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This is not as good an estimate as Odlyzko's in [16] (see also [13]) which
has exponent roughly nln. What distinguishes it is that it holds for all the

partial products of a single infinite product (with distinct increasing
exponents). Also, clearly any a > 2 could play the role of 2 in the construction
of the ß/ with the exact same conclusion.

Theorem 1. Let {8Z} be any sequence of integers and let {ßf} be the

sequence of differences in the following order

{8i - 80, 82 - $2 - ài, - 5o, ô„ - 8„_1, ...}

then

n o -^o (32«) ,'n/S

5. Perfect Solutions of Prime Size

The first unresolved case of the Prouhet-Tarry-Escott problem is the eleven
case. The previous ideal solutions were all found without computer assistance;
indeed the cases 1,10 were all resolved prior to 1950. It therefore seems
appropriate to discuss an algorithm for searching for such solutions. We
wish to perform a computer search for perfect symmetric ideal solutions
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of size 11. To this end we produce a method of finding all such solutions

mod 11" for any n. As this method applies to any odd prime p we present it
in the general situation. (A similar method for solving the ideal Prouhet-

Tarry-Escott problem mod pn is suggested in [17] for all primes p greater or
equal to the size.) We will be using symmetric residues throughout, as they
facilitate checking for solutions in ranges of the form [-/,/].

Lemma 7. If {ß0, ß^-i} is a perfect solution mod pn+l then

ß/ mipn + a/ for i 0, p - 1

and {a0, a^-i} is a perfect solution mod pn.

Proof. This is done by expanding {ß0, ß^-i} to the base p.

This simple lemma allows us to create solutions mod pn for any n

inductively. We only need to find the {m0,..., mp^x} given {a0, ap_ i}.
This is provided by the theorem below.

Now suppose that {a0, olp- i} is a perfect solution mod pn. We define

yp ~1 n2k ~1
Ld i o f c i 1 P - I

sk for k l, —p~
pn

We also suppose without loss of generality that a, i (mod p) for
i 0, p - l.

Theorem 2. Given {a0, ap_i}, a perfect solution mod pn, all
p +1

p 2 perfect solutions mod pn + l of the form

{m0pn+ a0, ap-i}

are given by

(m0, mp^x) (a0, ap-{) + (h0, hp_{)

where

a0 0

P- 1 _ j2-2j
a I —E — -sj (mod p1,j"i2j - 1

ai ap-i for i p~y
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and (ho,..., hp-1) are arbitrary residues mod p and
2

P + 1

hi 2h0 - hp-i for i p - 1

p +1

So there are exactly p 2 perfect solutions mod pn + l.

Proof. Suppose {mipn + a,} is a perfect solution mod pn + l and {a,} is

a perfect solution mod pn. For k 1, ?-y-

p - i

Y (miPn + a;)2A' - 1 0 (mod/?" + 1).
i 0

On expanding we get

p ~ 1

Y ((2k - 1)a. 1ik~2mipn + a2k~ *) 0 (mod pn + x)
/ o

p - i p - l

E (2k-l)af ~2miP"- E a/A'"' (mod/?"+1).
I « 0 / 0

Division by gives us

p - 1 y p - 1 2A- - 1

E (2A: - l)af'"2w, s ——i (mod/>)
/ 0 jD"

and since a, / (mod p) we have

p - i yp i a2A- - i

E (2At — \)ilk~1mi- ' (mod
i= 0 pn

So we define A, a x matrix, by

^4^/ (2/: - 1) (/ - l)2/: - 2 (mod /?)

We now have, with 5: (s0, sip-l)/2) and m : (ra0, w(p_1)),

5 (mod p)

For example with p 7 we get

1 1 1 1 1 1 1

0 3 -2 -1 -1 -2 3

0 -2 3 -1 -1 3 -2
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In general the rank of A is always —^, as the next argument makes
p +i

clear, so there are p 2 solutions of this underdetermined linear system.
We first derive a particular solution a : (a0, ß^-i) of the system. We

set 0 and Ä to be A without its first column. We also define a to be a

without a0. We solve the reduced system

Aa s (mod p)

by the standard method. So

a Ä T(ÄÄ T) ~1 s (mod p)

AA T is a particularly simple symmetric matrix given by

£/° £3 i2 15 i4

£914 £ 15 /6

i £ 25 /8

£(p-2)/^-3
£3(p - 2)/p_1

£ 5(i? — 2) //7 +1

£(^-2)2/2/2/7 — 6

1 Mwhere each sum ranges over / 1, p - 1. Since £fj1 /* 0 (mod p)
when k # 0 (mod p - 1) almost all the elements of the matrix vanish and

we are left with a very simple matrix. In fact we get the product of a diagonal

and a permutation matrix. Note that this shows that A has full rank

modulo p. For example when p 11 we get

AAT

So it is

j 1,

a si]
p -1

2

_-1 0 0 oo

0 0 0 0 1
0 0 0 --2 0

0 0 --2 0 0

0 - 5 0 0 0
j

to find B AT(ÄAT)-K

- i 2-2j
(mod p)ij 2j - 1

7, is

/-1 2 - 3 \
-3 2

-1 1 1

- 1 1 1

— 1 -3 2

\-l 2 -3/

For i 1, p - 1
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So our particular solution a is given by a0 0 and a — Bs.

To find the solution h of the homogeneous system

Ah 0 (mod p)

consider the reduced system

Ah

l-h0\
0

0

0

(mod p)

Note that if hi + hp-t 2h0 for i 1, we have a solution since

p - i

Y ik 0 (mod p) if k # 0 (mod p - 1)

Finally setting (ho, h\, hp _ i) arbitrary we get the solution as in the
2

statement of the theorem.

p+ i
(n - 1)

This theorem allows one to calculate all p 2 perfect solutions

mod pn for any odd prime p and any n. This is essentially calculating
solutions in the ring of /?-adic integers. We were hoping to find a perfect
solution of size 11 using this method, but we were only able to show that there
is no such solution with coefficients in the range [- 363, 363]. This is because

there are ll6 solutions mod ll2, and 1112 solutions mod ll3. So checking for
solutions in the relatively small range [- 665, 665], would require checking
more than a billion cases. Even checking in the range [- 363,363] was a

substantial computation. We were able to compute all 78 solutions mod 73 to
find that all perfect solutions of size 7 with coefficients in the range

[- 171, 171] are

{-51, -33, -24,7, 13,38,50}
{-90, -86, -39, -5,48,77,95}
{-116, - 104, -36, - 19, 75,77, 123}
{ - 120, - 110, -23, - 13, 38, 105, 123}

{- 134, -75, -66,8,47,87, 133}

We hope that this technique in combination with others may yield a viable
computer search for a perfect solution of size 11.
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