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72 M. KERVAIRE

Thus,

Su) = H (1+(g:—Dx;) - H 1-x,

ieS ieS’

where S C {1, ..., s} is the set of indices i for which #; = 0, and S’ C {1, ..., s}
the set of indices i for which u; # 0.
Another way of writing f(u) is

Sfu) = f[ (1 =x)»@0 - (1 + (g;— Dxp)! =~ 7o
P=1

Plugging this formula into ), _,, f(u), we get

s - x; w(u;
LyemS (M) = Hj=1(1 +(gi — Dx;) - zueMﬂi:l (1+(q,-—1)x,~) o
s 1—-x 1 — x5
=], (0 +(q;i— l)xi)'PM(1+(ql—11)xl>“"1+(qs~1)x5) :

Comparing the two expressions for }  _,, f(u), we get the theorem.

5. THE DEFICIENCY

The main further necessary condition for a root system to be contained in
an even unimodular lattice of the same rank is provided by the notion of
deficiency (Defekt) introduced and studied in [KV].

If R is a root system of rank #n, the deficiency of R, denoted d(R),
is the difference n — m, where m is the maximal cardinality of a set
{ay, ..., a,} C R of mutually orthogonal roots

(a[,aj)=26,'j, for all 1 gl,jém

We use this notion only if all roots in R have the same scalar square 2.
If R=R,HR,, then d(R) =d(R,;) + d(R,). The values of the
deficiency for the irreducible root systems are

dA) = [3]
0 for / even,

dD,) =
) {1 for / odd ,

dE¢) =2,dE;) =dEs) =0.
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By Satz 5 of [KV], if R is the (complete) root system of an even unimodular
lattice of rank 32, then

d(R)=0,8,12,14,15 or 16 .

The proof consists in constructing from the given lattice a new lattice L,
still of rank 32 and containing the orthogonal sum of m = 32 — d(R) copies
of Z. Thus, L = Z"™ L,, where L, is again unimodular and of rank d(R).
(Hence, rank (L) < 16.)

By Martin Kneser’s classification of unimodular (positive definite) lattices
of rank < 16, the rank of L, i.e. d(R) can only take the above values.
(See [Kn], Satz 1.)

In setting up the tables we conveniently use the deficiency to discriminate
the various root systems R according to the value of d(R).

6. THE TABLES

We now proceed to list the indecomposable even unimodular lattices L of
rank 32 with a complete root system R.

The presence in R of a factor of type Eg would produce a unimodular
sublattice ZEg = L, C L, and hence a decomposition L = L, L, for some
(even) unimodular L, of rank 24. Hence, we assume throughout that R has
the form

R=A,1...Aerml...DmsmE6nE7,

with no factor of type Es.

Altogether there are N = 88523 such systems (of rank 32). The possible
dimensions for mE; H nE, are

D =10, 6, 7, 12, 13, 14, 18, 19, 20, 21, 24, 25, 26, 27, 28, 30, 31, 32}
and for d € D, there is a unique pair (m, n) such that d = 6m + 7n. Hence
N=7Y, 220 p(gB2-d-1i),

where p (i) is the number of partitions of i and ¢ () is the number of partitions
(Jis--sJ0) of j with 4 < j; < ... <J,. (Of course, we use the convention
p0) =¢q(0) = 1)

Among these, only 21209 have an acceptable deficiency, i.e. d = 0,8,12,14,15
or 16. They are distributed as follows:
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