Tous les volumes

L'Enseignement Mathématique

L'Enseignement Mathématique Volume 40 (1994)
Intitulé Page
Issue 1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Front matter
PDF
Front matter
PDF
Index
PDF
Front matter
PDF
Table of Contents
PDF
1
Front matter
PDF
2
Article THE PROUHET-TARRY-ESCOTT PROBLEM REVISITED
PDF
3
Abstract
PDF
3
Chapter 1. Introduction
PDF
3
Chapter 2. Elementary Properties
PDF
5
Chapter 3. Ideal and Symmetric Ideal Solutions
PDF
7
Chapter 4. Related Problems
PDF
14
Chapter 5. Perfect Solutions of Prime Size
PDF
21
Chapter 6. Open Problems
PDF
26
Bibliography
PDF
26
Article LE CODAGE DU FLOT GÉODÉSIQUE SUR LA SURFACE MODULAIRE
PDF
29
Abstract
PDF
29
Abstract
PDF
29
Chapter 0. Introduction
PDF
29
Chapter 1. La transformation des fractions continues
PDF
31
Chapter 2. Le flot géodésique sur la surface modulaire
PDF
34
Chapter 3. Une autre présentation du flot géodésique
PDF
36
Chapter 4. Un système de coordonnées sur l'espace des réseaux
PDF
37
Chapter 5. Le codage du flot géodésique
PDF
39
Chapter 6. La constante de Lévy et le volume du fibré tangent à la surface modulaire
PDF
43
Chapter 7. Un codage du flot géodésique sur un alphabet fini
PDF
45
Bibliography
PDF
47
Article PROOF OF MARGULIS' THEOREM ON VALUES OF QUADRATIC FORMS, INDEPENDENT OF THE AXIOM OF CHOICE
PDF
49
Chapter 1. Preliminaries
PDF
50
Chapter 2. Proof of the Theorem
PDF
53
Appendix Appendix: Recurrent points
PDF
56
Bibliography
PDF
57
Article UNIMODULAR LATTICES WITH A COMPLETE ROOT SYSTEM
PDF
59
Chapter 1. Introduction
PDF
59
Chapter 2. Relationship with codes
PDF
60
Chapter 3. The Witt class associated with a root system
PDF
63
Chapter 4. Weight enumerators of finite scalar product modules
PDF
69
Chapter 5. The deficiency
PDF
72
Chapter 6. The tables
PDF
73
Chapter 7. COMMENTS
PDF
92
Bibliography Bibliographie
PDF
103
Article NOTE ON TABLE I OF "BARKER SEQUENCES AND DIFFERENCE SETS"
PDF
105
Bibliography Bibliographie
PDF
107
Article CORRIGENDUM TO "BARKER SEQUENCES AND DIFFERENCE SETS"
PDF
109
Bibliography Bibliographie
PDF
111
Article AN EXPOSITION OF POINCARÉ'S POLYHEDRON THEOREM
PDF
113
Chapter 1. Introduction
PDF
113
Chapter 2. Convex polyhedra
PDF
116
Chapter 3. Conditions for Poincaré's Theorem
PDF
125
Chapter 4. Developing maps
PDF
136
Chapter 5. Defining a metric
PDF
144
Chapter 6. Completeness
PDF
148
Chapter 7. Algorithmic aspects
PDF
156
Chapter 8. SPECIAL CASES
PDF
161
Chapter 9. Literature review
PDF
164
Appendix 10. Appendix
PDF
167
Bibliography Bibliographie
PDF
169
Article ENUMERATIVE COMBINATORICS AND CODING THEORY
PDF
171
Abstract Kurzfassung
PDF
171
Chapter 1. REDUCTION TO ONE SPECIAL EQUATION
PDF
172
Chapter 2. Coding theory
PDF
173
Chapter 3. The code associated with f
PDF
174
Chapter 4. ON THE LEAST VALUE OF f
PDF
178
Chapter 5. The number of Hadamard matrices of order n
PDF
179
Chapter 6. The number of proper 4-colorings of a graph
PDF
182
Bibliography Bibliographie
PDF
185
Article CYCLIC DIFFERENCE SETS WITH PARAMETERS (511, 255, 127)
PDF
187
Bibliography Bibliographie
PDF
192
Rubric BULLETIN BIBLIOGRAPHIQUE
PDF
1
Back matter Endseiten
PDF
Back matter Endseiten
PDF
Back matter Endseiten
PDF
Back matter Endseiten
PDF
Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE
Front matter Titelseiten
PDF
Table of Contents Inhaltsverzeichnis
PDF
Front matter Titelseiten
PDF
Article THE THEOREM OF KERÉKJÁRTÓ ON PERIODIC HOMEOMORPHISMS OF THE DISC AND THE SPHERE
PDF
193
Abstract Kurzfassung
PDF
193
Chapter 1. Introduction
PDF
193
Chapter 2. Background and Definitions
PDF
194
Chapter 3. Periodic Homeomorphisms of the Disc
PDF
196
Chapter 4. Periodic homeomorphisms of the sphere
PDF
201
Bibliography Bibliographie
PDF
203
Article UNITS OF CLASSICAL ORDERS: A SURVEY
PDF
205
Abstract Kurzfassung
PDF
205
Abstract Contents
PDF
205
Chapter 1. Introduction
PDF
205
Chapter 2. Elementary Properties
PDF
208
Chapter 3. Finite generation: classical reduction theory
PDF
209
Chapter 4. PRESENTATIONS I: THE THEORY OF TRANSFORMATION GROUPS
PDF
222
Chapter 5. PRESENTATIONS II: INDEFINITE QUATERNIONS OVER THE RATIONALS
PDF
227
Chapter 6. PRESENTATIONS III: $K_2$
PDF
229
Chapter 7. Cohomology
PDF
231
Chapter 8. Congruence subgroups and normal subgroups
PDF
236
Chapter 9. The Bass unit theorem
PDF
238
Chapter 10. What is a unit theorem?
PDF
242
Bibliography Bibliographie
PDF
246
Article AN ERGODIC ADDING MACHINE ON THE CANTOR SET
PDF
249
Abstract Kurzfassung
PDF
249
Chapter I. Introduction
PDF
249
Chapter II. Ergodic measures for F
PDF
255
Chapter ACKNOWLEDGMENTS
PDF
266
Bibliography Bibliographie
PDF
266
Article ON HAUSDORFF-GROMOV CONVERGENCE AND A THEOREM OF PAULIN
PDF
267
Abstract Kurzfassung
PDF
267
Chapter Introduction
PDF
267
Chapter Section 1 : Hausdorff-Gromov Convergence
PDF
269
Chapter Section 2: The Proof of Paulin's Theorem
PDF
277
Chapter Section 3: Convex Hulls
PDF
285
Chapter Section 4: Concluding remarks
PDF
286
Bibliography Bibliographie
PDF
288
Article LES RÉSEAUX DANS LES GROUPES SEMI-SIMPLES NE SONT PAS INTÉRIEUREMENT MOYENNABLES
PDF
291
Abstract Kurzfassung
PDF
291
Abstract Kurzfassung
PDF
291
Chapter 1. Introduction
PDF
291
Chapter 2. Rappels et preuve de la proposition 4
PDF
295
Chapter 3. Lemmes préliminaires
PDF
299
Chapter 4. Preuve des résultats de l'introduction
PDF
304
Bibliography Bibliographie
PDF
310
Article QUOTIENT OF THE AFFINE HECKE ALGEBRA IN THE BRAUER ALGEBRA
PDF
313
Abstract Kurzfassung
PDF
313
Chapter 0. Introduction
PDF
313
Chapter 1. COUNTING DIAGRAMS
PDF
316
Chapter 2. The abstract algebras
PDF
324
Chapter 3. The Brauer representation
PDF
329
Chapter 4. The cylindrical trace
PDF
331
Appendix Appendix 1
PDF
340
Appendix Appendix 2: Restriction to the Temperley-Lieb algebra
PDF
342
Appendix Appendix 3: The elements of A(4, 4).
PDF
343
Bibliography Bibliographie
PDF
344
Rubric COMMISSION INTERNATIONALE DE L'ENSEIGNEMENT MATHÉMATIQUE (THE INTERNATIONAL COMMISSION ON MATHEMATICAL INSTRUCTION)
PDF
345
Chapter PERSPECTIVES ON THE TEACHING OF GEOMETRY FOR THE 21st CENTURY DISCUSSION DOCUMENT FOR AN ICMI STUDY
PDF
345
Chapter 1. WHY A STUDY ON GEOMETRY?
PDF
345
Chapter 2. Aspects of geometry
PDF
346
Chapter 3. IS THERE A CRISIS IN THE TEACHING OF GEOMETRY?
PDF
348
Chapter 4. Geometry as reflected in education
PDF
349
Chapter 5. New technology and teaching aids for geometry
PDF
350
Chapter 6. KEY ISSUES AND CHALLENGES FOR THE FUTURE
PDF
351
Chapter 7. Call for papers
PDF
356
Rubric BULLETIN BIBLIOGRAPHIQUE
PDF
31
Back matter Endseiten
PDF
Back matter Endseiten
PDF