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A THEOREM OF PAULIN 20Y

is the subject of Section 3. Section 4 contains some concluding remarks and
a brief discussion of recent work which draws on ideas similar to those

discussed in this article.
SECTION 1: HAUSDORFF-GROMOV CONVERGENCE

Until further notice, we fix a compact metric space X and denote by
Z(X) the set of closed subsets of X. We shall always denote the open
g-neighbourhood in X of A C X by V. (A4).

The starting point for our discussion is the following classical construction.

1.1 DEFINITION. The Hausdorff metric on < (X) is defined by:
D(A,B) = inf{e|A C V.(B) and B C V.(A)}.

1.2 PROPOSITION. D is indeed a metric and % (X) equipped with
this metric is compact.

Proof. The only nontrivial point to check is that ¥ (X) is compact.

Consider a sequence C; in ¥ (X). We must exhibit a convergent sub-
sequence. First notice that given any € > 0 there exists an integer N(g) such
that, in its induced metric from X, every A € % (X) can be covered by N(g)
open balls of radius €. Indeed, because X is compact one can cover it
with N (g) balls of radius €/2, then for each such ball which intersects 4 one
chooses a point in the intersection and takes the ball of radius € about that
point. Thus for every positive integer n and every C;, by taking duplicates if
necessary, we may assume that C; is covered by precisely N(1/n) balls of
radius 1/n, with centres x,(i,j) for j =1, ..., N(1/n). Furthermore, it is
clear from our description of how to choose the x, (7, /) that this can be done
so as to ensure that x,,1(i,/) = x,(i,j) if j < N(1/n), thus we may drop the
subscript n.

At this stage we have constructed sequences of points {x(i, )}, C C;,
each of which has the property that for all # € N the balls of radius 1/# about
the first N(1/n) terms in the sequence cover C;.

C,ax(1,1),x(,2),...,x(1,)), ...
CZ = X(z, 1)3 X(z, 2)7 seey x(2>j)s

Ci s x(, 1),x(3, 2),...,x(>1, )), ...
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Now, because X is compact, we may pass to a subsequence of the C; in
order to assume that the sequence x(i, 1) converges in X, to x(w, 1) say.
Let C; denote this subsequence. Inductively, we may pass to further
subsequences Cf.‘ in order to assume that for j =1, ...,k each of the
sequences {x(i,j)}; converges in X to x(w, /). Let C, be the closure in X
of {x(w,/)|j e N}. We claim that the diagonal sequence C ’,ﬁ converges to C,,
in Z(X). To simplify the notation we write Cy in place of C%.

Observe first that because there is a uniform bound of 1/# (independent
of / and k) on the distance from x(k,/) to Z(k,n):={x(k,/)};<nN@/n)s
for all / and k we have that the D-distance from {x, ;} to X(®,n)
i={x(®,/)};<nasm 1is at most 1/n. Hence the D-distance from C,
to X(w, n) is at most 1/n.

Thus, for any n > 0, whenever k is large enough to ensure that
d(x(k, ), x(w,))) < 1/n for all j < N(1/n), we have:

D(Cy, Co) < D(Cy, Z(k, m) + D(Z(k, n), Z(w, n))
+ D(Z(w, n), Co) < 3/n. ]

Remark. Already in the above proof we see two of the central themes
which recur at the heart of future proofs. First of all, there is the idea of
approximating compact sets by finite ones in a uniform way, and secondly
there is the use of a diagonal sequence argument to construct a limit object
as (the closure of) an increasing union of finite sets.

A more general form of Proposition 1.2, concerning the Chabauty
topology, can be found in [CEG]. A quick development of similar ideas is
given in C. Hodgson’s (unpublished) notes [H].

The following lemma shows how one can rephrase the convergence of
compact subspaces in terms of the more familiar notion of convergence of
points.

1.3 LEMMA. A sequence {C,},en in 7Z(X) convergesto C e Z(X)
if and only if the following two conditions hold:

(1) for all x e C there exists a sequence x,€ C, such that x,— x
in X;

(2) every sequence y,u € Cniy With n(i)— o has a convergent
subsequence whose limit point is an element of C.

Proof. The necessity of conditions (1) and (2) is clear. Conversely, if C,
does not converge to Cin % (X) then, by passing to a subsequence if necessary,
we may assume that there exists € > 0 such that D(C,, C) > ¢ for all n.
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There are two cases to consider. First, if for infinitely many values of # it is
the case that C, is not contained in the g-neighbourhood of C, then by
passing to a further subsequence we obtain x, € C, — V. (C). Since X is
compact, one can abstract a convergent subsequence of the X, which
converges to some X, & V. (C), thus (2) fails.

The other possibility which we must consider is that for infinitely many
values of n there exists z, € C — V¢(C,). But in this case one can take a
convergent subsequence, say Z, — Zo € C, and then D(z,,C.) = ¢ for
arbitrarily large values of 7, thus (1) fails. []

We wish to consider what it means for a sequence of compact metric spaces
to converge to a limit space when there is no obvious ambient space containing
the sequence. For this we need the following definition.

1.4 DEFINITION. An s-approximation between two metric spaces A
and A, is a subset R C Ay X A, such that:

(1) the projection of R to A; isonto for i=1,2;

@ if @), (¢, y)eR then |ds (x,x) — da, (3, 3] <e.
If there exists an s-approximation between A, and A, then we write
A, ~.A,. The Hausdorff-Gromov distance between A, and A, is:

Dy(A,, A,) = inf{e lAl ~c A2} .
If there exists no € such that A, ~.A,, then Dy(A:,A,) is infinite.

Remark. Sometimes, in the course of an argument, ‘approximations’ R
arise which are similar to those in the above definition, but which do not (quite)
project onto A, and A4,. For example, it may happen that one has a naturally
defined e-approximation between dense subsets of A; and A,; in this case,
given any €’ > g, one can extend the given relation to obtain an &’-approxi-
mation between 4, and A,. Similarly, if one has a relation R C 4A; X A,
whose projections to A, and A, are e-dense (in the sense that every point is
within a distance € of these projections) then R can be extended to a
3e-approximation between A; and A,. In what follows, when necessary, we
shall implicitly assume that approximations which arise are adjusted so as to
make their projections surjective, in accordance with Definition 1.4.

Terminology. We say that a sequence of metric spaces C, converges
to C in the Hausdorff-Gromov topology, and write C, = C, if and only
if Dy(C,,C)—0 as n— o. Given a relation R C 4, X A,, the phrase
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(x, ) € R will often be written xRy, or ‘x is related to y’, or ‘x corresponds
to y’.

In closer analogy to the Hausdorff distance between compact subsets of
a fixed metric space, one has the so-called Hausdorff distance between
compact metric spaces 4; and A,. For this one considers all metric spaces X
which contain isometric copies of A, and 4,. As in (1.1) one can consider
the distance between A; and A, in ¥(X), and the Hausdorff distance
between A, and A, is defined to be D,(A;, A,):= infx{Dyx (A, A2)}.
It is not hard to show that for compact spaces Dy = 2D,.

It is clear that the Hausdorff-Gromov distance between a metric space and
any dense subset of it is zero, and hence limits of sequences of spaces are not
- unique in general. However:

1.5 PROPOSITION. Two compact metric spaces A and B are
isometric if and only if the Hausdorff-Gromov distance between them
is zero.

Proof. We shall show that if Dy (A, B) = 0 then A and B are isometric,
the other implication is trivial. Let {a,} be a countable dense subset of A4
and let R,, be a (1/m)-approximation between A and B. We choose
bm . € B so that a,R,b, ,. We can pass to a subsequence of {b,, 1}n
and assume that b, ;= b, in B. By passing to a further subsequence
we may assume that b, , = b,, and so on. For all n,n’, m we have that
| da(@an, an) — dg(bm ns bm )| < 1/m, and hence d4(a,, a,’) = dg(bn, by).
Thus, we obtain the desired isometry 4 — B by taking the unique continuous
extension of @, b,. L]

Thus, if we confine ourselves to compact metric spaces then limits are
unique whenever they exist. We saw in (1.2) that if a sequence of compact
metric spaces is contained in an ambient compact space then it has a convergent
subsequence. Recall that closed subspaces of a fixed compact metric space
are uniformly compact in the following sense.

1.6 DEFINITION. We say that a family {C;};c; of compact metric
spaces is uniformly compact if there is a uniform bound on their diameters,
and for every &> 0 there exists an integer N(g) such that each of
the {C;} can be covered by N(g) balls of radius e.

A set of points in C; which has the property that the e-balls around these
points cover C; is called an g-net for C;. The corresponding cover is called
an g-cover.
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Notice that the integer N(g), which is sometimes called the e-count, plays
a significant role in our proof of (1.2). Gromov has shown [G1]:

1.7 THEOREM. If a sequence {C;},en of compact metric spaces is
uniformly compact then there is a subsequence which converges in the
Hausdorff-Gromov metric.

If one insists that the limit be complete, then it will be compact. It is
possible to establish Gromov’s criterion by a direct adaptation of the proof
of (1.2) presented above. (The major difficulty in doing so is that one can no
longer use the presence of the ambient compact space to deduce the existence
of the points x(w,j), and instead one must pass to suitable subsequences to
ensure that for all j,j’ the sequence of numbers d(x(i,/),x(i,j"))ien
converges; x(w,j) should then be defined to be a certain sequence
{x(i,/)}ien; the limits of the above sequences of numbers give a
(pseudo-)metric on the set of the x(®, j), and after identifying points which
are a distance zero apart and taking the completion, one obtains the desired
compact limit space.)

In [G1] Gromov established his compactness criterion by a different
argument, embedding the sequence {C;}; .~ as compact subspaces of a fixed
compact space. We emphasized the alternative proof sketched above for
two reasons. First of all, the strategy of proof is much the same as that which
we shall employ in Section 2 in order to construct the R-tree referred to in the
statement of Paulin’s theorem. Secondly, the argument suggested above
highlights the degree of flexibility which one has in constructing limit spaces.
In particular, if one has a sequence of well-understood spaces, then it is
possible to make points in the limit correspond to specific points in the limiting
spaces, and hence one can then use the geometry of the limiting spaces to
elucidate the structure of the limit.

Convention. Given a convergent sequence of spaces C; — C and g;-relations
R; C C; x C with g — 0, one says that the sequence {x;};cn,X € C;
converges to X, € C if x;R;x. . Under these circumstances, we write x; = X o
and say that x; approximates x. in C;.

It is clear from the preceding discussions that Hausdorff-Gromov
convergence is very natural in the context of compact metric spaces, however
it is a less satisfactory concept of convergence for non-compact spaces. One
obvious disadvantage is that the distance between a compact space and an
unbounded space is always infinite. Thus, for example, Hausdorff-Gromov
convergence is insufficient to capture the intuitive notion that as the radius of
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a sphere of constant curvature tends to infinity, the sphere looks increasing
like Euclidean space. There are at least two useful ways of extending the notion
of Hausdorff-Gromov convergence so that it is better adapted to the study of
non-compact spaces. The first, which was introduced by Gromov [G1], gives
a notion of convergence for proper metric spaces (i.e., metric spaces in which
closed and bounded subsets are compact) with a choice of basepoint.

1.8 DEFINITION. Let {X.};cn be a sequence of proper metric spaces
with basepoints x; € X;. The sequence of pointed spaces {(X;;Xxi)}ien
is said to converge to (X;x) if forevery r > 0 the sequence of compact
metric balls {B(x;,r)};cn converges to B(x,r) C X in the Hausdorff-
Gromov metric.

We call this notion of convergence ‘pointed Hausdorff-Gromov con-
vergence’.

Remark. 1If we fix a basepoint x, on the m-dimensional sphere S, of
radius n, then (S,; x,) converges to the flat space (E”; 0). In particular, this
example shows that pointed Hausdorff-Gromov convergence does not imply
that the corresponding (unpointed) metric spaces converge in the Hausdorff-
Gromov metric. For instance, in this example Dy (S,, E™) is infinite for
all n.

Gromov’s compactness criterion for sequences of compact spaces implies
that if for every r > 0 the balls {B(x;,r)};en are uniformly compact,
then {(X;; x;)};n~ has a convergent subsequence. But if one insists that the
limit space (X; x) be complete, then it is necessarily proper (and unique, by
an easy extension of (1.5)). Thus one needs an alternative notion of
convergence in situations where the spaces which appear as a limit of proper
spaces are not locally compact. Such a situation arises in the study
of degenerations of hyperbolic structures [Sha]. A suitable notion of
convergence in such cases was introduced by Paulin in his thesis [P1]
(see also, Bestvina [B]). Paulin calls this notion Egquivariant Gromov
Convergence. The idea is that finite subsets of the limit should be equivariantly
approximated by finite subsets of the limiting sequence (see Section 4 below).
It is important to emphasize that even when the group in question is the trivial
group, equivariant Gromov convergence does not imply Hausdorff-Gromov
convergence. Indeed, in the cases of most interest one typically obtains limit
spaces which are not locally compact (R-trees).

With respect to equivariant Gromov convergence, limits are not unique
in general, but Paulin has shown that under suitably strong convexity
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hypotheses one can establish the existence of limits by means of an extension
of the compactness criterion of Gromov referred to above.

In this article our main interest lies with constructing group actions
on R-trees by producing these trees as a limit of 8-hyperbolic spaces. We are
not interested in the type of convergence which occurs so much as we are in
the properties of the limit. In fact, in our situation, one can deduce these
properties simply by looking at Hausdorff-Gromov convergence on compact
subsets. The proof of the following proposition gives an illustration of the
techniques involved. For this proof we shall need the following terminology.

Terminology. If R is a relation in A X B and C C A, then we define
the R-image of C in B (or, more briefly, the image of C in B) to be
projz(proj ; '(C) n R). Given D C B, the image of D in A is defined
similarly. Note that if R C A X B is an g-approximation, then for every
subset C ¢ A with R-image D C B, the restricted relation R n (C X D)
is an e-approximation between C and D.

We recall some basic definitions. A metric space is said to be a geodesic
space if every pair of points x, y € X can be joined by a topological arc which,
with the induced metric, is isometric to [0, d(x, ¥)] € R. Such a topological
arc is called a geodesic segment. In general, one does not require such geodesic
segments to be unique, but despite this it is often convenient to use the notation
[x, y] for a definite choice of geodesic segment from x to y.

Given a graph X (i.e., a 1-dimensional CW complex) one can turn it into
a geodesic metric space by fixing a homeomorphism from each 1-cell to [0, 1]
and pulling back the metric; one can use these local metrics to measure the
length of paths, and one obtains a geodesic metric space by defining the
distance between two points to be the infimum of the lengths of paths
joining them.

Given a connected subgraph or a connected compact Y C X one defines
the induced path metric on Y by setting the distance between two points equal
to the length of paths in Y which connect them. It is easy to see that this
endows Y with the structure of a geodesic metric space, and if X is a locally
finite graph then Y, thus metrized, is a proper geodesic metric space. It also
follows easily from the definition that the distance between two points in the
induced path metric on Y is at least as great as the distance between these
points in X.

The definition of a &-hyperbolic space was given in the introduction. The
definition which we gave is called the 8-slim condition in [Sho]. It is not
difficult to show that this is equivalent to requiring that there exists a
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constant 8’ so that every non-degenerate geodesic triangle in the given geodesic
metric space admits a map to a tripod (a metric graph with 3 edges, 3 vertices
of valence 1, and one vertex of valence 3) so that this map restricts to an
isometric embedding on each side of the triangle, and the fibres of the map
have diameter at most &’ (see [Sho], p. 16). The following proposition is
from [P4].

1.9 PROPOSITION. Let {C;};en and C be compact metric spaces
such that C; converges to C in the Hausdorff-Gromov topology.

(1) If C; are geodesic metric spaces, then C is a geodesic metric space;

(2) if C; are, in addition, &;-hyperbolic with &,— 0, then C is
an R-tree.

Proof. Let R, be an g;-approximation between C; and C with
g; > 0. Given x,y € C, we choose x;,y; € C; with x;R;x, y;R;y. Thus
| d(x,y) — d(xi, ;) | < g¢;. Note that the numbers d(x;, y;) are bounded.
Let w;:I;— [x;,y;] be an isometry of I; = [0, d(x;,y;)] to a choice of
geodesic [x;, y;] joining x; and y;. We have d(x;,y;) > d(x,y) and
I,— 1, =1[0,d(x,y)]. Let L; be the R;-image of [x;, y;] and let K; be the
closure of L; in C. Then, K; is g;-close to [x;, ¥;] and hence to I; (in the
Hausdorff-Gromov metric). By 1.1, a subsequence of {K;}; < n, Which we still
denote by K;, converges in the Hausdorff metric, to K C C say. But
dul,K;) <dyU, 1)) + dy(;, K;), which goes to 0 as i = oo. Thus K is
isometric to /. Since x,y € K (in fact they belong to all L;) and since
d(x,y) = [(I.), the isometry I, = K gives a geodesic joining x and y. This
proves assertion (1).

To prove the second part of the proposition, we first show that
if 8; — 0, then there is a unique geodesic joining x to y in C, and hence
every geodesic in C arises as in the first part of the proof. We fix a
geodesic [x, y] which arises as in the first part of the proof, and consider
an arbitrary geodesic joining Xx, y; let z be the midpoint of this second
geodesic. We must show that z € [x, y]. By the above construction, we
obtain geodesics [x;, z:1, [z:, ¥:] In C; converging to geodesics [x, z], [z, ]
joining X,z and z,y respectively. Consider in C; the geodesic triangles
with sides [x;, y:], [¥i, z:], [z:, x:]. Choose z/, y/, x] on [x;, ¥:], [z:, Xxi],
[y:, z:] respectively so that d(x;,z;) = d(x;,y}), d(z;,y}) = d(z;, x]) and
d(yi,z!) = d(y;,x]). It is not difficult to see that d(y;, z;), d(z, x}),
d(x{, y;) are all less than 46; (cf. [Sho], p. 17, proof of slim implies thin).
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Thus, as i — o, we see that x/, y;, z; converge to the same point, say z°,
on [x,y]. Thus d(x;,»!) + d(yi, x]) — d(x;, y:) converges to zero. Since
d(x;,z;) + d(y:i,z;) — d(x;,y;) also converges to zero, we have that
d(y!,z;) + d(z;,x]) converges to zero. Since d(z;,z;) <d(z/,)})
+d(y;,z;) <48; + d(¥/, z;) we see that the z; converge to the point z” on
our original geodesic segment [x, y]. Thus z, the midpoint of our arbitrary
geodesic from x to y, coincides with the midpoint of our fixed geodesic.
Repeating the argument we see that these geodesics must agree at a dense set
of points, and hence everywhere. Since geodesic triangles in C; are S;-slim,
and geodesics in C all arise as limits of geodesics in C;, we see that geodesic
triangles in C must be 0-slim, and hence C is an R-tree. L]

Remark. If one has a sequence of §;-hyperbolic spaces C;, with C; = C
and 8,— 8 >0, then one can extend the preceding argument to show
that C is &’-hyperbolic (with §" = 198, for example).

SECTION 2: THE PROOF OF PAULIN’S THEOREM
In this section we shall prove the following theorem of F. Paulin [P4].

2.1 THEOREM (Paulin). If I is a word hyperbolic group and
Out(Y') is infinite, then 1 acts by isometries on an R-tree with virtually
cyclic segment stabilizers and no global fixed points.

In its outline, the proof given below is very similar to Paulin’s original
proof, except that we use Hausdorff-Gromov convergence instead of the
equivariant Gromov convergence used by Paulin. In particular, this allows us
to avoid the difficulties discussed in the next section.

Let S be a finite set of generators for I' and let X = X(I', S) denote the
Cayley graph of I' with respect to S, as defined in the introduction. I is the
vertex set of X and receives the induced metric. The hypothesis that I" is word
hyperbolic means precisely that there exists & > 0 such that X is a §-hyperbolic
geodesic metric space. Note that with our definition of a Cayley graph, the
endpoints of each edge are distinct, and there is at most one edge joining each
pair of vertices; hence the action of I' on itself be left multiplication can be
extended linearly across edges in a unique way to give an isometric action
of I' on X.

The proof of Theorem 2.1 will be broken into a number of smaller results.
We begin by noting that, because Out(I') is infinite, we can choose a sequence
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