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FLOT GÉODÉSIQUE 43

6. La constante de Lévy et le volume du fibré tangent
À LA SURFACE MODULAIRE

Si l'on tronque à l'ordre n le développement en fraction continue d un

nombre a [0; ü\% ...,an, ...], on obtient un nombre rationnel pn/qn5 appelé

convergent d'ordre n dex. Ces nombres se calculent facilement par récurrence,

et on a les formules:

p0 0 Pi a0a{ + 1 Pn - ClnPn -l + Pn-2 SÎ lî ^ 2

q0 1 qi ax qn anqn _ i + qn -2 si n ^ 2.

Les convergents sont les meilleures approximations rationnelles de x, ils

satisfont | x - pn/qn I < 1 /q\- Pour évaluer la vitesse d'approximation, il est

intéressant de connaître la croissance des qn; celle-ci est donnée, pour presque

tout nombre, par la proposition suivante, due à Lévy [Le].

Proposition. Pour presque tout nombre, la suite des dénominateurs des

convergents satisfait:

r log qn
lim

12 log 2

I 1 °\
Preuve. Nous allons étudier la géodésique issue de Notons

\-x \)
_

Tj, t2, t„, ses temps successifs d'intersection avec la surface É; quitte
à écarter un ensemble de mesure nulle, nous pouvons supposer qu'il y a une

infinité d'intersections. On définit une suite xn par x_ 1 1, x0 x,
xn + 1 xn _ 1 - an + ixn; on vérifie facilement que xn/x„ _ 1 Tn(x). On

montre par récurrence que le point d'intersection d'ordre 2n avec E est

donné par:

X2„-1 qm-1\/eT2»/2 0

~X2„ q2nJ\0

°
X2n/2)

et une formule analogue pour l'intersection d'ordre 2n + 1 ; le point essentiel

consiste à voir que l'on passe d'un point au suivant en multipliant à droite par
une matrice diagonale correspondant au flot, et à gauche par une matrice
entière correspondant à un changement de coordonnées; cette matrice est

A l f / 1 0\ /I a2n+l\
de la forme ou suivant la parité.

\a2n 1/ \o 1 /
On a le lemme suivant:
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Lemme. Soit I un élément de E0/ on a toujours 1/2 ^ d < 1.(-» 3
Preuve du lemme. On adr+Z?c=l,öetc sont positifs, donc d est

inférieur à 1; comme c est inférieur à d et b inférieur à l,2öf est supérieur
à 1, d'où le résultat.

Suite de la preuve. Appliqué aux points calculés plus haut, ce lemme

implique que, pour tout point x, on a: 1/2 ^ qne~Tn/2 ^ 1. Si l'orbite de x
recoupe une infinité de fois la surface de section, en prenant le logarithme et

en divisant par «, on en déduit:

r logqn Tn
hm„ _ oo 0

n 2 n

Autrement dit, le terme qui apparaît dans le théorème de Lévy est la moitié
du temps de retour moyen le long de l'orbite. Compte tenu du fait que le

/I c\
temps de premier retour d'un point ne dépend que de x, et du

\* d)
codage donné au paragraphe précédent, on voit que, si l'on appelle x(x) la
fonction temps de premier retour, on a:

T 1 n~ 1

- - I X
n n i o

Cette expression est la somme de Birkhoff associée à la fonction temps de

retour. Mais on sait que le flot géodésique sur la surface modulaire est

ergodique; donc cette fonction tend presque partout vers une constante, qui
est la moyenne du temps de premier retour sur la surface £. Cette moyenne
est elle-même le quotient, par le volume de la surface, de l'intégrale de ce temps
de retour sur E, qui n'est autre que le volume de l'espace tout entier. Cet

espace est le fibré tangent à la surface modulaire. Cette surface est d'aire 7t/3,
puisqu'elle admet dans le plan hyperbolique un domaine fondamental qui est

un triangle isocèle d'angle 0,71/3, 7t/3 ; il suffit pour obtenir l'aire d'appliquer
la formule de Gauss pour les triangles hyperboliques. Le fibré tangent a pour
fibre PSO(2, R), qui est de longueur n (ne pas oublier que - Id agit de façon

triviale, c'est pour cela que la fibre a pour longueur n et non 2n comme on

s'y attend); le volume total de l'espace est donc n2/3.
On a vu plus haut que l'aire de Z est 2 log 2; le temps de retour moyen

est donc 7i2/(6 log 2), et compte tenu du facteur 2 introduit dans le calcul, on

retrouve bien la constante cherchée.
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