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Then B(f,) is represented on C2Q C* ® - & C?

0 0 0 O
0 1 -1 0 .
by the matrix % 0 —1 L 0 ® id

0 0 0 O

using a symplectic basis of C2, and B (u) is the obvious cyclic permutation on
C2® C2® --- ® C2. But then 2 — B(f1) is the transposition on C* & C?
® --- ® C? exchanging the first two copies of C2. Thus the image of
/(n, 8) is the same as that of the group algebra of the symmetric group.

4. THE CYLINDRICAL TRACE

There is a natural trace functional tr on A(n,8) defined by tr(D)
= 87D n(D) being the number of closed loops formed on the cylinder if the
inside and outside boundaries of the annulus are identified. We will call this
trace the cylindrical trace.

Note 4.1. This trace exists in fact on the whole Brauer algebra — it could
be defined in terms of partitions as tr (D) = 8" where n(D) is the number
of equivalence classes for the equivalence relation generated by D itself and
the relation which identifies each point on the top with the corresponding point
on the bottom.

Note 4.2. One has the relation n(D, © D,) = n(D, © D;) so one might
try to define a more general trace by replacing 6 by an arbitrary complex
number. But n(a, ) # n(B, o) in general so one is forced to choose §.

If & is a value for which A (n, §) is semisimple we know that A(n, 0) is
a direct sum of matrix algebras, so our cylindrical trace is determined by its
value on a minimal idempotent in each matrix algebra summand. We will
calculate these “weights” of the trace. In order to do this we will need detailed

information on the multiplicities of # in each irreducible representation
of A(n,d).

Definition 4.3. For n >t >0 the group Z/nZ X Z/tZ(= {(a,b)|a
=0,...,n—1;b=0,...t — 1} acts by linear transformations on .o/ (¢, n; t)
by (a, b) (D) = u® o D o ub, (The u’s on the left and right in this formula
are of course different if n +t.) Let F, ,(a,b) be the number of fixed
points for (a, b). Let F,(a) be the number of fixed points for the action
D—Dou?of aeZ/nZ on .o/(n,0).
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LEMMA 4.4. The multiplicity of an n-th root of unity m as an
eigenvalue of u in the representation m,, (0'=1) is % Zz;é 2;10

n‘w-F, (a,b) for t>0 and %EZ;(I) neF,(a) for t=0.

Proof.  From the definition of wr,, it is clear that the multiplicity is
trace (P (% Y n—”u“)). ]

Definition 4.5. For each ¢-th root of unity o let #(w,n) (or
M, ,(®, n) if it is necessary to specify that o is indeed a #-th root of unity
and not some other) be the cylindrical trace of a minimal projection in the
simple summand of A(n, 8) corresponding to ©, ,. To determine .#(w, n)
we will use the following easy result.

LEMMA 4.6. For each 0 <r<mn,r+ n even, there is an algebra
isomorphism ¢:A(r,d) > e,A(n,d)e, such that

(1) tr(p(x)) = tr(x), x € A(r, d).

(2) If p is a minimal projection in the summand of A(r,d) indexed
by (t,w), t<r, then ¢(p) is a minimal projection in the
summand of A(n,d) indexed by (t,®).

r—n

Proof. Define ¢ on diagrams by ¢ (D) = & 2 D’, D’ differing from D
by first inserting n — r interior and exterior points to the right of * and
connecting them up in adjacent pairs, very close to the boundary so as to not
interfere with the rest of the diagram. Then move * one to the right to ensure
that the identity of A(r, d) is mapped onto the element we have called e,.
The process of constructing D’ from D is illustrated in Figure 4.7.

L FIGURE 4.7 3
When closed on the cylinder D’ will have exactly “5~ more closed loops

than D so tr(¢(x)) = tr(x). The multiplicativity of ¢ also follows from the

factor & 2 in its definition. Injectivity of ¢ is obvious and surjectivity
follows by considering a diagram of E, © D o E, for D € </ (n, n).
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Finally, for ¢z <r, ¢(v;) = v, (with an obvious abuse of notation) and
®(e,) = e;,. The summand of A(r,8) or A(n,8) indexed by (¢, ®) is
characterized by v, = ®we; (when multiplied by a minimal central idempotent
corresponding to the summand). [

We are now in a position to give a formula that determines .#(®, n).
THEOREM 4.8. For r<n, M, ,(0,n)= #, (0,r) and, if r=n,

1 ¢ o
MM, n) ==Y 8§GCDU.myJ
nj=

1 n—-1t-1
- X ) ///(w,t){— Yy ¥ n‘“w‘bFn,t(a,b)}

n>t>0 ¢ ol =] nl 2=05=0
t+ neven

1 n-1

—= X MF.(a).
R a=0

Proof. Since the ¢ of Lemma 4.6 is surjective, a minimal idempotent
in A(r,d) is minimal in A(n, §) for r < n, so by 4.6 we are reduced to the
case r = n. If we fix an n-th root of unity 1, the trace we are trying to calculate
is tr (P% E;z  N/u/) where (1 —P) is the central idempotent of A(n, )
corresponding to all matrix summands indexed by (¢, ®) with 7 < n. Since the
trace of w/ itself is clearly §6¢PU.m one has

@) + (1 -P) ~ Y n-iud) =

1
— §GCDU.mp i
j=1 noj

1

>

Writing (1 — P)A(n, 8) (1 — P) as a sum of matrix algebras we get the result
by 4.4. [

Thus we only need to determine F(a, b) and F,(a).

THEOREM 4.9. If a=0,1,...,n-1,b=0,1,..,t —1(n>1t t +0),
let x = GCD(a,n), y = GCD(b, 1), then
[ 0 if f;&i—’ or 2%

ﬁ or x#+y mod?2

I =

! (u) otherwise (and a, b # 0)
0 if a or b=0, not both, or n+t odd

n
L'z(n—t) if a=b=0,
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ome1 [2M 2m + 1 _
r—,nH = if n=4m+2 and a=2m+1
m

m
X
(b) F,(a) :{ (-;i) if x iseven
1 n _ .
TEERN P if a=0 and n is even
\ 0 otherwise .

Proof. Let us prove (b) first as the method is the same for (a) but (b) is
simpler.

In the case n = 4m + 2, we first claim that for a fixed diagram some point
on the boundary must be joined to the point diametrically opposite. This is
easy by induction — it is trivial for » = 2, and if » > 2, just choose two
boundary points connected to each other. Either they are diametrically
opposite each other and we are done, or the disc is divided into three regions
as in Figure 4.10.

FIGURE 4.10

The boundary points inside A (hence B) are even in number so the number
of marked boundary points in the diagram is congruent to 2 mod 4. But the
original 180° rotation acts by a 180° rotation on these points so we are done
by induction.

Once we know that some point is connected to a diametrically opposite
point, the whole diagram, since it is fixed by the rotation of 180°, is determined

by the configuration in one half. There are ;.

2m ) )
such configurations,
m

and the diameter can be chosen in 2m + 1 ways.
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Now suppose x = GCD(n, a) is even. Then the n boundary points may be
divided up into n/x fundamental domains, each consisting of x consecutive
points on the boundary. The x points in a fundamental domain can be divided
into ones connected to points within the domain and ones connected to points
in other fundamental domains. Moreover the constraint of planarity clearly
implies that if a point is connected to a point in another fundamental domain,
that other domain must be adjacent to it. Thus we may speak of clockwise
and anticlockwise points and obviously, since the diagram is fixed, there are
the same number of clockwise as anticlockwise points for each domain. We
see that the whole diagram is completely determined by a single configuration
as in Figure 4.11.

to
anti-
clockwise to
points clockwise
points
FiGure 4.11

Also any such configuration determines a fixed point. Straightening out the

wavy radii into a single straight line we see that these configurations are in

X
bijection with U’?, #(x, 2i;2i) which has order (;) by Lemma 1.12.

2

Finally for part (b), if x is odd, there would be an odd number of points
in a fundamental domain, which is clearly impossible by the above argument.

Proof of (a). As in the proof of part (b), divide the »n outside points into
n/x “fundamental domains” for the rotation of ¢ units on the outside circle.
Each of the x points in a domain is then of one of four kinds: a ‘“through-
point” — attached to the inner circle; a clockwise point — attached to the
adjacent domain in clockwise order; an anticlockwise point — similarly; or
an internal point — attached to another point in the domain.
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The whole system of connections can then be extended to all the outer
points by rotating the fundamental domain by powers of the rotation
of @ units. The through-points can then be connected to the inside points in
any of ¢ ways which accounts for the factor of “#”’ in the formula. That any
fixed diagram must look like this follows by arguing only on the outside
points. The diagram will then be fixed by (a, b) if and only if the rotation
through a points on the outside effects a rotation of b points when restricted
to the through-points.

Now suppose there are r through-points per fundamental domain.
Obviously r -~ = ¢, and the rotation of a effects a rotation of = on the
through-points. Thus we must have - = b, r = ¢. Moreover the through-
points in a fundamental domain must be connected to inner points in a
fundamental domain for the rotation of b, so y = r. So the conditions

s = f and 2 = ﬁ are necessary for a fixed point. The equality of x and y mod 2

X
follows from the fact that there have to be as many clockwise points as
anticlockwise (as in part (b)) and the number of internal points is necessarily
even.

Finally, if all the conditions are satisfied, any configuration as below can

be extended in 7 ways to a fixed point for (a, b).

FIGURE 4.12: Two clockwise, two through and six internal points.

As in part (b), make the wavy line one straight line and we see there are

X
(X_—_y) such configurations by Lemma 1.12. [
2

Given the apparently erratic nature of F(a, b), the elegance of the final
formula for .#(n, n) seems to us quite remarkable. It will be most transparent
if we use the Fourier transform. These are characters rather than multiplicities.

Definition 4.13. For r=0,1,...,n -1, let M(r,n) =Y n".#(r,n),
the sum being taken over all n-th roots of unity 7.
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The following result was first obtained on a computer by S. Eliahou.

THEOREM 4.14. If T,(x) is the usual Tchebychev polynomial,
T,(cosB) = cos nb, then we have

)
M(©0,2) =8>-1=2T, (5) + 1

o)
M(1,2)=06—-1=2T, (5) -1
and for n > 2,
M(rs n) = 2'iTGCD(n,r) (§) .
2

Proof. Let us first obtain the recursive formula for M(r,n) from
Theorem 4.8:

n-2 -1
Y smmnr=860en_{ L L (o, t)—Zoa'bF,,,(rb)
n:n?=1 t>0 ow:ol=1 I b=0
t + neven
_Fn(r)
n-—2 -1

= §GCD(r,n) _ Z — Z M(t—b,t)F,,,,(r,b) —Fn(r) s

t>0 tb=0
t + neven
where the last term is only present if # is even.
We must show that the function defined in the statement of the theorem,
call it p(r, n), satisfies this recursion equation. Note first that if we set
P,(x) = 2T, (5) then (see [Lu]):

n
P,(x) =x"— Z (H—I)P(x)

0<i<n 2
I + neven

The case r = 0 is now rather easy: For n =1, M(0,1) =86 — F,(0) = &
since there are no diagrams with one boundary point. Also p(0, 1)
=P =96. For n=2, M@UO2)=08%2—-F,0) =562-1=u(,1).
For n > 2 we have (first for n even).

1 | n n
=x— ¥ - n,t(o,O)u(o,t)+;Fn,z(0’°)(52‘”‘*(f)_("‘—‘l)
2

n>t>2 2
f even

n n
w(0,n) =P, =x"— }, ("‘f)u(o 1) + ( )(82 2)+(

n>t>2 2 2
t even

oY N
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but since F, (0, b) = 0 for b # 0, we get

t—1
wO,n) =x"- Y 12 F, (0,b)u(t— b, 1) — F,(0) .

n>t>0 b=0
t even

The case where n is odd is even easier.
Now consider the case where r is arbitrary. Since GCD(b, 1)
= GCD(t — b, t) we must show

n—2 1 t—1
w(r,n) =386chm ¥ — % (b, t)F, (r,b) — Fu(r) .
1>0 b=0
t + neven

Let us find all pairs (¢,0), 0 < b <t -1, 0< ¢t < n, for which F, ,(r, b) #0.
Let g = GCD(r,n). Then from 4.6 we must have ¢ =<, b=%, o + g
even and o < g, for a = GCD(r, n). On the other hand, if we are given an
o with o + g even and 0 < a < g, then GCD(%,%) = o so if we put

t=an/g,b=0r/g,0<t<n 0<b<tand GCD(t,b) = a. Thus since
F, .(r,0) =0 for r # 0, the equation to check becomes

g2 ar an g
H(’”,”)ZSg— Z H(_,_) (g—a)—Fn(r),
a>0 g g &

o + geven

On the other hand,

g =2 g g
P,(8) =8¢ — ) Py, (é‘_) - (g)
a>0 2 2
o + geven

where the last term is present in the even case (for g) only.
Thus we are done if g is odd since then F,(r) = 0 and there is no
difference between these recursion relations. The sum in the expression for p

can only contain n(1,2) if n = 2r so g = r and a = 1. In this case g is odd,

g
so we are done in the case g even since then F,(r) = ( g) and n(a, b)
2

= Zccp, by DY definition for all terms in the sum for p. Finally there is the
case n = 2r g(=r), odd. Then all the terms in the recursions are the same
except the last two — for p(r, n) we have

g g g g g
u(l,Z)(g—l) + (g—l) :(Pl—l)(g—l) + (g—l) =P1(g—1)
2 2 2 2 2

which is the same as the last term in the formula for P,(5). [
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COROLLARY 4.15. The traces of minimal idempotents in the matrix
algebra summand corresponding to (o, t), #(w,t), are given by:
For t=1, #7Z({,1)=1

82 +6 -2 52— §
For t=2, 4(,)=-——"—", M(-12)=

1! 8
For t>2, ./(,t)=- Y 2Tscpe,n (5) o’

r=20

2 d
= — Z Z (Dk Tk(——) .
{ dlt k:GCD(n,k)=d 2
k<n

Proof. Just invert the Fourier transform. ]

COROLLARY 4.16. The multiplicity of the representation ™w,, Of
A(n, k) in the Brauer representation B (§3) is .#(w,t)(k), for
k>3. (So . #(w,k)>0 for k=>=3.)

Proof. For k > 3 the algebra is semisimple and the trace induced by the
usual trace of End(®”V) is the cylindrical trace, with parameter
§=k U

If we look at the oriented subalgebra A (n, 8) (with n even), the irreducible
representations are parametrised by even #’s and the first /2 ¢-th roots of
unity ®. Obviously .#(w, t) = .#(w, t) since GCD(r,n) = GCD(n—r,n).
Let . /7 (w,t) denote the cylindrical trace of a minimal idempotent in the
summand corresponding to w(#, ).

COROLLARY 4.17. . (,1) =*¥' " Tocpa.m (—2—) o', for n>2.

Proof. On restriction to A(n, 8) the representations of A parametrised
by ® and — ® become equivalent.

COROLLARY 4.18. The Brauer representation B is not faithful for
k=2 and n > 3.

Proof. T,(1) =1 so for ® # 1, .#(w,t) = 0, and this is sufficient to
imply that the matrix algebra corresponding to  is in the kernel of B.
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