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Proof. Note that 27" —2m > 27 if n>m and that 27 — 2" = 2"
— 2m2 if and only if (n;,m,) = (n,, my). So whenever n =——k(k2_” for
some k we have
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This is not as good an estimate as Odlyzko’s in [16] (see also [13]) which
has exponent roughly n!/3. What distinguishes it is that it holds for all the
partial products of a single infinite product (with distinct increasing
exponents). Also, clearly any o > 2 could play the role of 2 in the construction
of the B; with the exact same conclusion.

THEOREM 1. Let {8;} be any sequence of integers and let {B;} be the
sequence of differences in the following order

{61 - 60962 - 80:'62 - 613 ceey 6)1 - 603 -“96n - 8n~—1a }
then

JICEELD) ” < (2m)"

5. PERFECT SOLUTIONS OF PRIME SIZE

The first unresolved case of the Prouhet-Tarry-Escott problem is the eleven
case. The previous ideal solutions were all found without computer assistance;
indeed the cases 1, ..., 10 were all resolved prior to 1950. It therefore seems
appropriate to discuss an algorithm for searching for such solutions. We
wish to perform a computer search for perfect symmetric ideal solutions
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of size 11. To this end we produce a method of finding all such solutions
mod 11”7 for any #n. As this method applies to any odd prime p we present it
in the general situation. (A similar method for solving the ideal Prouhet-
Tarry-Escott problem mod p” is suggested in [17] for all primes p greater or
equal to the size.) We will be using symmetric residues throughout, as they
facilitate checking for solutions in ranges of the form [—/, /].

LEMMA 7. If {Bo,...,B,-1} is a perfect solution mod p"+' then
Bi=m;p"+o0; fori=0,...,p—-1

and {0g,...,0,_1} is a perfect solution mod p".
Proof. This is done by expanding {B, ..., B,-1} to the base p. []

This simple lemma allows us to create solutions mod p” for any n

inductively. We only need to find the {my, ..., m,_;} given {ag, ..., 0, _1}.
This is provided by the theorem below.
Now suppose that {ay, ..., 0,_1} is a perfect solution mod p”. We define
p—1_2k-1
S _
Sk = — Lizo Y for k=1,...,p—2——1
pn

We also suppose without loss of generality that o; =i/ (mod p) for
i=0,..,p— 1.

THEOREM 2. Given {ag,...,0,_1}, a perfect solution mod p", all
p+1

p % perfect solutions mod p"*! of the form
{mop"+ 0o, ..., My_1p"+ 0,1}

are given by

(mo, aesy mp_l) = (ao, 5oy Clp_l) + (ho, cony /’lp_l) y

where
dg = 0

p=1 _ j2-2j

a; = )

ji=12]—1

s; (modp) fori=1,..°%2"+

2

. o+ 1
a;=a,-; fori=—,..,p—1
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and (hg, ..., h,_) are arbitrary residues mod p and
2

. p+1
h;=2hy— h,_; fori= 5 , ..o p— 1.
ptl
So there are exactly p ?* perfect solutions mod p"+!'.

Proof. Suppose {m,;p" + a;} is a perfect solution mod p”*! and {a;} is

a perfect solution mod p”. For k = 1, ...,p%l

p—1

Y (mip"+a)¥*-1=0 (modp"+l).
i=0

On expanding we get
p—1

Y (Qk-Da *mpr+ai*"")=0 (modp+?)
i=0

p—1 p-1
E (2k_ l)a?k—zmlpn = _ E a?k—l (modpn+l) .
i=0

i=0

Division by p" gives us

p—1 o Zp—l 2k -1
Y @k-1aim= - 20 (mod p) ,
i=0 D"
and since a; = i (mod p) we have
p—1 . Ep—l 2k - 1
I_;_YO Qk - 1)i%*-2m; = — ’*;nf (mod p) .

So we define 4, a (‘%1 X p) matrix, by
i=Q2k-1D(—-1D*-2 (modp).
We now have, with s:= (So, ..., S(p-1y/2) and m := (my, ..., Mp-1)),

Am=s (mod p) .

For example with p = 7 we get

11 1 1 1 1 1y [T Yo,
0 3 -2 -1 -1 -2 3| |™]<|yga
0 -2 3 -1 -1 3 -2 : Yol
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In general the rank of A4 is always ‘—’;—1, as the next argument makes
p+1

e —

clear, so there are p ? solutions of this underdetermined linear system.

We first derive a particular solution a : = (ay, ..., a,-) of the system. We
set a, = 0 and A to be A without its first column. We also define a to be a
without a,. We solve the reduced system

Aa =s (mod p)
by the standard method. So
a=AT(AAT)-'s (mod p) .

AAT is a particularly simple symmetric matrix given by

Yi0 Y32 Y54 ... Y(p-2)ir?
; Y94 Y15i¢ ... Y3(p—2)ir-!

Y25i8 ... Y5(p-—2)ir+!

(o - 2%

where each sum ranges over i = 1,..., p — 1. Since Zf;ll i*=0 (mod p)
when k # 0 (mod p — 1) almost all the elements of the matrix vanish and
we are left with a very simple matrix. In fact we get the product of a diagonal
and a permutation matrix. Note that this shows that 4 has full rank
modulo p. For example when p = 11 we get

= 0 0 0 0
o 0 0 0 -5
AAT = 0 g —2 0

0 -2 0 0
=3 0 0 0

OO O O =

So it is a simple matter to find B=AT(AAT)-'. For i=1,...,p — 1
p—1

J=1, ..,

—j2-2

B ;= (mod p) .

2j — 1

For example B, when p = 7, is
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So our particular solution a is given by ao = 0 and a = Bs.
To find the solution # of the homogeneous system

Ah=0 (mod p)

consider the reduced system

— I
0
Ah = 0 (mod p) .
0
Note that if #; + h,_; = 2h, for i = 1, ...,‘%1 we have a solution since

Y ik=0 (modp) if k#0 (modp-1).

Finally setting (Ao, #,, ..., h,_1) arbitrary we get the solution as in the

2
statement of the theorem. [

p+1

. (n=1) :
This theorem allows one to calculate all pn 2 perfect solutions

mod p" for any odd prime p and any n. This is essentially calculating
solutions in the ring of p-adic integers. We were hoping to find a perfect
solution of size 11 using this method, but we were only able to show that there
is no such solution with coefficients in the range [ — 363, 363]. This is because
there are 119 solutions mod 112, and 11!2 solutions mod 113. So checking for
solutions in the relatively small range [— 665, 665], would require checking
more than a billion cases. Even checking in the range [— 363, 363] was a
substantial computation. We were able to compute all 78 solutions mod 73 to
find that all perfect solutions of size 7 with coefficients in the range
[—- 171, 171] are

(=51, =33, —24,7, 13, 38, 50}

{-90, —86, —39, —5, 48,77, 95}
{—116, —104, —36, — 19, 75, 77, 123}
{—120, — 110, —23, —13, 38, 105, 123}
{—134, =75, —66, 8,47, 87,133} .

We hope that this technique in combination with others may yield a viable
computer search for a perfect solution of size 11.




	5. Perfect Solutions of Prime Size

