the general case offers difficulties which cannot be overcome
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by a straightforward combination of these two. (Be sure to see clearly why the
skew field property of D is indispensable in the proof of Theorem 1). However,
Zassenhaus proves the following generalization in which A is not even
required to be semisimple: there is a system F of right coset representatives
of G mod I' of the following form:

F={xWx)VW(x)~"'},

where the x run over a compact subset of G, W(x) € G is a function with finite
range and V a torus with positive diagonal elements. Visibly, there is a
resemblance to a Siegel domain. In the skewfield case, V' = 1. From this one
can derive the finite presentability of I" along classical lines (see section 4).

Approaching the general case, now we could simply refer the reader to
Borel’s text [B2] since there is no point in reporting at length on the contents
of a textbook which is standard since 25 years. On the other hand, even in
a survey article the reader will expect to become acquainted more closely with
the methods. Therefore let us consider in some detail Siegel’s classical
treatment. Actually, we follow Weyl [W] who found it necessary to provide
a careful explanation of Siegel’s ““all too laconic” arguments. He divided the
proof (of finite generation) into three ‘“theorems of finiteness”; we will lead
the discussion up to a point where the content and the role of these theorems
become visible. Perhaps the clarity and elegance of Weyl’s arguments is still
of more than merely historical interest.

Let A = M,(D). A lattice N in D" is a finitely generated Z-module
containing a D-basis of the right D-vector space D”. Such a basis,
2 =1{d,, ..., d,}, is called a semibasis of N. Given ¥, the set

L(2) = {(ay, ...,a,) € D"| Xd;a; € N}

is another lattice, containing the standard basis vectors e, ..., e,. L(Z) is
called the representation of N in terms of <, and all such L(Z) are called

admissible lattices. The left order
O/ (N,A)={xe A IxNg N}

is our order A, and
I' ={xeA|xN = N} = A*

is the group which interests us; Weyl calls it the lattice group. If &, &’ are
two semibases, then L(Z) = L(Z’)ifand only if ¥’ = s’ for some s € I'.

An R-basis of Dg = R @D is called normal if the regular represen-
tation R of Dg with respect to that basis has the property

R(Dgr) = R(Dg)! (¢t denoting transpose) .
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It is not difficult to establish the existence of normal bases: let K = Z(D) and
write as before

R®QK= Rt X sz’ r, + 2r, = dlmQK
Then

Dr=R®eD=R®eK)®xD=[[RR,Dx [[ C®%D,

i=1 j=1

where ® {(® ) indicates that the tensor product is to be formed with respect
to the K-module structure of R(C) corresponding to the i-th (j-th) embedding
of K into R(C). The C Q/D are central simple C-algebras and hence full
matrix rings over C. The R Q ‘D are central simple R-algebras and hence full
matrix rings over R or H, the quaternion skew field. More precisely,

if s2 = dimg D,
C®/D = M,(C)
3) R®'D = M,R), for i =1, ...,r{ (say)
R®'D = M,,(H), for i=ri+1,..,r, +r] =r.

If we now replace the elements of C and H by their regular representations
with respect to the standard bases, then the typical elements are

a —-b —-c¢c -d
a -—0b C b a —d c -
(b a)e i W d a —b <t

d -—-c¢ b a

and transposing corresponds to the usual conjugation on C and H. Combining
this with the fact that for any skew field F, the regular representation

of M,(F) over F is equivalent to » times the identity, we see that normal
bases exist.

We fix one of them and obtain a conjugation on Dy by
a—~a=R-1(R(an)).

Call o symmetric if o = a, positive if R(a) > 0 is positive definite. A
quadratic form over Dy is now a matrix

F=(y;) € M,(Dr), with v, =1, .
For x € (Dg)" put

Flx] = x'Fx,
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a symmetric element of Dg. F is called positive if the real matrix (R(y;;)) is
positive definite. Important note: it would not work to define F > 0 by
F[x] >0, all x+# 0. Choosing x=(0,...,x;,...,0), we had to have
Xi¥;;Xi > 0, all x; # 0 which implies

N(Xx)*N(y;;) >0;

but if Dy is not a skew field, there will be x; # 0 with N(x;) = 0. The
positive F form an open convex cone in the space of all forms, in particular
a manifold of the same dimension. We call it H*. Weyl shows next that
F > 0if and only if F = /_1’/1, A € GIl,(Dyr); this implies that, as long as the
conjugation a — a is fixed, positiveness does not depend on the choice of a
normal basis.

Let 7r: D — Q (or Dr — R) denote the trace of the regular represen-
tation. It is not hard to show that, if F is positive in the above sense, one has

tr(x):=TrF[x] >0, for x+# 0 in (Dgr)".

This is the correct definition of “positive form over a skew field”’; as Weyl
points out, a crucial step in Siegel’s proof.

So far we have been setting the stage; now we come to the first main step,
the method of successive minima originally invented by Minkowski. Let the
lattice NV and the positive form ¢ = ¢ be given. Since for any real s > 0 there
are only finitely many d € N with ¢[d] < s, ¢ takes a minimum on N, say
t[d,] = s;. Inductively, we define a semibasis & = {d,, ...,d,} of N by the
requirement

tld,] = min{¢[d]|d e N\[dy, ..., dp_11},

where [d, ..., d,,_,] denotes the D-span of d,,...,d,_,. Write t[d,,] = Su;
then s; < 5, < ... <5,. We say that & is reduced with respect to t. Now
we make the change of variables which transforms d; to the unit vector e;
and N to L(¥); the new form is again denoted ¢. We then have

f[X] = t[em] =Sm

for xe L(Y)\]e,,...,e,_1] that is, (xy, ..., X,) # 0. An arbitrary form
satisfying these inequalities is called L (¥)-reduced. We have now reached a
point where we can state the finiteness theorems.

1. There exist L-reduced forms for only finitely many admissible lattices L.

In other words: if we fix N, but run over all positive F, only finitely many
lattices L (<) are produced by the method of successive minima.



UNITS OF CLASSICAL ORDERS 219

If L is admissible, call
Z(L):={Fe H* |tgis L — reduced}

the cell of L. If Z(L) is not empty, it is defined by infinitely many inequalities.
1. Z(L) can actually be defined by finitely many of them.
The proof also shows that different cells have disjoint sets of inner points.
We now come to what Weyl calls the “pattern of cells”; it is only here that

our lattice group I' comes into play. Every semibasis Z ={d,, ..., d,}
of N determines a cell Z(%) of reduced forms:

FeZ(Z) & tr[x] > trld,] for all x e N\[dy,....,dn-1].
If we associate with Z(<) the admissible lattice L(Z) = L(<), then
L(Z)=L(Z) & L(Z) = L(Z")

s g’ = s&,some sel

A = §7,
where I" operates on the forms in the usual manner:
st(x) =t(s 'x), x e (Dr)" .

Fix once and for all finitely many semibases <,, ..., &, such that
L(ZY), ..., L(Z,) are all the admissible lattices having reduced forms. If F
is any form, F determines a semibasis &/ such that L(<) has a reduced form.
Hence there is s € I' and i such that & = s, and sF € Z(<;). In other
words, the union

Zo= U Z(¥)

is a fundamental domain for the operation of I' on the space H*. The
“Third Theorem of Finiteness”, or the “Theorem of Discontinuity”, shows
that Z, has only finitely many neighbors. More precisely, Weyl defines, for
any given semibasis & and real numbers p > 1, w > 0, a subset H(Z, p, w)
of H* with the following properties:

(i) forp>1,w>0,H(Z,p,w)contains an open neighborhood of Z(9);
(i) if p>p’, w>w’, then

H(Z,p,w) D H(Z,p’,w’), and H+*= U H(Z,p,w).
D, w

III. Given any cell Z, Y,p and w, the set

{seT|sZn H(Z,p,w) + &)
IS finite.
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The latter clearly implies that
E(Zy) ={seTl|sZ¢nZy+ &}

is finite. Let us check condition (ii) of the basic lemma. There is a union H
of finitely many H(¥, p, w) containing an open neighborhood U of Z,.
Then there are only finitely many s € I' with sZ, NnH=# @. If all of
these are in E(Z,), U C E(Zy) Z, because every point of U is a I'-translate
of a point of Z,. Let sy, ..., s, be those not in E(Z,). Since s;Z, and Z
are disjoint, closed, and H* is a normal space, there is an open U; D Z,
with U; N s;Z, = @. Then we can take O U,.

To sum up: for the operation of I' on H* there is a closed connected
fundamental domain with finitely many neighbors, satisfying condition (ii) of
the basic lemma. The finite generation of I" is thereby proved; in the next
section we will also extract finite presentability from the reduction theory.

We now turn to the question of minimal dimension mentioned earlier. Our
space H™* is the image of GL,(Dg) under the map A — A'A. According
to (3),

GL,(Dr) = GL,s(R)"i X GL /2 (H)™" X GLs(C)2,

and H * arises by dividing out the product of the orthogonal, symplectic, and
unitary groups, respectively, which are maximal compact. For K € {R, H, C},
the real dimensions of the maximal compact subgroup of GL,,(K) are

m(m—1)

5 , m(2m+1) and m?.

A simple calculation now shows that

4) dimH* = rj M + r{ w + ryk?
2 2
=: r(d) +1

where k = ns. In view of NT' C {+ 1}, the number r(A) may be called the
geometric unit rank of A; of course, for A = K, that is, k = 1, it coincides
with the unit rank 7(K) = r; + r, — 1 in the sense of number theory. Siegel
shows that r(A) is in fact the minimal dimension for a discontinuous action
of T in a sense which we now explain.

Let more generally G be a locally compact topological group with a
countable basis for the topology, H < G a discrete subgroup and v a Haar
measure. Suppose that F is a set of coset representatives of G/H such

that (a) F is a Borel set, and (b) v(F) < oo. Siegel’s first main result is
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THEOREM. In this situation, H operates discontinuously on the homo-
geneous space C\G if and only if C is a compact subgroup of G.

First we have to check the hypotheses. By what has been said about the
cells, (a) is easy; (b) by no means. We only sketch the proof in the case
of SL,(Z) (see [B2], 1.11). Of course, it suffices to show that the Siegel
domain

S, ., = 8O(n) - D, N,

has finite volume in the Haar measure. Transferring the Haar measure to the
factors of the Iwasawa decomposition, this comes down to the finiteness of

§ p(a)da,

Dy
where da is the Haar measure on the torus and

p(@)) =1l ai/a;;

i<
and this is not hard.

REMARKS

(1) The general finiteness criterion for the fundamental domain of
arithmetic groups is that the underlying algebraic group has no Q-characters
([Bo2], 12.5); that is, ““half” the compactness criterion.

(2) It seems that the exact value of the volume has not yet been calculated
in the general case although Weyl ([W], p. 263) hints at the possibility. It is
of course known for SL,(Z) and some other cases; we refer to [Te, 4.4.4].

The theorem now shows that I' cannot operate discontinuously on
homogeneous spaces of GL,(Dgr) of smaller dimension; a result stated
already by Fichler [E2]. Of course, this does not rule out I'-operations on
spaces of smaller dimension which do not extend to the surrounding Lie group.
In fact, such operations may be viewed as the basis of the cohomological
results to which we come later.

The following simplification, however, is near at hand. Let R be the
integral domain of the central field K and ST be kernel of the reduced norm
map Nr: A* = K*, restricted to I' (we will recall the definition of Nr in
section 9). Then (R*") = NrR>* C NrT', and one deduces that ST - R, an
almost direct product, has finite index in I'. Since we don’t care about finite
indices and consider R* as known by Dirichlet’s theorem, we may
concentrate on ST'. In our previous notation (3), ST is a discrete subgroup of



222 E. KLEINERT

rn ry ry
H SLns(R) X H SLns/Z(H) X H SLnS(C)

(where for H, SL denotes elements of GL of reduced norm 1). Dividing out
the maximal compact subgroups, we find that ST operates discontinuously on
a homogeneous space of dimension

r(SA):=r4) - rK) ,

which may be called the “reduced geometric unit rank of A”. Explicitly,
inferring

r(Ky=ri+ri+r,—-1,
we obtain from (4) the formula

k2 (k-1

(5) r(SA) = r k-2 (k+1)

e +rk-1D(k+1).
2 1 2 2( )( )

We will go through the cases of small »(SA) in the concluding section.

It is surprising how easily the existence of a fundamental domain with
finitely many neighbors implies another finiteness theorem, which has already
been mentioned:

THEOREM 2. I contains only finitely many conjugacy classes of finite
subgroups.

Proof [B1]. Let G = GI[,(Dr) and C be the maximal compact subgroup
used above. Let H < I be a finite subgroup. Then H is contained in a maximal
compact C, which is conjugate to C: C = gCg-1. Then Cg-'C = Cg1,
so H fixes the point P=Cg~! of C\G = H*. Let y € I" be such that
Py € Z,, the fundamental domain. It follows that Pyy-'Hy = Py, so
vy~ 'Hy C E(Z,), which is finite. (This proof holds for arbitrary arithmetic

groups.)

4. PRESENTATIONS [: THE THEORY OF TRANSFORMATION GROUPS

We have already indicated that not only generators but also defining
relations can be extracted from a ‘““good” operation of I on a “good” space
and that reduction theory provides us with both. The basic idea is already
inherent in Poincaré’s treatment of Fuchsian groups (see e.g. [F], p. 168 ff.).
Gerstenhaber [G] established the abstract setting; later contributions are due
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to Behr [Bel, Be2] and Macbeath [Mb]. Abels [A] gave a unified and
generalized treatment; the following is taken from there. )

Let T, H, F,E = E(F) be as in the beginning of the last section. Let H
be the abstract group generated by elements ¢,, & € E, with defining relations

thz . Z‘hfl = thzhl_l = for all /’ll, /’lz e E
such that Fh1 M th NF# g .
(Be sure that this makes sense!) There is an obvious homomorphism
¢: H— H,t,—h,

which is surjective if the hypotheses of the basic lemma are fulfilled. With a
little more luck, ¢ is an isomorphism.

THEOREM (Gerstenhaber — Behr — Macbeath). Assume that F and T
are connected and T is simply connected. Then ¢ is an isomorphism if

(1) FH =T (F = interior of F)

or if

(2) FH =T, F is closed and {Fh|h e H} is a locally finite cover
of T

or if
(3) {Fh|h e H} is an H-denumerable cover of T.

(For the definition of ‘“H-denumerable cover” and some examples,
see [A].) In particular, if one of the three cases is given and E is finite,
then H is finitely presented.

The idea of the proof is the following. On the space

Z={t,h)ye Tx H|th-' e F}
(ﬁ operating on 7 via @) define an equivalence relation ‘by
(ty, hy) ~ (8, hy) © t; =1, and (p(hzhfl) e E.
Then Y = Z/ ~ turns out to be a covering space of T with the properties
() Hacts on Y, and p:class of (¢, h) > ¢t is a ﬁ-map;

(1) ker ¢ acts as a group of decktransformations of p; this action is free
and transitive on the fibres of p;

(ii1) There is a section for p over F.

This easily implies that ¢ is injective if Y is the trivial covering of T,
and this will be so if T is simply connected. If 7 is not simply connected,
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one can say, under suitable hypotheses, something about the kernel of ¢;
Swan [Sw] constructs an exact sequence

1> N->n(T)~>H>H-1

where the kernel N can be described.

It is case (2) of the theorem which directly applies to our unit groups I'.
The space of positive forms on which we made I' operate is an open convex
cone in a Euclidean space and, as such, clearly connected and simply
connected. It was pointed out that the fundamental domain could be chosen
as the connected union of closed cells. The “third theorem of finiteness”
ensures that FI is a locally finite cover. Thus, we finally have

THEOREM 3. The group of units of any Z-order is finitely presented.

As mentioned before, this generalizes to arithmetic groups [BHC].

Let wus illustrate the principle with the most classical example
I' =SL,(Z) mod. (1), T = 2= upper half plane, F = closure of the
well-known fundamental domain,

Fz{ze%

1 1
|z|>1, — — <Rez < -} .
2 2

(This fits into our general approach since 27 is identified with
SO, (R)\ SL,(R).) Evidently the prerequisites for the theorem are given. Put

s= (0 1 mod (+ 1) T—(l 1)mod(+1)
_(1 o) 7 o 1 B

We get the well-known picture

\\X\Q
N
T 1 T
p
N\ -
STS ST='S

+1
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of the fundamental domain and its neighbours (taken from [Se2], p. 78). Thus
H has 9 generators and a relation ¢4-1¢3 = t4-15 for every pair A, B in the
set {T, TS, ..., T-'S, T '} such that FA n FB n F # 0. This happens only
if FA,FB,F meet at p or p7, and we get 2 [;] = 20 relations. It is a
puzzle (elementary, but tedious) to derive the presentation

H=T/(x1)=(S,ST|S*=(ST)*=1) = C,*C;..

Admittedly this wouldn’t be too easy if the result were not known in advance;
but the method works in principle.

To derive presentations along these classical lines is a hard piece of work
and has been done only in ‘““small” cases. Swan [Sw] considers SL,(R),
where R is the integral domain of an imaginary quadratic field K. PSL,(R)
is called a Bianchi group, after L. Bianchi who was the first to embark on a
systematic study of these groups 100 years ago. (See his Opere, Vol. 1,
ed. by Bompiani and Sansone, Rome 1952; in particular Sansone’s
introduction to this part of Bianchi’s work on page 185 ff. The fundamental
domain below appears on p. 239. This particular case had already been treated
by Picard.) Here the geometric unit rank r(A4) = r(SA) is 3, the dimension of
the space of positive Hermitian forms over C with discriminant 1, or
hyperbolic 3-space. Swan obtains presentations for K = Q()/—d), with
d=1,2,3,5,6, 11, 15, 19. For the sake of illustration, here is the first case:
define

11 1 — —i —
- U= l’J: 1 O,L: IO’A:O 1‘
01 01 0 —1 01i 1 O

Then SL,(Z[i]) is generated by these matrices, and defining relations are
TU =UT, J*=1, Jcentral, L? = (TL)? = (UL)? = (AL)? = A?
= (TA)} = (UAL)3} =J.

If one identifies the hYperbolic 3-space with R?3, a fundamental domain is

1 1
—),ye[O,E),z>0,x2+y2+z2>1}.

Fz{(x,y,z) X €

1
272

[t is interesting to note that the section y = 0 of F equals the classical
fundamental domain of SL,(Z) in the upper half plane.

Developing Swan’s techniques, Frohman and Fine were able to establish
a structure theorem for SL,(R) which we now describe (following [F]).
Let K=Q(/—d) with d>0 a squarefree integer. We exclude here
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d=1,2,3,7,11; these give the euclidean R and require special treatment.
The main theorem (6.3.1) is a decomposition as a free product with
amalgamation

SLz(R) = PFE, *FG(R) :

Here (4.8.2),

PFE, = image in PSL,(R) of the subgroup generated by elementary matrices

amazingly, this group is independent of d. Likewise, F is explicitly presented
(6.3.4) and independent of d. The precise structure of G(R) is not yet fully
clear. The monograph [F] contains many more results, e.g. on finite subgroups
and normal subgroups. A fact worth mentioning: SL,(R) contains
non-congruence subgroups of finite index ([Se5]).

Some examples of the ‘“analogous” but deeply different case in which R
is the integral domain of a rea/ quadratic field were treated by Kirchheimer
and Wolfart [KW]; these groups are known as Hilbert modular groups. Here,
r(A) =5, but r(SA) = 4, and in fact PSL,(R) operates most naturally on a
product of two upper halfplanes.

A fundamental domain has been described already by Siegel [S2]. The
problems with the boundary become already for small discriminants so
considerable as to require the use of machine calculations. The main result
of [KW] is as follows: let € be the fundamental unit of R and put

1 a e O 0 1
T(a) = , a€R, E = , S = .
(0 1) (0 s*l) (—1 0)

Then one always has the relations

T(a)T(b) =Tb)T(a),a,beR,
ET(a)E-! = T(g?a),a € R,

S2 = (ES)2 = (ST(1))3 = (EST(s))? = 1.

It is shown: if K = Q(//d), d = 5, 12, 13, then these relations are defining
relations. (For d = 3, one additional relation is required.) In [Ki] Kirchheimer
treats SL,(R) for arbitrary totally real R of class number 1; the example
R =2Z[E +E&-1], £ =e?/7 is presented in detail.
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5. PRESENTATIONS II: INDEFINITE QUATERNIONS OVER THE RATIONALS

Suppose that H operates discontinuously on the manifold 7. If the
operation is in addition fixed-point free, then every ¢ € T has an open neigh-
bourhood U such that U n Uh = ¢ for h # 1, and one says that H operates
properly discontinuously. The orbit space X = T/H is then a manifold, and
if T is simply connected, H is the fundamental group of X. If X belongs to
a class of manifolds the fundamental groups of which are known from other
sources, then we know H. Using this principle, Eichler [E1] obtained a
description of the unit groups of orders in indefinite quaternion skew
fields D over Q. (In the definite case, the unit groups are finite.)

We begin by recalling a few facts from the arithmetic of such D. Let A
be a maximal order in D. We want to make sure that I" contains no torsion
elements except + 1. This will be the case if D does not contain the 4-th and
6-th roots of unity (the only ones of degree 2 over Q). For this, it is sufficient
that discr A contains a prime factor = 1 mod 4 and one = 1 mod 3. Namely,
let K = Q(i). Then K C D if and only if K splits D. If p is a prime ramified
in D (that is, dividing discr A), then K splits D at p if and only if
|Q,(/):Q,| =2, and this is equivalent to p = 3 mod 4. For the field of
6-th roots of unity, one argues analogously. So we make the above
assumption. The only element of order 2 in the norm-one-group ST is — 1
(because if there were another one, it would generate a subfield containing
two elements of order 2), and PST = ST mod (% 1) is torsion free.

By assumption, Dg = M, (R), and the isomorphism maps ST to a discrete
subgroup of SL,(R). PST operates discontinously, and in the well-known
manner, on the space H+* = SO(2)\SL,(R), which is identified with the
upper half-plane. The operation is fixed-point free, because the stabilizer
of a point would be in the intersection SO(2) n ST = (% 1). Hence
X = H*/PST is an oriented surface. By Theorem 1, X is compact. The
compact oriented surfaces and their fundamental groups are well-known; we
have a presentation

PST = 7'C1(X) = <al,b1, ...,ag,bg|H[a,',b,'] = 1) .

It remains to determine the genus g, which, as the cognoscenti will guess,
turns out to be a function of the discriminant. This is accomplished by

Eichler (following Hey) with a truly marvellous argument, which we now
describe.
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Let F, be a fundamental domain of ST in SL,(R). The cone C(F,) is then
a fundamental domain of ST in M,(R) = Dg. Let

F={xeCFy)|-1<nr(x) <0}.

The idea is to calculate vol F (in Lebesgue measure) in two ways. The first way
1s to show that vol F'is the residue at s = 1 of the zeta function of D. This
rest (a) on the fact that A is a principal ideal domain (see e.g. [R], 35.6),
and (b) on a theorem of Dirichlet, which expresses the residue at S = 1 of
certain functions of “zeta type”’, associated to a lattice in Euclidean space,
by the determinant of the lattice; see [BS], p. 344. Since the zeta function is
known (see e.g. [De], p. 130), one gets

(A general formula has been .obtained by Kéte Hey; cf. the discussion in
[De], p. 133.) Here d denotes the fundamental number of D, i.e. the product
of the ramified primes, which equals the square root of | discr A |.

For the second calculation, view D as a cyclic crossed product

D = (L|Q, complex conjugation) ,

L/Q imaginary quadratic. Then one can write

N

and in this representation ST" operates on the unit circle in C. In the integral
for vol F, two of the integrations can be carried out, and there remains an
integral over a fundamental domain for ST in the unit circle, with respect to
the invariant measure. But for this, one has the Gauss-Bonnet formula. The
final result is

a,beC},

0(d)
=—+1.
d 12

If ST contain nontrivial torsion elements, one may apply a variant of this
reasoning to a torsion-free congruence subgroup.

Soon afterwards, Hull [Hul] gave another treatment, avoiding the analytic
argument but making fuller use of the theory of Fuchsian groups; this has the
advantage that torsion elements cause no additional problems. The core of the
arguments is the genus formula

2 -2 +1 +2
— =0+ —e - e,
g 22 33
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where v is the volume of a fundamental polygon in the upper half plane,
and e; denote the number of elliptic cycles of angles 2n/i. For v, there is a
formula due to Humbert. The e; correspond to conjugacy classes of elements
of order i in PST', these in turn to classes of embeddings of fourth and sixth
roots of unity into D; there are formulae for these as well. For an updated
presentation of all of this, we refer to [Vi].

Meanwhile, Eichler’s somewhat breathtaking «tour de force» has been
turned into a standard argument with the calculation of a Tamagawa number
as its core. Here is a rough sketch. Denote by G the algebraic group
(linear, semisimple, anisotropic) defined over Z by the norm one elements
of D*; thus, G(Z) = ST and G(R) = SL,(R). Let A be the adele ring of Q
and view G (Q) and G(Z) as subgroups of G(A) via the diagonal embedding.
Let

C= ] GZ,) and U=GR)XxC.
p prime

Then
GA)=GQU and GQnNnU=G®Z).
This induces a bijection of homogeneous spaces
GA/GQ=U/G2),

preserving the volumes with respect to the Tamagawa measure. Now the
volume on the left is, by definition, the Tamagawa number, and equals 1,
whence the equation

vol (G(R)/ G(Z)) = (vol C)-! .

Here, the volume on the right is easy and equals C2)o(d)d~!. The left side
can be translated into the volume of a fundamental of G(Z) in the upper half

plane, and Gauss-Bonnet brings in the genus. The details can be found
in [Vi, ch. IV].

6. PRESENTATIONS III: K,

As a byproduct of their computations, Kirchheimer and Wolfart [KW]
obtained a description of K, (R) for the rings R they treated. Conversely, if
K, (R) happens to be known from another source, one can derive presen-
tations of SL,(R), n > 3. This idea has been pursued in a series of papers
by Hurrelbrink ([Hu1]-[Hu3]). The general argument runs as follows.
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Let R be any commutative ring, n > 3, and for r € R let e;;(r) be the
elementary matrix in SL,(R) having r in the i/ — j-position (i # j). Then we
have the “trivial” relations

e;j(s)e;;(r) = e;(s+r),
(6) leij(s), e ()] = ey(sr),i+1
leij(s),exi(P)] = 1, #k,i#1.

Let St,(R) be the abstract group generated by elements x;;(s), s € R,
with relations as in (6). S¢,(R) is called the n-th Steinberg group, and there
is an obvious surjective homomorphism

¢n = Sty(R) > E,(R),

E,(R) denoting the subgroup of SL,(R) generated by the e;;(r). The kernel
of ¢, is denoted K,(n, R). As for GL, we can form the direct limit

St(R) = lim S7,(R)

and obtain a surjection
¢ =limg,:St(R) > ER) =1limE,(R)
with kernel
K>;(R) =limK,(n, R) .

Thus K,(R) codifies the nontrivial relations among elementary matrices
over R of all sizes. Now let R be the integral domain of a number field. Here
we have two stability results: Vaserstein [Va] showed that

E,(R) = SL,(R), forn>3,
and van der Kallen [Ka] that
KZ(n, r) = KZ(R)s for n 2 3 ’

both under the hypothesis that R * is infinite, thus excluding R = Z and the
imaginary quadratic case.

Consequently, if one knows generators of K,(R) in terms of the x;;(s),
one can write down immediately presentations of SL,(R), n > 3. Now how
can one possibly know something about K,(R) without knowing the matrix
relations in advance? The miracle happens in form of the Birch-Tate
conjecture: assume that K = Quot R is totally real. Let Cx(s) be the
Dedekind zeta function of K. The Birch-Tate conjecture predicts that

(7) # K> (R) = wa(K) [ Lx(= 1) [,
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where w,(K) is a natural number which is easily computed. It follows from
the results of [MW] that the odd part of (7) is true if K is abelian. This makes
it possible to calculate the odd part of # K,(R) in concrete cases: by the
Kronecker-Weber theorem, K is a subfield of a cyclotomic field. From this one
derives that {x(s) is a product of Dirichlet series the values of which at
negative integers can be expressed by generalized Bernoulli numbers. Finally,
the 2-part of # K,(R) has been calculated in some real quadratic cases by
Browkin and Schinzel [BrS]. Collecting these informations, one has, e.g.,

#K,(R) = 12 for K = Q(/6) ,

([Hu3], Th. 8). Now it is not too difficult to write down sufficiently many
different elements of K,(R) (so-called Steinberg and Dennis-Stein symbols).
Thus, one knows K,(R), and presentations of SL,(R), n > 3, drop out.
In [Hu?2], Hurrelbrink treats the integral domains of the real subfields of
the 9-th and 15-th cyclotomic field, this time relying on the Birch-Tate
conjecture for these fields. A generalization of this line of thought to cases
involving skew fields seems to be out of sight at present.

I would like to mention here (although K-theory is not explicitely
used) a purely algebraic method due to P.M. Cohn [C] which gives
presentations of SL,(R) for certain subrings R of C; this method applies
to the integral domains of the euclidean imaginary quadratic
fields Q(/—d), d =1, 2, 3, 7, 11. The presentations involve a// matrices

x 1 y 0 )
and , Y aunit,
-1 0 0 y-!

hence are, by genesis, not finite. In the cases in question it is however possible
to reduce them to finite presentations. This is carried out in [F, p. 73 ff.].

7. COHOMOLOGY

We recall some notions from the cohomology theory of groups;
ideal references for our purposes are the book [Br] by K. Brown and
Serre’s article [Se3].

A group I' is said to have cohomological dimension n, cdT = n, if n is
the maximal dimension for which there exists a I'-module M such that
H"(', M) # 0. If there is no such n,cdl = o. If cdl < o, then I is
torsion free. It is known that cd ' = 1 if and only if T is free. There is a virtual
notion: vedT = n if T contains a torsion free subgroup A of finite index
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with cd A = n; this is independent of the choice of A because cdA; = cd A,
for A; C A, torsion free with finite index.
Let ¢dI’ = n. T is called a duality group if there exists a dualizing
module D such that
H{T,M)=H,_;I',DQ® M)

for all i and I'-modules M. If T" is of type FP (a condition virtually satisfied
by our unit groups) then an equivalent condition is

H T,ZT) =0 for i # n, and
H"(I', ZT) is torsion free.

The dualizing module is then D = H"(I',ZI"). If D=7, T is called a
Poincaré duality group. The corresponding virtual notion is clear.

Now let G be a linear algebraic group, semisimple and connected, defined
over Q, and let I' C G be an arithmetic subgroup. Suppose I is torsion free.
Let C < G(R) be a maximal compact subgroup. Then I' n C = 1. Hence I
operates properly discontinuously on

X =C\GR).

Since X is diffeomorphic to a Euclidean space, in particular contractible, it
follows that

XT):= C\GR)/T

is a K(I,1)-space, that is, n;(X(T)) =T and =n;(X(T)) =0 for i> 1.
Furthermore,

H*T, —) = H*(X(D), -) .

This implies that cdI' = dimXI) if X({I') is compact and < dim X(I")
otherwise. In the fundamental paper [BSe], Borel and Serre have shown how
to enlarge X to a manifold X with “corners” on which T still operates
properly, and for which X/T is a compact K(I', 1)-manifold with corners.
The boundary is explicit enough (it has the homotopy type of a bouquet
of (/ — 1)-spheres, where / = Q-rank of G), and one derives

cdl =dimX -/

([BSe], 11.4.3). Further, I" is a duality group, and Poincaré if and only if / = 0,
that is, X(I') is compact.

We apply this to G = norm-l-elements of A% and SG = elements of
reduced norm 1 over the center. Then

dimXI) = r(A4),
dim X(ST) = r(SA4) .
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The Q-rank equals n — 1 in both cases (see [BT], 6.21. The field- and skew
field part contribute nothing to the rank.) So we see from the general theory
that X(I') is compact if and only if A = D is a skewfield. The “if” part is
our Theorem 1, and for the “only if” a direct argument is available:
taking A = M,(Q) for simplicity it is not difficult to see that the points

of X represented by
0
‘ ) , a€Q
0 a-!

cannot be uniformly bounded by right multiplication with SL,(Z).
Summarizing, we obtain

THEOREM 4. Let T be a unit group. Then
vedT = r(A) —n+ 1,
vedST = r(SA) —n+ 1.

T is a virtual duality group, and Poincaré if and only if n = 1.

This is our second generalization of Dirichlet’s unit theorem. Recall that
the easy part of this theorem is

I'/torsion = Z", r < r(K) ,

and the hard part is to show that » = r(XK). But from the Kiinneth formula
one easily derives cdZ" = r. Another interesting consequence is

COROLLARY. I' contains a free subgroup of finite index if and only

if A= M,(Q).

Proof. In view of the theorem and formula (5) we have to show that
the equation

2 -1 -
r s + )Z(ns ) +ry (ns 2)2(ns tD trms-1)(s+1) =n

admits as only solution n = 2, r{ =s =1, r{’ = r, = 0. First, we must have
r, = 0 and next rir{’ = 0 because otherwise there would be two summands
> 7. The reader can work out that

ri’(ns—2)(ns+1) =2n
has no solution, the remaining equation only the one stated above.
In other words, SL,(Z) is not virtually isomorphic to any other unit

group, and is virtually free. This latter property is usually proved by applying
the Kurosh subgroup theorem to PSL,(Z) = C, * C,.
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The actual calculation of the integral cohomology H*(I') is hard. Being
satisfied with virtual results, we can consider the case I' = SL,(Z) as settled (if
you don’t, apply the Mayer-Vietoris sequence ([Se3], 1.3) to I' = Cy*¢, Cs.)
The next case I' = SL3(Z) requires already substantial work; the interested
reader is referred to [So], and, for congruence groups, to [LS].

In view of Theorem 4, it is natural to ask for a classifying space for I'" of
the “correct” dimension vedT'. Such a space has been constructed (for unit
groups I') by Ash [Ash] as a deformation retract of the space of forms which
was the object of reduction theory. Ash’s construction, which is as elementary
as ingenious, generalizes ideas pursued as early as 1907 by Voronoi;
see [Br], ch. VIII for a discussion. Thereby the general but very involved
construction of Borel-Serre can be avoided in the present case. Let us sketch
the procedure in the simplest case I' = SL,(Z): the space of forms is

H* =SOn)\SL,R ),
and what we eventually want, is a compact deformation retract of
H+/SL,(Z) = SO(n)\SL,(R)/SL,(Z) .
Now
SL,R)/SL,(Z) =:G

is naturally identified with a space of lattices in R”; so instead of working
with forms mod SL,(Z), we can work with lattices mod SO(n). For L € G
define

m(L) = min{{x,x) | x € L\(0)}
and
M(L) ={xe L|{x,x) =m(L)},

the set of “minimal vectors” of L. Ash calls L “well rounded” if
M(L) contains a basis of R”. It is clear that these definitions descend
to SO(n)\G. Ash’s main result is that the space W = {well-rounded
lattices with m (L) = 1} mod SO(n) is the required deformation retract.
Returning to the Dirichlet unit theorem once more, we observe that the
rank 7(K) is detected by the cohomology in still another way. Let us work with
the full unit group and write I' = C, X Z". Using the well-known coho-
mology of cyclic groups and the Kiinneth formula, one readily computes

r

H"T)=H"(I,Z) = Z(n) X (Cy) (niZ) " (ni4) H
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so that for n > r

(Cx) (6) ’ (;) T (’r') n even
H"(I') = ’ " .
(Ck)(1)+(3)+m+(f”) n odd,

where r’ = r for r even and r’ = r — 1 for r odd, and vice versa for r”.
Thus r is recovered from H* (') in two ways:

(1) r=max{n|rkH"(T) > 0},

(2) r+ 1= lowest dimension from which on H*(T) is periodic (of
period two).

The periodicity has been generalized by Venkov [Ve] to orders in skew
fields. He proves the following general theorem: Let G be a connected
noncompact Lie group and I’ < G a discrete subgroup with the properties

(i) every finite subgroup of T has cohomological period g;

(i) there is c e He(') such that, for every finite subgroup H <T,
resy,c generates He&(H).

Then the cup product by c¢ gives isomorphisms
HT,M)=H'"¢(I,M)

for all T-modules M and k> dimG — dimC,C a maximal compact
subgroup.

This too can be applied to G = norm-1-group of A%, where A = D has
to be a skew field. G is noncompact unless D is a totally definite quaternion
algebra, a case which we can happily omit from our considerations because
in this case ST is finite. The possible finite subgroups of D* have been
classified by Amitsur [Am]. As his results show, their Sylow groups are cyclic
or generalized quaternion groups; hence they have periodic cohomology
([Br], th. VI 9.5). Since I contains — up to isomorphism — only finitely many
finite subgroups, these have a common period. These arguments are not even
necessary because Venkov shows ([Ve] Prop. 5) that, for g = dimyD,

He(H)=17/|H|Z

for any finite subgroup H of T'; this implies g-periodicity by ([Br], Th. VI 9.1).
The harder part is condition (ii) which requires a spectral sequence argument.
One obtains
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THEOREM 5. Suppose that A = D is not a totally definite quaternion
algebra. Then there are isomorphisms

H*T, M) = H*+2(T, M)

Jor all I-modules and M and k > r(D). Moreover, r(D) + 1 is the
smallest dimension from which on H* (', —) is n-periodic.

The last statement follows from the facts that (1) I is a virtual duality group
and hence H"®P)(I', ZT') is torsion free ([Br], VIII 11.2) whereas (2) for any
group I' with ved T = k, H™(T') is torsion for m > k ([Se3], p. 101).

It should be possible to refine the period g in the theorem by one more
directly derived from the periods of the finite subgroups of I" as in the number
field case where the period equals 2 if there are nontrivial torsion units of
norm 1 (in which case n must be even!).

REMARK. We have seen (in the general case, I' torsionfree) that
H*T, —-) = H*(XT), —) .

Taking real coefficients (with trivial I'-action) the latter groups are, by
de Rham’s theorem, given by differential forms on X(I'); these in turn
correspond to I'-automorphic forms on X. In this way, the real cohomology
of I" becomes part of the theory of automorphic forms.

8. CONGRUENCE SUBGROUPS AND NORMAL SUBGROUPS

Recall that we have defined
I'(m) = kernel of (' = (A/mA)*),

the congruence subgroup of level m of I'. Obviously I'(m) has finite index
in T'. The following question is classical: does every subgroup of finite index
of I" contain a congruence group?

Let us say that I' satisfies (CP) if this is so. Let A C A’. If I’ satisfies (CP),
so does I'. To prove the converse, it suffices to show that every I'(n) contains
a I'’(m). This will be so if I" contains a I'’(m). But there is m € N with
mA’ C A, and this implies IT''(m) C An T’ =T. Thus, property (CP)
depends only on A.

For A = K a number field, (CP) has essentially been proved by
Chevalley [Ch]. Let H < R* be of finite index, and H, < R* any
congruence subgroup. Then H '5 C H for some k € N; so it suffices to show
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that any power of a congruence group contains a COngruence group. This
follows at once from ([Ch], Th. 1). By an argument presented earlier, this
allows us to reduce the problem to ST. If D = K, the answer is given by results
of Bass-Milnor-Serre [BMS] and Serre [Se5]. (Of course, one defines
congruence groups with respect to ideals of R. For (CP) to hold, this makes
no difference since every ideal of R contains an nR, n € Z.)

THEOREM 6. Assume D = K.

(@) [BMS] If n>3,SL,(R) has property (CP) if and only if K has
a real embedding.

(b) [Se5]1 SL,(R) has property (CP) if and only if r(K) > 0.

The only K with r(K) = 0 are K = Q and K = imaginary quadratic. The
failure of (CP) for SL,(Z) is classic (see [Ne], p. 149). A discussion of the
Bianchi case is given in [F, p. 200 ff.].

The case where K # D and n > 1 was treated by Bak and Rehmann [BR].
They give an S-arithmetical result, from which we extract:

THEOREM 7. Suppose K+ D and n > 2;if n=2 suppose K # Q
and that D is not a definite quaternion algebra. Then (CP) holds.

The remaining cases seem still to be unsettled. Note that in the definite
quaternion case the problem becomes trivial since ST 1is finite.

The congruence groups are special since normal subgroups having finite
index. It also makes good sense to ask whether every noncentral normal
subgroup of ST has finite index. This too may be asked more generally for
discrete subgroups of Lie groups, and definite results have been obtained
by Margulis. We specialize these to the case in question. As above, we
can give no details of the proofs, which are extremely involved, and refer
the reader to Margulis’ monumental volume [M]. We make the following
assumptions, excluding 4 = K:

(1) if n = 1, then D splits at all infinite primes of K;

(H) { N
(i) if K = Q, then £ > 3, and A # M,(D), D definite quaternion.

This means that the norm-1-group SG has no anisotropic factor and has
rank > 2. It is clear that — in the terminology of [M] — ST is an irreducible
lattice of SG. Applying Theorems (2) and (4) from the introduction of [M],
we obtain

THEOREM 8. Assume (H). Then every noncentral normal subgroup
of ST has finite index.
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COROLLARY. ST /I[ST, ST'] is finite.

Again, it is classic that the theorem fails for SL,(Z); for instance,
if n> 0, the verbal subgroup generated by all 6n-th powers has infinite
index ([Ne], p. 143). The corollary holds for SL,(Z) but fails for torsion free
subgroups (which are free). Theorem 7 however carries over to subgroups of
finite index.

Two more topics from the general theory of arithmetic groups, which
could be specialized to unit groups, are subgroup rigidity and strong
approximation. But having promised to keep as near as possible to the
unit groups ‘“‘themselves”, we omit this.

9. THE BASS UNIT THEOREM

In his paper [Ba2] Bass has proved (among other things) a far reaching
generalization of Dirichlet’s unit theorem which — together with the results
of sections 3 and 7 — is certainly one of the strongest general results we have
about I'. The core of the proof is a deep stability theorem from K-theory; we
will indicate how it implies the theorem but will say little about its proof. We
begin with the relevant definitions. For any ring A, define

Ki(A) = lim GL,(A)/[GL,(A), GL,(A)] ,

where the direct limit is taken with respect to the embeddings

x 0
GLn(A)ﬁGLnJrl(A)s x_)(o 1) »

One may also write

Ki(4) = im  GL,(A)/E,(4),

where E, (A) is the normal subgroup generated by the elementary matrices;
this is Whitehead’s lemma. Further, with Ky(A4) denoting the Grothendieck
group of finitely generated projective A-modules, we put

Ro(A) = R @ Ko(A), Ri(A) = R® K(A) .

Now we turn to algebras and allow A to be semisimple. Let A C 4
be an order. Any Agr-module V (of finite dimension) gives rise to a
homomorphism

A — Endgr V, hence by functoriality K;(A) = K, (Endg V) .
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Combining this with
log|det|: K; (Endg V)~ R,
we obtain a homomorphism
Sy Ri(A) >R,
and it is easy to see that V — f, gives a homomorphism

f:Ko(Ag) = Ri(A)* = Hom (R, (A),R) .

THEOREM 9. The sequence
(8) 0= Ro(A) = Ro(Ar) > Ri(M)*— 0

IS exact.

The following corollary (which can easily be derived from the sequence)
is shown in the course of the proof:

COROLLARY. Let R be the maximal order of the center K of A.
Then

rkK,(A) = rkR* .

Dirichlet’s theorem arises in the special case A = R, A = K. Clearly
rkK,(K) = 1, and writing

R®eK=R" X Cnm
as previously, we obtain
rkKi(R)y=ri+r,— 1.
But for Dedekind domains R one knows that
rkR>* = rkK,(R)

(see [CR2], §45A). However, Dirichlet’s theorem is used in the proof of
Theorem 7.

A case of interest is

A=QG,A=72ZG (G is a finite group) .

Here,

rkKo(QG) = number of conjugacy classes of cyclic subgroups of G
= Q(G)’

rkK,(RG) = number of real conjugacy classes of G
= :r(g)
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(see e.g. [Se6], 12.4). Thus the theorem gives
rkK,(RG) = r(G) — q(G) .

By Theorem 5 of [Ba2], (ZG) * is mapped onto a subgroup of finite index
in K,(ZG). Hence

K= ) 51 - a©)
r >r - .
2G>, ZG ] 7

The reader will find it an amusing exercise to work out that for G
cyclic this is an equality. However, if Q is a splitting field for G (as e.g.
for G = symmetric group) the inequality tells us nothing new.

Proof of the theorem (sketch). The injectivity of Ky(A) = Ky(AR)
follows from a wellknown theorem of representation theory (see [CR 1], §29).
Next, it is not difficult to show that Ry(4) = Ro(Ar) = R;(A)* is the zero
map: if V is already an A-module, then

KI(A) - K](EndR V) - R
factors through
Ki(A) = K, (EndgV) » R;

if x e K;(A) is represented by an element of G/,(A), the image of this
element in K;(Endq V) is an integral unit in a matrix ring over Q, hence has
determinant + 1. In order to state the crucial lemma, we recall the notion of
reduced norm. Assume for the moment that 4 is simple with center K. Then
there exists a splitting field L | K, for example, a maximal commutative
subfield of A, such that

L ®xA=M,(L)

is isomorphic to a full matrix algebra. Let ¢ be an isomorphism and define,
for a € A,

Nr(a) =deto(1 ®a) .

One shows that Nr(a) € K and is independent of the choice of L and ¢. The
effect of using Nr instead of the usual norm N, g taken with respect to the
regular representation of A over K is the elimination of superflous powers;
namely, one has

N4 k(a) = (Nra)*, where dimgA = s2.

For semisimple A, Nr is defined componentwise and induces homo-
morphisms
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Nr,: GL,(A)/E,(A) = R*
and in the limit
N:K (A~ R* .

It is easily seen that Nr, and N have finite cokernel. Let g be the number of
simple factors of A.

LEMMA. For n sufficiently large, Nr, and therefore N have finite
kernel. Consequently,

rkKI(A) =rkR* = ry+r,—4g.
Taking this for granted, we combine N with

log||:R* = R+, ¢c—(loglc|y...,loglels, +1ry) -

From the lemma, one first derives that every component of
log |[N| : K{(A) = R 1+ 72

has the form f, for suitable V. Then it follows that there are “enough”
linear functionals of this type, that is,

f: Ro(Ax) = Ry(A)*

is surjective. The exactness of (8) now follows by dimension count.
We cannot say much about the proof of the lemma and refer the
reader to [Bal]. The main point is that 2 defines a ‘‘stable range” for

the Z-algebra A ([Bal], Th. 11.1) which implies, among other things, that
for r > 2

GL,(A) = GL,(A)E,(A)
(hence GL,(A) = K (A) surjective) and for r > 4
E.(A) = [GL,(A), GL,(A)] .

([Ba1l}, th. 19.5). Put S/,(A) = Kernel of reduced norm. The above implies
that for n > 4 all maps

SLy(A)/En(A) = SLy 1 (A)/Eni1(A) = SL(A)/E(N)

are surjective and all these groups are abelian. Since everything is finitely
generated, this sequence becomes stationary, i.e.

SL,(A)/E,(A) = SL(A)/E(A)
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for all » > 0. One then has an exact sequence
0— SL(A)/E(A) = Ki(A) — Ki(A),

and it remains to show that K;(A) = K;(A) has finite kernel ([Ba 1], 19.12).
This implies the lemma.

We have presented Bass’ theorem here because it can be viewed as an
extension of Dirichlet’s unit theorem. For more results on K; of orders, we
refer the reader to [CR2, Ch. 5]. This chapter also contains a simplified
proof of Bass’ theorem.

10. WHAT IS A UNIT THEOREM?

In the search for the — still missing — ‘“basic structure theorem for units
of orders” it seems natural to keep Dirichlet’s theorem as our landmark; it
gives in fact a presentation for all commutative unit groups. However, if we
muster the small list of other cases in which explicit presentations have been
obtained so far, and if we realize the comparatively elementary character of
these examples, we have to admit that going for presentations is somehow
utopian. Worse still, it might even be inadequate; as the general insolvability
of Dehn’s problems shows, we can never be sure that a presentation, obtained
somehow, gives us the ‘“right” information. For example, how could the
congruence property be checked from a presentation? What then, it will now
be objected, is the aim of our research? This is certainly not the place to dwell
in considerations in the manner of ordinary language philosophy, but the
reader may find it fruitful to ask himself what he means by saying “I know
a certain group” or “I know the structure of that group’. Surely we
know SL,(Z) better than any other noncommutative unit group, but we will
never know everything about it (and hence about groups containing it) because
this would include knowledge of all finitely generated groups.

Leaving aside philosophy, let us try to specify what should be expected
from a ‘““‘general unit theorem” . Unable, of course, to presume its content,
we may be allowed to sketch a list of desiderata.

Let A be simple. The unit theorem should deal with torsion free subgroups
of finite index of ST for arbitrary A; such groups may be called ‘“generic unit
groups of A”’ . The set of generic unit groups is closed under intersections since
any two are commensurable. Naively, a unit theorem for A consists in
the definition, in purely group theoretical terms, of a class of groups
¢ (A) such that almost all generic unit groups of A are members

of ¥(A).
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Of course the elements of %(A) must have all the properties we have
established for the ST'; in particular they must be finitely presented and of
cohomological dimension 7(SA) — n + 1. They should be parametrized by the
numerical invariants of A plus a parameter accounting for the index.
By numerical invariants I mean the various degrees involved as well as
r(SA), discr A for A maximal, perhaps even class numbers and Hasse
invariants. The smaller % (A4) the better the unit theorem; optimally, %'(A4)
consists — perhaps up to finitely many exceptions — of the generic unit groups
of A. Our two examples are 4 = M,(Q), in which ¥(4) consists of the fini-
tely generated free groups, and A = indefinite quaternion skewfield over Q,
in which %(A) consists of the fundamental groups of closed oriented
surfaces.

One should realize that the existence of a definition of %'(A) independent
of A is in no way guaranteed, in other words, that there may be no pre-existing
group theoretical terms by which the generic unit groups of A can be
characterized. This would mean that there are algebras (presumably
skewfields) which produce group — theoretical features not available from
anywhere else, at least not with lesser complexity. The simplicity of the
examples is surely misleading. But this may be a question for logicians and
complexity theorists rather than for an “ordinary’” mathematician.

Given A, we would like to distinguish in %4'(A) the maximal generic unit
groups. For A = M,(Q ), one is a free group of rank 2, occurring as the
commutator group of SL,(Z). (I don’t know whether or not all maximal
torsion free subgroups of SL,(Z) are free of rank 2).

Given A, and A4,, we would like to decide whether or not they share a
generic unit group (and hence infinitely many). In the number field case the
unit rank is a rather weak invariant. In contrast to this, SL,(Z) is unique, as
we have seen in section 7. In the quaternion case, there are coincidences
(see the end of [E1]).

Traditionally the geometry connected with the unit groups was considered
more important than the groups themselves. Paying tribute to this view we
could formulate geometric analoques to the above questions. Let SG be the

elements of 4y of reduced norm one, C C SG a maximal compact subgroup.
For generic A C SG put

X(A) = C\SG/A .

Then the overall program would be fo study the manifolds X (A). This is surely
the most ambitious part, and pointing to the vast amount of work which has
been and is currently devoted to the simplest non-settled S I', the Hilbert
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modular groups, one might criticize this laconic formulation as all too naive.
(The reader who wants to get an impression of the world of mathematics
meeting here should have a glance to the volume [Ge]). On the other hand,
being content with subgroups of finite index, we avoid the complications
arising from the torsion in ST'. It is also conceivable that the projective system
of all X(A) and its limit is the appropriate subject of our hypothetical “basic
unit theorem” . Again it can be asked what is meant by ‘“knowing a space”.
A ‘““space presentation’, as analogue to a group presentation, could be an
explicit cell structure; this has been obtained in a few cases. But here as
elsewhere in mathematics one cannot hope to get ‘“‘everything explicit”; the
real problem is to define the significant invariants and to understand their
mutual relations. If there is a single theorem deserving the name ‘“General Unit
Theorem” it will probably relate arithmetical and geometrical invariants.

Of particular importance will be those of cohomological origin. Note that
in our two examples the decisive invariant (rank and genus, respectively) is
nothing more than a first Betti number. It is clear that things wont’t be so easy
generally. But at least the following result deserves to be mentioned here: for
generic unit groups A; C A, one has

|A23A1 | X (Az) = x(Ay),

x. denoting Euler characteristics. (See [Se 3], p. 86). If these don’t vanish, this
is an index formula, generalizing the Nielsen-Schreier formula

|A2:A1 | (rkAz— 1) = (rkAl — 1)
for A = M,(Q) and the Riemann-Hurwitz formula

| Ay A (g(A)— 1) = (g(A) - 1)

in the quaternion case (g denoting genus).

Finally, let us muster the algebras with small 7(SA) and see what could be
done next. We exclude A = K; that is kK = ns > 1 formula (5). Note that
ri’ >0 implies s even, in particular > 0. r(SA) = 0 occurs only for
ri=r,=0,n=1,s =2, r; arbitrary. This means that A is a totally definite
quaternion skew field, and we have noted already that ST is finite in such cases
which we therefore consider as settled. (It is interesting to note that these
algebras are exceptional in other respects, too — to ‘“compensate” for the
easy unit theory, their module theory is more difficult.) »(SA) = 1 is not
possible (as the reader should check from (5). (Conceptual explanation:
if r(SA) = 1, then a generic unit group would be the fundamental group of
a one dimensional manifold, hence abelian. On the other hand, if it is infinite,

1
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it is Zariski dense in SG, by a theorem of Borel ([P]), Th. 1.5). Thus, A would
be commutative). If 7(SA) = 2, by necessity r, = 0, ns = 2, r; > 0. We may
have n =2, s =1 and consequently r;’ = 0; this gives 4 = M,(Q); or
n=1=r],s=2and r; arbitrary. Then A is a quaternion skew field over
a totally real K ramified at all but one of the infinite primes of K. (Eichler’s
case is 7{" = 0.) The image of the ST in PSL,(R) are special Fuchsian groups
characterized among all Fuchsian groups by the behavior of their traces [Ta].
Now finitely generated Fuchsian groups have a standard presentation given by
their ““signature’ (see [F], p. 37). It should be possible to calculate the
signatures in terms of the arithmetic invariants of A, generalizing Eichler’s
result. 7(SA) = 3 requires r;= 0, r, = 1, ns = 2, r{" arbitrary. s = 1, r{" =0
is the case of the Bianchi groups. For n = 1, s = 2, r| arbitrary A is a
quaternion skewfield over a field K with one complex embedding, ramified at
all real infinite primes of K. The images of ST in PSL,[C] are special
Kleinian groups, acting discontinuously on hyperbolic 3-space. It should be
possible to treat them as the Bianchi groups. Similarly with 7(SA) = 4 we
encounter the Hilbert modular groups, but also quaternion skewfields over
totally real fields ramified at all but two of the infinite primes (r, = 0,
ri=1,s=2, n=1, r{’ arbitrary). At least if ;" =0 (so A is ramified
only at finite primes) the skewfield case can hardly be of more complicated
structure than the matrix case; it should be even easier in view of the fact that
bounded fundamental domains exist. That they have been studied much less
must probably be ascribed to the circumstance that it is not so easy to write
down units in skewfields. This brings us to our last point namely the

PROBLEM. Give an algorithm which constructs generators of a subgroup
of finite index of ST.

This problem has in principle been solved by Grunewald and Segal ([GS],
Algorithm B). As so many other results of this survey, their algorithm applies
to arithmetic groups and is, as the authors point out, even in this generality
not best possible. Bringing in, in the case of units of orders, the underlying
ring structure, one should be able to give manageable procedures. The main
interest lies in the case A = D which seems to be untouched (in this respect).
Since every x € I *\R* generates an extension of number fields K(x) | K,
the methods of computational number theory will enter the game. In view of

this, it will be of advantage that we may choose A to be a cyclic crossed
product order.
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