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324 V. F. R. JONES
2. THE ABSTRACT ALGEBRAS

The (abstract) Brauer algebra with parameter & € C, B(n,d), is the
algebra with basis the set of all (n, n)-diagrams and multiplication law
af = 8P g o . We could say it is the twisted monoid group algebra for
the monoid (D(n, n),o,1) and the cocycle &”. We have thus at our
disposition two other series of abstract algebras with parameter, subalgebras
of the Brauer algebra:

P(n, 8) = The subalgebra spanned by planar diagrams
also called the Temperley-Lieb algebra T'L(n, d),
in fact invented as diagrams by Kauffmann ([K]).

A(n, 8) = The subalgebra spanned by annular diagrams.

The structure of the Brauer algebra has been studied extensively. See
[W], [HW] for much information, and P(n, &) is particularly well understood
(see [GW], [GHIJ]). In this section we will give the structure of A(n, )
whenever it is semisimple (over C). It will be worthwhile to call the algebra
simply A (n) in this section since we will only consider a fixed & (# 0).

Definition 2.1. (i) We call E(n, t) the diagram (in .«/(n, n;t))

(so that E(n, n) = 1).
(i) We call V(n, t) the diagram (in o7 (n, n; t))

t(‘

(so that u = V(n, n) and E(n,0) = V(n,0)).
Note: the role of * is unimportant, it serves only to have a well defined
| plgment.
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_(n—-1
LEMMA 2.2. Let e, € A(n) be d (2 )E(n, 1) and v, € A(n) be

n-—1
5—( ’ )V(n,t). Then
Q) e’ =e,.
(i) (v)' = e, (so e, v, = v,e).
(i) E(n,t)c o/ (n,n) o E(n,t) C U<, (n,nj)
u{V(n,nklk=0,1,2,..,t—1}.
(iv) If De </(n,n;t), thereare D, and D, in o/ (n,n,t) with
D=D,oE(n,t)°D,.
Proof. (i) and (ii) are evident from diagrams and the multiplication
structure in A (n).

(iii) For any D in /(n,n), x = E(n,t) © D © E(n, ) is as below.

where there is any annular diagram in the intermediate annulus (shaded). But
we see that if x has ¢ through-strings, the intermediate system must connect
all of the outer through-strings to one of the inner ones. Once one connection
1s fixed, all the others must follow in cyclic order, so x is a power of V
(with respect to °).

(iv) As in the proof of Corollary 1.16, we may write D = E, o E, with
E, e /(n,t;1), E, e </(t,n;t). But then pulling the strings around in
the middle and introducing 5~ isolated circles we see that D admits the
desired decomposition. [
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We proceed to determine the structure of A4 (n, 8) when it is semisimple.
Note first that the through-strings give a filtration of A (n) by ideals.

Definition 2.3. A(n;t) is the two-sided ideal linearly spanned by
diagrams with < ¢ through-strings.

Thus if A(n) is semisimple, it is isomorphic to the direct sum
@, _, —A;’(qn(,"—;_’)z—), and to determine its structure it suffices to determine that
of the quotients, which of course are all semisimple.

THEOREM 2.4. If & s such that A(n,d) is semisimple,
A matrix algebra of size cat (g) if t=0 and n even.
A(n,t—2) | The sum of t matrix algebras of size (n_—t) if t>0

(and n—t even). 2

Proof. Suppose first ¢t > 0. Let A stand for A(n,t)/A(n,t—2) for
short and let it be isomorphic to 69:.: , M, (C). Identify elements of A(n, ¢)
with their classes modulo A4 (n, f — 2). Then by (iv) of Lemma 2.2, the 2-sided
ideal generated by e, is all of @:: M4, (C) so we can write e, = @:z \Di
with p; a non-zero idempotent in each M, (C). But A is linearly spanned by
the diagrams in o/(n, n;t) so by (i) and (iii) of 2.2, e,Ae, is abelian of
dimension ¢. Thus each of the p;/s is a minimal idempotent, r = ¢ and of

n 2
course Zf.:ldf‘:t(n—f) by (1.16). But also &/(m,n;t) o E(n,t) is

2
exactly all diagrams of the form

=

>
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so that the ones representing non-zero elements of A are in bijection
n

with  .o/(n,t;t). Hence dim(Ae;) = | Z(n,t;1) | = ¢ (n_—_f) . However,

2
(®!_ M, (C) (®;_,py) is a vector space of dimension Zledu e
we have

t n t n
Y d?=t(n—r) and ) d,~=z(n__) .
i=1

-t
2 i=1 2

n

Thus each of the d;’s is equal to (g_—_f) (e.g. by the ‘“equality” case of
2

the Cauchy Schwartz inequality (Xd;-1) < |/Xd? /). This proves the
theorem for ¢ > 0. The case ¢ = 0 follows from the same argument, using
dim (.«/(n, n; 0)) = cat(n)? and dim(.</(n, n;0)ey) = cat(n). [

Note that one could avoid the slightly clumsy Cauchy-Schwartz argument
by showing that the commutant of C[Z/tZ] is A(n), which is not hard.

Remark 2.5. In fact it is clear from the proof that the algebra
e.(A(n, 1)/ A(n,t —1))e, is naturally isomorphic to the group algebra
C[Z/tZ], so that the various matrix algebras in A(n,?¢)/A(n,t—2) are
naturally indexed by the 7#-th roots of unity.

Remark 2.6. 1In view of 2.5, another way of stating Theorem 2.4 is to say
that, if 4 (n, d) is semisimple, its irreducible representations are parametrised
by

(i) the number of through-strings ¢

(i) a f-th root of unity m.

Moreover the irreducible representation n = n, , corresponding to (¢, ®) is

characterised by the fact that n(v;) = wn(e;), and may be given quite
explicitly as follows:

If W is the vector space spanned by .</(¢,n;t), W becomes an
A(n) — C[Z/tZ] bimodule under the left and right action:

DoEoF for De «/(n,n) and F € </(¢, t; t), identified
D-E-F= with Z/tZ .
0 if D o E has <t through-strings.

Then if P, =1Y,_, @0 ‘u’ (u as in 1.10), 7, is left multiplication
on VP,.

We give the structure of the subalgebra A4 (n) of 4 (n) spanned by oriented
diagrams. With obvious notation the result is
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THEOREM 2.7. If & is such that A(n,d) is semisimple, (n even),

n
A matrix algebra of size cat (2) if t=0.

A(n, 1)/ A(n,t = 2) = { The sum of 5 copies of a matrix algebra
n

of size (n_—t) if t>0.
2

Proof. One can simply repeat the proof of Theorem 2.4, the only diffe-

rence being that the role of the element v would be played by v2. One could

—

also deduce 2.7 from 2.4 in several ways. One is to note that .2/ (n) is the fixed
point algebra for an involutive automorphism of .&/(n) sending u to — u.

Another way is to observe that the irreducible representations of .o/ (n)
2l — lj)

n

parametrised by (¢, ) (£ > 0) remain inequivalent for w = exp(

—

Jj=0,1,...5 — 1 on restriction to .2/(n). This is because Uf = ?e¢, in that
representation. Then adding the sums of squares of the dimensions one gets
the number of oriented diagrams by 1.20. [

Finally we make some remarks about generators and relations. As we saw in
the introduction, if we put f; = u‘e,_,u~‘(and F; = wE(n—2;n—2)u"")

1

for i=1,2,...,n, the f’’s satisfy f2=fi, fifis1fi=8 2f; so that if
gi=qfi—Q~f) (for g+ qg~'+2=235?), the map T;~ g;, p~ u gives
a homomorphism from the affine Hecke algebra of type A, with para-
meter g onto the diagram algebra A(n,2 + ¢ + ¢ ~'). Thus in particular we
have constructed some very explicit irreducible representations of the affine
Hecke algebra, for certain values of g.

One reason, besides subfactors, for looking at oriented diagrams in the
even case is that they allow us to determine the subalgebra generated

by fl,fZ’ '“sfn (Or g1, '--9gn)‘

LEMMA 2.8. If n is even the following three algebras are equal (even
if A(n,d) is not semisimple).

(1) The subalgebra of A(n) generated by fi,f2s..cs [n-
(i) The two-sided ideal generated by f, in A(n).
(iii) A(n,n —2).

Proof. The equality of (ii) and (ii1) follows from a special (oriented) case
of (iv) of 2.2.




AFFINE HECKE QUOTIENT IN BRAUER ALGEBRA 329

The algebra of (iii) contains the f;’s by definition. That (iii) implies (1)
will follow if we can show that any element of U, ., </(n, n; t) is expressible
as a product of F,’s. That this is true for diagrams having a straight through-
string is a well known fact about the Temperley-Lieb algebra. But if D is an
oriented diagram with less than n through-strings, either D has zero through-
string and we are in the Temperley-Lieb situation, or D © u* has a straight
through-string for some even k. Thus Du* is a word on the F;’s and it
suffices to show that F;u2 is a word on the F;’s for all i. It follows from a
picture that F,u-2% = FF;, ... F,F\F, ...F;_,. [

Remark 2.9. We leave it to the reader to show that Lemma 2.8 is true
without the —’s if »n is odd.

Remark 2.10. 1t follows from 2.8 that the elements v, are in the algebra
generated by the F;’s for f < n. We record the expression

v:_,=F,0F 0F,0 --0F,,

n

Thus rotations are unavoidable even if one is only interested in the structure
of the algebra generated by the F;’s.

3. THE BRAUER REPRESENTATION

So far we have begged the important question of when the algebra A4 (», o)
is semisimple. We do not have a complete answer for this but we shall show
that it is semisimple whenever § is an integer > 3, (and that A(n, — 2) is not
semisimple for n > 3) by using a representation onto a C*-algebra which we
will show to be faithful for such &. That the representation is faithful for »
fixed and large integral (hence any large) 8 is rather easy.

Definition 3.1. Let V be a vector space of dimension k and basis
Wi, Wy, ..., Wi, If the diagram D e D(n,n) has n connecting edges
called g, define B(D) € End(® " V) by the matrix (with respect to the basis
{(We, @We, ® - @ w, |a;=1,2,...k} of ®"V)

BD)gritn = T 8(ase, aee)
£

where s(€), b(¢) are the two ends of the edge ¢, labelled from 1 to 2#, and,
just in this formula, & is the Kronecker 8.

LEMMA 3.2. D B(D) defines a homomorphism of B(n, k) (hence
A(n, k)) onto a C*-subalgebra of End(®"V).
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