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ON HAUSDORFF-GROMOV CONVERGENCE
AND A THEOREM OF PAULIN

by M.R. BripsoN!) and G.A. SWARUP

ABSTRACT. We give an elementary account of ideas related to Hausdorff-
Gromov convergence and explain how, among other things, these ideas can
be used to prove a theorem of F. Paulin: If a group I' is word hyperbolic and
its outer automorphism group is infinite, then I' acts by isometries on an
R-tree with virtually cyclic segment stabilizers and no global fixed points.

INTRODUCTION

The purpose of this article is to give an essentially self-contained proof of
the following theorem of F. Paulin. (The technical terms appearing in this
theorem are explained below.)

THEOREM (Paulin). If T is a word hyperbolic group and Out(I')
is infinite, then T acts by isometries on an R-tree with virtually cyclic
segment stabilizers and no global fixed points.

We feel that this theorem and (more especially) the techniques involved in
its proof are central to the study of word hyperbolic groups and related topics.
This is illustrated, for example, by the variety of ways in which these ideas
have entered the work of Rips and Sela. The techniques in question centre on
Gromov’s generalisation of Hausdorff convergence, as developed in Paulin’s
thesis and Bestvina’s work on degeneration of hyperbolic structures. In light
of the continuing importance of these techniques, it seemed to us desirable that
an elementary and self-contained account of them should be made available.

Let us recall the definitions of the terms appearing in the statement of
Paulin’s theorem. Let X be a metric space. A topological arc in X is called

Y The first author was supported in part by NSF grant DMS-9203500 and FNRS
(Switzerland).
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a geodesic segment if, with the induced metric, it is isometric to a compact
interval of the real line. X is said to be a geodesic space if every pair of points
in X can be joined by a geodesic segment. A geodesic triangle in X consists
of three points (vertices) together with a choice of geodesic segment (side)
joining each pair of them. A geodesic triangle is said to be &-slim if each of
its sides is contained in the &-neighbourhood of the other two. A geodesic
metric space X is said to be &-hyperbolic if every geodesic triangle in X is
5-slim. An R-tree is a 0-hyperbolic space, in other words, a geodesic metric
space in which every geodesic triangle is degenerate, i.e., is a tripod. The most
primitive example of an R-tree is an ordinary simplicial tree in which each of
the edges is metrized so as to have length 1. For many purposes, particularly
in this article, it is useful to think of a 8-hyperbolic space as a somewhat
thickened version of an R-tree and to keep in mind the idea that if one looks
at the space from so far away that distances of the order of & appear negligible,
then a &-hyperbolic space takes on the appearance of an R-tree.

Recall that the Cayley graph X(I', S) of a group I" with respect to a choice
of finite generating set S C I' — {e} is the metric graph whose vertex set is [’
and which has one edge of unit length joining vy € I' to ys whenever s € S.
A group is said to be word hyperbolic if its Cayley graph X(I',S) is
d-hyperbolic for some 6. (The hyperbolicity of X (I, S), but not the specific
value of §, is independent of the choice of S — see [GH] or [Sho].) The class
of word hyperbolic groups was introduced by Gromov in [G2], and has proved
to be a fruitful context in which to extend many elegant results of hyperbolic
geometry, particularly results about geometrically finite groups of isometries
of real hyperbolic space that do not contain any parabolic elements.

This article is organised as follows. In Section 1 we describe some basic
facts about various generalisations of Hausdorff convergence. In the proof of
such elementary facts one discerns a general pattern of argument that can be
applied more generally, and it is this pattern, rather than specific compactness
criteria, that seems to be most useful in a wider context. In Section 2 we
illustrate this point in proving Paulin’s theorem.

Paulin has developed an equivariant version of Hausdorff-Gromov
convergence, which he calls Gromov convergence, and has used this to give
elegant formulations of compactness theorems of Thurston and Culler-
Morgan. The compactness criterion which he originally developed in this
context relies upon the existence of convex hulls in the spaces under
consideration; in spaces such as the Cayley graph of a word hyperbolic group
one cannot in general form a precise convex hull for finite sets. This difficulty
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is the subject of Section 3. Section 4 contains some concluding remarks and
a brief discussion of recent work which draws on ideas similar to those

discussed in this article.
SECTION 1: HAUSDORFF-GROMOV CONVERGENCE

Until further notice, we fix a compact metric space X and denote by
Z(X) the set of closed subsets of X. We shall always denote the open
g-neighbourhood in X of A C X by V. (A4).

The starting point for our discussion is the following classical construction.

1.1 DEFINITION. The Hausdorff metric on < (X) is defined by:
D(A,B) = inf{e|A C V.(B) and B C V.(A)}.

1.2 PROPOSITION. D is indeed a metric and % (X) equipped with
this metric is compact.

Proof. The only nontrivial point to check is that ¥ (X) is compact.

Consider a sequence C; in ¥ (X). We must exhibit a convergent sub-
sequence. First notice that given any € > 0 there exists an integer N(g) such
that, in its induced metric from X, every A € % (X) can be covered by N(g)
open balls of radius €. Indeed, because X is compact one can cover it
with N (g) balls of radius €/2, then for each such ball which intersects 4 one
chooses a point in the intersection and takes the ball of radius € about that
point. Thus for every positive integer n and every C;, by taking duplicates if
necessary, we may assume that C; is covered by precisely N(1/n) balls of
radius 1/n, with centres x,(i,j) for j =1, ..., N(1/n). Furthermore, it is
clear from our description of how to choose the x, (7, /) that this can be done
so as to ensure that x,,1(i,/) = x,(i,j) if j < N(1/n), thus we may drop the
subscript n.

At this stage we have constructed sequences of points {x(i, )}, C C;,
each of which has the property that for all # € N the balls of radius 1/# about
the first N(1/n) terms in the sequence cover C;.

C,ax(1,1),x(,2),...,x(1,)), ...
CZ = X(z, 1)3 X(z, 2)7 seey x(2>j)s

Ci s x(, 1),x(3, 2),...,x(>1, )), ...
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Now, because X is compact, we may pass to a subsequence of the C; in
order to assume that the sequence x(i, 1) converges in X, to x(w, 1) say.
Let C; denote this subsequence. Inductively, we may pass to further
subsequences Cf.‘ in order to assume that for j =1, ...,k each of the
sequences {x(i,j)}; converges in X to x(w, /). Let C, be the closure in X
of {x(w,/)|j e N}. We claim that the diagonal sequence C ’,ﬁ converges to C,,
in Z(X). To simplify the notation we write Cy in place of C%.

Observe first that because there is a uniform bound of 1/# (independent
of / and k) on the distance from x(k,/) to Z(k,n):={x(k,/)};<nN@/n)s
for all / and k we have that the D-distance from {x, ;} to X(®,n)
i={x(®,/)};<nasm 1is at most 1/n. Hence the D-distance from C,
to X(w, n) is at most 1/n.

Thus, for any n > 0, whenever k is large enough to ensure that
d(x(k, ), x(w,))) < 1/n for all j < N(1/n), we have:

D(Cy, Co) < D(Cy, Z(k, m) + D(Z(k, n), Z(w, n))
+ D(Z(w, n), Co) < 3/n. ]

Remark. Already in the above proof we see two of the central themes
which recur at the heart of future proofs. First of all, there is the idea of
approximating compact sets by finite ones in a uniform way, and secondly
there is the use of a diagonal sequence argument to construct a limit object
as (the closure of) an increasing union of finite sets.

A more general form of Proposition 1.2, concerning the Chabauty
topology, can be found in [CEG]. A quick development of similar ideas is
given in C. Hodgson’s (unpublished) notes [H].

The following lemma shows how one can rephrase the convergence of
compact subspaces in terms of the more familiar notion of convergence of
points.

1.3 LEMMA. A sequence {C,},en in 7Z(X) convergesto C e Z(X)
if and only if the following two conditions hold:

(1) for all x e C there exists a sequence x,€ C, such that x,— x
in X;

(2) every sequence y,u € Cniy With n(i)— o has a convergent
subsequence whose limit point is an element of C.

Proof. The necessity of conditions (1) and (2) is clear. Conversely, if C,
does not converge to Cin % (X) then, by passing to a subsequence if necessary,
we may assume that there exists € > 0 such that D(C,, C) > ¢ for all n.
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There are two cases to consider. First, if for infinitely many values of # it is
the case that C, is not contained in the g-neighbourhood of C, then by
passing to a further subsequence we obtain x, € C, — V. (C). Since X is
compact, one can abstract a convergent subsequence of the X, which
converges to some X, & V. (C), thus (2) fails.

The other possibility which we must consider is that for infinitely many
values of n there exists z, € C — V¢(C,). But in this case one can take a
convergent subsequence, say Z, — Zo € C, and then D(z,,C.) = ¢ for
arbitrarily large values of 7, thus (1) fails. []

We wish to consider what it means for a sequence of compact metric spaces
to converge to a limit space when there is no obvious ambient space containing
the sequence. For this we need the following definition.

1.4 DEFINITION. An s-approximation between two metric spaces A
and A, is a subset R C Ay X A, such that:

(1) the projection of R to A; isonto for i=1,2;

@ if @), (¢, y)eR then |ds (x,x) — da, (3, 3] <e.
If there exists an s-approximation between A, and A, then we write
A, ~.A,. The Hausdorff-Gromov distance between A, and A, is:

Dy(A,, A,) = inf{e lAl ~c A2} .
If there exists no € such that A, ~.A,, then Dy(A:,A,) is infinite.

Remark. Sometimes, in the course of an argument, ‘approximations’ R
arise which are similar to those in the above definition, but which do not (quite)
project onto A, and A4,. For example, it may happen that one has a naturally
defined e-approximation between dense subsets of A; and A,; in this case,
given any €’ > g, one can extend the given relation to obtain an &’-approxi-
mation between 4, and A,. Similarly, if one has a relation R C 4A; X A,
whose projections to A, and A, are e-dense (in the sense that every point is
within a distance € of these projections) then R can be extended to a
3e-approximation between A; and A,. In what follows, when necessary, we
shall implicitly assume that approximations which arise are adjusted so as to
make their projections surjective, in accordance with Definition 1.4.

Terminology. We say that a sequence of metric spaces C, converges
to C in the Hausdorff-Gromov topology, and write C, = C, if and only
if Dy(C,,C)—0 as n— o. Given a relation R C 4, X A,, the phrase
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(x, ) € R will often be written xRy, or ‘x is related to y’, or ‘x corresponds
to y’.

In closer analogy to the Hausdorff distance between compact subsets of
a fixed metric space, one has the so-called Hausdorff distance between
compact metric spaces 4; and A,. For this one considers all metric spaces X
which contain isometric copies of A, and 4,. As in (1.1) one can consider
the distance between A; and A, in ¥(X), and the Hausdorff distance
between A, and A, is defined to be D,(A;, A,):= infx{Dyx (A, A2)}.
It is not hard to show that for compact spaces Dy = 2D,.

It is clear that the Hausdorff-Gromov distance between a metric space and
any dense subset of it is zero, and hence limits of sequences of spaces are not
- unique in general. However:

1.5 PROPOSITION. Two compact metric spaces A and B are
isometric if and only if the Hausdorff-Gromov distance between them
is zero.

Proof. We shall show that if Dy (A, B) = 0 then A and B are isometric,
the other implication is trivial. Let {a,} be a countable dense subset of A4
and let R,, be a (1/m)-approximation between A and B. We choose
bm . € B so that a,R,b, ,. We can pass to a subsequence of {b,, 1}n
and assume that b, ;= b, in B. By passing to a further subsequence
we may assume that b, , = b,, and so on. For all n,n’, m we have that
| da(@an, an) — dg(bm ns bm )| < 1/m, and hence d4(a,, a,’) = dg(bn, by).
Thus, we obtain the desired isometry 4 — B by taking the unique continuous
extension of @, b,. L]

Thus, if we confine ourselves to compact metric spaces then limits are
unique whenever they exist. We saw in (1.2) that if a sequence of compact
metric spaces is contained in an ambient compact space then it has a convergent
subsequence. Recall that closed subspaces of a fixed compact metric space
are uniformly compact in the following sense.

1.6 DEFINITION. We say that a family {C;};c; of compact metric
spaces is uniformly compact if there is a uniform bound on their diameters,
and for every &> 0 there exists an integer N(g) such that each of
the {C;} can be covered by N(g) balls of radius e.

A set of points in C; which has the property that the e-balls around these
points cover C; is called an g-net for C;. The corresponding cover is called
an g-cover.
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Notice that the integer N(g), which is sometimes called the e-count, plays
a significant role in our proof of (1.2). Gromov has shown [G1]:

1.7 THEOREM. If a sequence {C;},en of compact metric spaces is
uniformly compact then there is a subsequence which converges in the
Hausdorff-Gromov metric.

If one insists that the limit be complete, then it will be compact. It is
possible to establish Gromov’s criterion by a direct adaptation of the proof
of (1.2) presented above. (The major difficulty in doing so is that one can no
longer use the presence of the ambient compact space to deduce the existence
of the points x(w,j), and instead one must pass to suitable subsequences to
ensure that for all j,j’ the sequence of numbers d(x(i,/),x(i,j"))ien
converges; x(w,j) should then be defined to be a certain sequence
{x(i,/)}ien; the limits of the above sequences of numbers give a
(pseudo-)metric on the set of the x(®, j), and after identifying points which
are a distance zero apart and taking the completion, one obtains the desired
compact limit space.)

In [G1] Gromov established his compactness criterion by a different
argument, embedding the sequence {C;}; .~ as compact subspaces of a fixed
compact space. We emphasized the alternative proof sketched above for
two reasons. First of all, the strategy of proof is much the same as that which
we shall employ in Section 2 in order to construct the R-tree referred to in the
statement of Paulin’s theorem. Secondly, the argument suggested above
highlights the degree of flexibility which one has in constructing limit spaces.
In particular, if one has a sequence of well-understood spaces, then it is
possible to make points in the limit correspond to specific points in the limiting
spaces, and hence one can then use the geometry of the limiting spaces to
elucidate the structure of the limit.

Convention. Given a convergent sequence of spaces C; — C and g;-relations
R; C C; x C with g — 0, one says that the sequence {x;};cn,X € C;
converges to X, € C if x;R;x. . Under these circumstances, we write x; = X o
and say that x; approximates x. in C;.

It is clear from the preceding discussions that Hausdorff-Gromov
convergence is very natural in the context of compact metric spaces, however
it is a less satisfactory concept of convergence for non-compact spaces. One
obvious disadvantage is that the distance between a compact space and an
unbounded space is always infinite. Thus, for example, Hausdorff-Gromov
convergence is insufficient to capture the intuitive notion that as the radius of
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a sphere of constant curvature tends to infinity, the sphere looks increasing
like Euclidean space. There are at least two useful ways of extending the notion
of Hausdorff-Gromov convergence so that it is better adapted to the study of
non-compact spaces. The first, which was introduced by Gromov [G1], gives
a notion of convergence for proper metric spaces (i.e., metric spaces in which
closed and bounded subsets are compact) with a choice of basepoint.

1.8 DEFINITION. Let {X.};cn be a sequence of proper metric spaces
with basepoints x; € X;. The sequence of pointed spaces {(X;;Xxi)}ien
is said to converge to (X;x) if forevery r > 0 the sequence of compact
metric balls {B(x;,r)};cn converges to B(x,r) C X in the Hausdorff-
Gromov metric.

We call this notion of convergence ‘pointed Hausdorff-Gromov con-
vergence’.

Remark. 1If we fix a basepoint x, on the m-dimensional sphere S, of
radius n, then (S,; x,) converges to the flat space (E”; 0). In particular, this
example shows that pointed Hausdorff-Gromov convergence does not imply
that the corresponding (unpointed) metric spaces converge in the Hausdorff-
Gromov metric. For instance, in this example Dy (S,, E™) is infinite for
all n.

Gromov’s compactness criterion for sequences of compact spaces implies
that if for every r > 0 the balls {B(x;,r)};en are uniformly compact,
then {(X;; x;)};n~ has a convergent subsequence. But if one insists that the
limit space (X; x) be complete, then it is necessarily proper (and unique, by
an easy extension of (1.5)). Thus one needs an alternative notion of
convergence in situations where the spaces which appear as a limit of proper
spaces are not locally compact. Such a situation arises in the study
of degenerations of hyperbolic structures [Sha]. A suitable notion of
convergence in such cases was introduced by Paulin in his thesis [P1]
(see also, Bestvina [B]). Paulin calls this notion Egquivariant Gromov
Convergence. The idea is that finite subsets of the limit should be equivariantly
approximated by finite subsets of the limiting sequence (see Section 4 below).
It is important to emphasize that even when the group in question is the trivial
group, equivariant Gromov convergence does not imply Hausdorff-Gromov
convergence. Indeed, in the cases of most interest one typically obtains limit
spaces which are not locally compact (R-trees).

With respect to equivariant Gromov convergence, limits are not unique
in general, but Paulin has shown that under suitably strong convexity
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hypotheses one can establish the existence of limits by means of an extension
of the compactness criterion of Gromov referred to above.

In this article our main interest lies with constructing group actions
on R-trees by producing these trees as a limit of 8-hyperbolic spaces. We are
not interested in the type of convergence which occurs so much as we are in
the properties of the limit. In fact, in our situation, one can deduce these
properties simply by looking at Hausdorff-Gromov convergence on compact
subsets. The proof of the following proposition gives an illustration of the
techniques involved. For this proof we shall need the following terminology.

Terminology. If R is a relation in A X B and C C A, then we define
the R-image of C in B (or, more briefly, the image of C in B) to be
projz(proj ; '(C) n R). Given D C B, the image of D in A is defined
similarly. Note that if R C A X B is an g-approximation, then for every
subset C ¢ A with R-image D C B, the restricted relation R n (C X D)
is an e-approximation between C and D.

We recall some basic definitions. A metric space is said to be a geodesic
space if every pair of points x, y € X can be joined by a topological arc which,
with the induced metric, is isometric to [0, d(x, ¥)] € R. Such a topological
arc is called a geodesic segment. In general, one does not require such geodesic
segments to be unique, but despite this it is often convenient to use the notation
[x, y] for a definite choice of geodesic segment from x to y.

Given a graph X (i.e., a 1-dimensional CW complex) one can turn it into
a geodesic metric space by fixing a homeomorphism from each 1-cell to [0, 1]
and pulling back the metric; one can use these local metrics to measure the
length of paths, and one obtains a geodesic metric space by defining the
distance between two points to be the infimum of the lengths of paths
joining them.

Given a connected subgraph or a connected compact Y C X one defines
the induced path metric on Y by setting the distance between two points equal
to the length of paths in Y which connect them. It is easy to see that this
endows Y with the structure of a geodesic metric space, and if X is a locally
finite graph then Y, thus metrized, is a proper geodesic metric space. It also
follows easily from the definition that the distance between two points in the
induced path metric on Y is at least as great as the distance between these
points in X.

The definition of a &-hyperbolic space was given in the introduction. The
definition which we gave is called the 8-slim condition in [Sho]. It is not
difficult to show that this is equivalent to requiring that there exists a
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constant 8’ so that every non-degenerate geodesic triangle in the given geodesic
metric space admits a map to a tripod (a metric graph with 3 edges, 3 vertices
of valence 1, and one vertex of valence 3) so that this map restricts to an
isometric embedding on each side of the triangle, and the fibres of the map
have diameter at most &’ (see [Sho], p. 16). The following proposition is
from [P4].

1.9 PROPOSITION. Let {C;};en and C be compact metric spaces
such that C; converges to C in the Hausdorff-Gromov topology.

(1) If C; are geodesic metric spaces, then C is a geodesic metric space;

(2) if C; are, in addition, &;-hyperbolic with &,— 0, then C is
an R-tree.

Proof. Let R, be an g;-approximation between C; and C with
g; > 0. Given x,y € C, we choose x;,y; € C; with x;R;x, y;R;y. Thus
| d(x,y) — d(xi, ;) | < g¢;. Note that the numbers d(x;, y;) are bounded.
Let w;:I;— [x;,y;] be an isometry of I; = [0, d(x;,y;)] to a choice of
geodesic [x;, y;] joining x; and y;. We have d(x;,y;) > d(x,y) and
I,— 1, =1[0,d(x,y)]. Let L; be the R;-image of [x;, y;] and let K; be the
closure of L; in C. Then, K; is g;-close to [x;, ¥;] and hence to I; (in the
Hausdorff-Gromov metric). By 1.1, a subsequence of {K;}; < n, Which we still
denote by K;, converges in the Hausdorff metric, to K C C say. But
dul,K;) <dyU, 1)) + dy(;, K;), which goes to 0 as i = oo. Thus K is
isometric to /. Since x,y € K (in fact they belong to all L;) and since
d(x,y) = [(I.), the isometry I, = K gives a geodesic joining x and y. This
proves assertion (1).

To prove the second part of the proposition, we first show that
if 8; — 0, then there is a unique geodesic joining x to y in C, and hence
every geodesic in C arises as in the first part of the proof. We fix a
geodesic [x, y] which arises as in the first part of the proof, and consider
an arbitrary geodesic joining Xx, y; let z be the midpoint of this second
geodesic. We must show that z € [x, y]. By the above construction, we
obtain geodesics [x;, z:1, [z:, ¥:] In C; converging to geodesics [x, z], [z, ]
joining X,z and z,y respectively. Consider in C; the geodesic triangles
with sides [x;, y:], [¥i, z:], [z:, x:]. Choose z/, y/, x] on [x;, ¥:], [z:, Xxi],
[y:, z:] respectively so that d(x;,z;) = d(x;,y}), d(z;,y}) = d(z;, x]) and
d(yi,z!) = d(y;,x]). It is not difficult to see that d(y;, z;), d(z, x}),
d(x{, y;) are all less than 46; (cf. [Sho], p. 17, proof of slim implies thin).
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Thus, as i — o, we see that x/, y;, z; converge to the same point, say z°,
on [x,y]. Thus d(x;,»!) + d(yi, x]) — d(x;, y:) converges to zero. Since
d(x;,z;) + d(y:i,z;) — d(x;,y;) also converges to zero, we have that
d(y!,z;) + d(z;,x]) converges to zero. Since d(z;,z;) <d(z/,)})
+d(y;,z;) <48; + d(¥/, z;) we see that the z; converge to the point z” on
our original geodesic segment [x, y]. Thus z, the midpoint of our arbitrary
geodesic from x to y, coincides with the midpoint of our fixed geodesic.
Repeating the argument we see that these geodesics must agree at a dense set
of points, and hence everywhere. Since geodesic triangles in C; are S;-slim,
and geodesics in C all arise as limits of geodesics in C;, we see that geodesic
triangles in C must be 0-slim, and hence C is an R-tree. L]

Remark. If one has a sequence of §;-hyperbolic spaces C;, with C; = C
and 8,— 8 >0, then one can extend the preceding argument to show
that C is &’-hyperbolic (with §" = 198, for example).

SECTION 2: THE PROOF OF PAULIN’S THEOREM
In this section we shall prove the following theorem of F. Paulin [P4].

2.1 THEOREM (Paulin). If I is a word hyperbolic group and
Out(Y') is infinite, then 1 acts by isometries on an R-tree with virtually
cyclic segment stabilizers and no global fixed points.

In its outline, the proof given below is very similar to Paulin’s original
proof, except that we use Hausdorff-Gromov convergence instead of the
equivariant Gromov convergence used by Paulin. In particular, this allows us
to avoid the difficulties discussed in the next section.

Let S be a finite set of generators for I' and let X = X(I', S) denote the
Cayley graph of I' with respect to S, as defined in the introduction. I is the
vertex set of X and receives the induced metric. The hypothesis that I" is word
hyperbolic means precisely that there exists & > 0 such that X is a §-hyperbolic
geodesic metric space. Note that with our definition of a Cayley graph, the
endpoints of each edge are distinct, and there is at most one edge joining each
pair of vertices; hence the action of I' on itself be left multiplication can be
extended linearly across edges in a unique way to give an isometric action
of I' on X.

The proof of Theorem 2.1 will be broken into a number of smaller results.
We begin by noting that, because Out(I') is infinite, we can choose a sequence
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of automorphisms {¢;};  n such that none of the ¢, is an inner automorphism
and no two of the ¢; have the same image in Out(I'). For each i e N we
consider the function f;: X — [0, o) defined by:
(2.2) fi(x) = max d(x, ¢;(s)x) .

ses
This function has been used by Bestvina in his study of degeneration of
real hyperbolic structures [B], and our use of this function is similar to
his. (A similar idea was used earlier in a different context by Thurston
[T, Prop. 1.1].)

Note that f; takes on integer values at vertices and midpoints of edges
in X, and its restriction to half-edges is linear. It follows that f; attains its
infimum (which is an integer) at some point, x; € X say. (In the case
where I' is not virtually cyclic one can also see this by showing that f; is a
proper map, i.e., a map with the property that the inverse image of a compact
set is compact.)

Let
A = max d(x;, §;(s)x;)
(23) ses
= inf max d(x, ;(s)x) .
xeX ses

We fix a definite choice of points x; with the above property.

For future reference, we note that by passing to a subsequence of the ¢;
we may assume there is a single element s, € S such that A; = d(x;, ¢;:(s0)x;)
for all i € N. We also note that with the above choice of x;, the triangle
inequality yields:

(2.4) d(x:, ¢;i(v)x;) < A;d(e,y) .

Following Paulin, we next note that because Ouf(T') is infinite, the
sequence A; must be unbounded. For suppose that there were a uniform
bound, p say, on the value of A;. Then for any vertex y; € X closest
to x;, we would have d(e,y; ' ¢:(s)y:;) =d(yi, d:(s)y;) <p + 2 for
all s € S, i € N. But there are only finitely many vertices in the ball of radius
p + 2 about e, so this bound would imply the existence of integers n # m such
that y,,'ld)n(s)yn = y,;lcbm (8)yn, for all s € S. Whence ¢, and ¢,, would be
equal in Out(I'), contrary to hypothesis. Thus we have shown that the sequence
of numbers {A;}; ~ is unbounded, so we may pass to a subsequence {A,},en
which is strictly increasing and assume that A, = o as n = .
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Consider the sequence of metric spaces X = (X, di), where d;:= d/ Ay
is the original metric on X scaled down by A,. In what follows we shall
intermittently use both the original metric ¢ and the scaled metric dy,
specifying which on each occasion and, where appropriate, using the formal
notation (Y, d) for a metric space which consists of the set Y together with
a distance function d. But for the moment, the most important distinction
between the X, will be that we shall regard I' as acting on X, via ¢, and
think of our chosen point x,, at which the minimax A, is attained, as a
basepoint in X,. More precisely, we consider the sequence of pointed
[-spaces (X, xx), where the action of vy € T" on Xy is x = ¢« (y)x.

We wish to use the hyperbolic nature of X, to approximate it by a
sequence of star-like compact subsets X, (P;) centred at x,. To this end, we
fix a sequence of finite subsets {¢} = P, C P, C P,--+ C P, C -+ which
exhaust I'. Let n; = [P,- | denote the cardinality of P;. The desired subsets of
X, are defined inductively as follows: X, (Po) = {xx}, and X, (P;) is the
union of n; — 1 geodesic segments, those in X, (P;_;) together with a choice
of geodesic segment from x; to each element of {¢(Y)Xk|y € Pi — Pi_\}.

We next ‘fatten-up’ each of the sets X,(P;) by taking its closed
d-neighbourhood in the metric d. Henceforth we shall denote this neigh-
bourhood V. Let d; ; be the induced path metric on V. As we discussed
in Section 1, (V, d; () is a geodesic metric space. It is also important to
notice that the induced path metric which Vj( receives from dy is d; /Ay
The following lemma is suggested by an argument of B. Bowditch [Bo].

2.5 LEMMA. With the above notation, for all x,y € Vj'( we have:
d(xsy) < di,k(xsy) g d(xay) + 46 C

Proof. The left-most inequality comes from the general fact that for any
subspace of a geodesic metric space the induced metric is dominated by the
induced path metric. In order to establish the other inequality, we first note
that X (P;) is 6-convex in (X, d), in the sense that if a geodesic segment in
Xy joins a pair of points x,y € X;(P;), then this geodesic segment lies
entirely within the closed §-neighbourhood V! of X, (P)).

Given x, y € VL, we fix points z, w € X (P;) closest to x and y respec-
tively. (Such points are not unique in general.) Let [x, z], [z, w] and [w, y] be
choices of geodesic segments joining x to z, z to w and w to Y, respectively.
Each is contained in VZ, and hence so is the broken geodesic [x, z, w, v]
obtained by concatenating them. The length of this broken geodesic is at most
d(z,w) + 28 < d(x,») + 48. Hence d; ,(x,y) < d(x,y) + 45. [
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The subspace V', forms a good substitute for the notion of a convex hull
for ¢« (P;)x; in X,. According to the above lemma, geodesics in (VL, di )
are (1, 406)-quasigeodesics in (X, d), and hence by [GH, p. 82] there exists
a constant n = n(6) (independent of k, i) such that geodesic triangles in
(VZ, d; «) are n-slim. Thus we have proved the first part of:

2.6 LEMMA. There exists a constant m = n(8) such that, for all
k € N, with respect to the path metric d;, on Vﬁc, geodesic triangles in
V' are n-slim. Moreover, for fixed i, .with respect to the (scaled) path
metrics d; /Ay, the metric spaces {V ,}ren are uniformly compact.

Proof. It remains to prove the assertion of the second sentence. We follow
an argument of Bestvina [B]. Until further notice we work with the
metric d. Let p; be the maximum of the integers {d (e, y) |y € P;}. EBach of
the geodesic segments used to define X,(P;) has length at most p;A,
(by (2.4)). Therefore, given € > 0, we can cover X (P;) by 2n;u;/€ segments
of length at most A,e/2. (Recall that n, = | P;|.) Hence, if A,e > 28, then
in order to cover Vf( we need at most 2#;1;/¢ balls of radius A,e. But we
arranged that A, & o as k — o, so this is true for large k.

Now we change viewpoints and work with the scaled metric d; on X,
and the induced path metric on VZ. In this setting, the preceding argument
shows that for large k one needs only 2x;,;/¢€ balls of radius € to cover V};.
Since the path metric on Vj'( and the restriction to Vj; of d, differ by at most
an additive constant of 48/X,, we have thus established the existence of a
uniform e-count for the { V% }, . x both when equipped with the restriction of
the metrics d, and when equipped with the induced path metrics. Because
they are path metric spaces, a uniform e-count also yields a bound on the
diameter of the V. [

Continuing with the proof of Paulin’s theorem, we fix an integer j and
suppose that we are given a positive constant €. According to the preceding
lemma, we can choose €-nets N, (k, j) for VJ,'( on whose cardinalities there is
a bound independent of k. We may also assume that the set N, (k,j) includes
¢Ox(P;)x,. Since, for fixed j, the N:(k,j) are finite metric spaces of
uniformly bounded cardinality and diameter, we can pass to a subsequence
(using a diagonal type argument, as in Section 1) so as assume that, for all
v,v’ € P;, the sequence of numbers d; (dx(Y)Xk, Ox(y’)Xx) converges as
k — o. Passing to a further subsequence which is convergent in the
Hausdorff-Gromov topology we obtain a limit metric space L. ; (whose
cardinality will be no greater than that of the N, (k, j)). As a basepoint in the
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limit spate we choose the limit of the sequence x,, and we christen this
point x.. For each y € P;, we denote the limit of the sequence ¢ (v)xk
by YXw .

We next take an £/2-net for ¥ which is constructed so as to include the
previously chosen e-net. Passing to a subsequence if necessary, we obtain a
finite limit metric space L./, ;. We proceed in this manner, taking finer
g-nets, and at each stage including the previous (coarser) ones and extracting
convergent subsequences to obtain finite limit metric spaces. The natural
inclusions of each e-net into its refinements gives a natural identification of
points in the limit, so it is not too abusive a notation to write:

Le’jCLg/Z’j". CLs/zn’jC

We define L; to be the direct limit of this sequence, that Iis,
L;= U{L, § |n e N}. We denote by ﬁ the metric completion of L;.
Since the dlameters of the VJ are uniformly bounded in the scaled metrics,
we see that L is a complete space of finite diameter, and hence is compact.
By choosing a diagonal type subsequence and renumbering, we obtain the
following array of spaces with convergence in both the horizontal and vertical

directions:
Ne(1,)) € Ngpn@2,j) € =ovvee C Ngnn(l,j) C c VicX
Ns(zy./) c N8/2(2aj) Ly * " C Ns/Z”(z,j) - Cc ij C X
Ne(m,j) € Negpp(myj) € oovvee C Ngman(m,j) C C V{ﬂ € Xy
A
L, ; C Ly, L srmees c L/, c - C L;

Our next goal is to show that as k = oo the V% actually converge to L ;j1n
the Hausdorff-Gromov topology. We have that N;,,.(m, j) is /27! close
to Vj for all m. After passing to yet another diagonal type subsequence, we
may assume that N ;. (m,j) is €/27 1! close to L, yx jfor all m > n. Thus
v/ and Lesan, jare €/2"-2 close for m > n. On the other hand, L., _j and
Lgjaner jare /2741 close (since any choice of /2" and 8/2”+1 nets of V’k
are 8/2’7+1 close). Thus Lg/yn ;is £;5 ,6/2¢ close to L; and L Hence V’

and L are £/2"-3 close, so V7 converges to L, j» in the Hausdorff-Gromov
topology, as n — o.

T T T T
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Notice that, by (1.9) and (2.6), the spaces ﬁj are R-trees of finite
diameter, because V7’ is n/A.-hyperbolic and A, = o. It is also useful to
observe that I, j 18 spanned by yx., with v € P;. Furthermore, the X, (P;)
themselves converge to LAj because X, (P;) and V7’ are 48/A-close and
Ar — . However, in what follows it is most convenient to still work with
VJ,'( rather than X, (P;) when we need to take a choice of geodesic between
two points of X, (P;). Also, because the scaled path metric on Vf,; and the
induced metric d,/ A, differ only by 48/A,, which tends to 0 as k = oo,
henceforth it is not important to keep track of the difference between these
two metrics.

By construction, all of our &/27-nets include the set {¢p(y)xi |y € P;}
and each of the sequences d;(d(y)xi, d(y")x;) converges. Thus, if we
denote by x. € LAJ the ‘limit’ of the x,, and by yx., the limit of the ¢ (y)xy,
then we see that d(yx., ¥ X+ ) (distance in ﬁj) is independent of j. Since the
tree L ; 1s the convex hull of the points yx., we can define an isometric
embedding of ﬁ ;into ﬁ ;+1 for all j and hence obtain an R-tree by taking the
direct limit of the resulting system of inclusions. We denote the direct limit
metric space with basepoint (which as the limit of R-trees is itself an R-tree)
by (Xe;Xw). The final important observation to make is that I' acts
isometrically on X, because it acts isometrically on the subset {yXo}ycr
(by left translation), and the convex hull of this subset is the whole of X..

Let us now examine the nature of the action of I on X, . We claim that
it has the following properties:

(1) There is no point of X . whose stabilizer is the whole of T'.
(2) The stabilizer of every non-trivial segment in X, is virtually cyclic.

To see that (1) is true, let us see what would happen if it were to fail.
Suppose that I' were to stabilize a point z., € X,. We fix a segment
Zo € [YXw> ¥ Xo] C ]31-. Up to the taking of subsequences, we have that
the closures in LA ; of the images of the geodesic segments [yx,, v x,] C V{(
converge (in the Hausdorff metric) to [YXw,Y X»], and we fix points
Zr € [YXxe, v xi] which converge to z... We then choose j large enough to
ensure that S C P; (recall that S is our fixed finite generating set for I'),
and / large enough to ensure that P;P; C P,.

We have, for every s e S, geodesics [syxy, sy xel:= 8" [yXe, v xi]
in Vﬁ(, and (by definition of the action on X ) the closures of their images
in IA,, C X. converge to [SYXw, SY Xw]. Moreover, {5z}, e~ converges to
S'Ze = Zow, SO for large k we have that d, (s 2, 2x) < 1/4 in the scaled
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metric of X,. Hence d(s- zx, z2x) < A¢/4, for large k, in the original metric
on X,. But this contradicts the definition of A.

Remark. The preceding argument actually shows that for every finite set
P ¢ T which fixes z., given any € > 0 one has that for & sufficiently large
7. and yz, are e-close, in the scaled metric dy, for every y € P.

We next need to show that segment stabilizers are virtually cyclic. This
seems to be the place where some sort of discreteness assumption on I is
needed. In the classical real-hyperbolic case, Margulis’ Lemma implies the
result for discrete actions (see [B] and [P2]). Since we are using Cayley graphs
and the group actions are (almost) free there is still some sort of discreteness
and Paulin gives a delicate argument to show that segment stabilizers are
virtually cyclic. The following algebraic lemma is taken from [P4]:

2.7 LEMMA. Let G be a finitely generated group. If the set of
commutators {aba-'b-'|a,b e G} is finite, then G is virtually abelian.

Proof. The action of G on itself by conjugation determines a map
G — Aut (D), whose image is Inn(G) and whose kernel is the centre of G; it
suffices to prove that Inn(G) is finite. If A is a finite generating set for G,
then the action of g € G by conjugation is determined by its action on the
elements a € A. But g-lag = (g~ laga~-')a, and by hypothesis there are
only finitely many possibilities, M say, for the commutator g -'aga~'.
Hence the cardinality of Inn(G) is at most M4l [

We proceed with the proof of assertion (2) on segment stabilizers. We call
a subgroup /arge if it contains a non-abelian free subgroup (for hyperbolic
groups this is equivalent to not having a cyclic subgroup of finite index).
Suppose that a large subgroup G of I' stabilizes a non-trivial segment
e C X, . If e is finite, then a subgroup of index 2 in G fixes e pointwise. If
e 1s infinite, a subgroup of index 2 in G acts as translations on a ray in e and
thus a large subgroup of G, obtained by taking commutators, fixes a segment
of positive length in e pointwise. Thus, in any case, if a large subgroup of T
stabilizes a segment, then a (perhaps smaller) large subgroup of T fixes a
segment e of positive length pointwise. Therefore, in order to complete the
proof of Paulin’s theorem, it suffices to show that if a subgroup of T’
fixes a segment of X, pointwise, then that subgroup is virtually cyclic.
Let D denote the length of such a segment which is fixed pointwise by the
subgroup G C I', and let z and z” denote the endpoints of the segment.

We fix ¢ > 0 small (to be estimated later) compared to D, and k so large
that if zy, z; € X, correspond to z,z" € X then|d(z4, z;) — D | < &. We fix
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a geodesic segment [z, z,] from z, to z; in X,. Given any finite subset
P C G, we choose a finite subset Q C G which contains all products of
length <4ins, ¢, s~ 1,71, as s and ¢ vary over P. We choose k large enough
so that z4, z, are moved by less than € by each y € Q with respect to the
scaled metric dy = d/A,. If D > 3¢ + (248/A,) then if we omit segments
of d-length A& + 126 from the ends of [z4, z,], the remaining sub-segment
is non-empty; call this segment C,. We assume that € is small enough to
satisfy the above inequality; we shall place further restrictions on € later.

Now we use the original metric d on X,. From the proof ‘slim = thin’
(see [Sho] p. 17), if x € Cy then yx is within 126 of [z;, z;]. We denote by
v«X the projection of yx on [z4, z,]. Of course, the ‘projection’ is not uni-
quely defined, but the preceding sentence is true no matter which closest point
on [z4,z,;] one chooses — we fix a definite choice for each x € Cy, thus
defining a map vy.: Cy = [z, 2;] for each y. Next, we omit segments of
length S(Ase + 1258) from the ends of [z, z;] and denote the remaining long
segment by E; C C,. The map Cy — [2«, Z;] just defined restricts to a map
E, = [zk, z2,]; we continue to denote this map by y,. Notice that this map
1s a 245-isometry, that is to say, it distorts distances by at most an additive
constant of 244; in fact it is 249 close to a translation of E, along [z, z,].
(Here, and in what follows, the terminology n-close is used to describe func-
tions f, g with the same domain such that d( f(x), g(x)) < m for all points in
their common domain.)

Note that on E, the maps Ss, Ssfs, Sxla(S s, Sxls(5™ s (£ 1), etc.
are well-defined and uniformly close to translations. Choose
M = Max{5(h,e + 128), 6006 }. We will denote by e, the segment obtained
from [z, z,] by omitting segments of length M from the ends. We have
e, C E,. To make sure that e, # @ we assume D — & > 5 + (608/A), we
also assume D — g > (6006 /A;). Since A, = oo, we can choose large enough
k and small enough € so that the above conditions are satisfied.

We shall consider the restrictions Yy :e, = Cyx to e, of the maps vy,
defined above; we retain the notation 7y, for these restricted maps. Our
goal is to obtain a bound (independent of |Q|) on the number com-
mutators tst~!s~! in Q by estimating how close the action of such a
commutator on e, is to the identity map. We first compare 745 (f 1) (s 1)«
to tst~!s—!. Observe that, since the maps s and s, are 128 close, ts and
t(sy) are 128 close (the left-action of I' on X} is by isometries in the metric
d). Hence, (25)+ and t4sy are 360 close. Comparing successively #s¢ 15!,
(tst=1s Dy, (18)s (715 Vg, teSx(t71)s(s )% shows that #st-ls—!
and 7,54 (f )4 (s )4 are (12 + 36 + 108) 6 close.
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Next, we compare t,s%(f 1)s(s~1)4 to the identity map on e,. Since
s« (= 1)y and (7~ 1) 54 are 728 close to the same translation, and translations
commute, we have that rfus%(7 " Ds(s 1)s and z.(f 1)sSs«(s71)x are
(144 + 24)8 close. Moreover, (7~ 1)x and s.(s~!)x are 368 close to the
identity. Thus 7.(7 1)«Ss«(s~ 1) is 1088 close to the identity. Hence
FeSse (T D) (s Dy 1s 2768 close to the identity. Combining this with the
estimate in the previous paragraph we have that the restriction of (zsz-1s~1)
to e, is 5328 close to the identity on e,. Therefore, a vertex close to the
midpoint of e, is moved by less than 5328 + 2 by tst~1s~!. Thus tsf - ls !
lies in the ball of radius 5328 + 2 about the identity in I', and we have the
desired bound on the number of commutators in the arbitrary finite subset
P CG.

Now Lemma 2.7 implies that G is virtually abelian. But every abelian
subgroup of a hyperbolic group is virtually cyclic. Hence the segment
stabilizers for the action of I on X . must be virtually cyclic. This completes
the proof of Paulin’s theorem. [

SECTION 3: CONVEX HULLS

A subset ¥ of a geodesic metric space X is said to be geodesically convex
if for all p, g € X every geodesic segment from p to g is completely contained
in X. Given a bounded set Y C X, perhaps the most natural way to define its
convex hull is as the intersection of all geodesically convex sets containing Y.

If X is simply connected and non-positively curved then round balls are
geodesically convex and hence the convex hull of a bounded set is bounded.
However, for more general geodesic metric spaces, even 8-hyperbolic spaces,
it may happen that the convex hull of a finite set is the whole of the ambient
space X. The following example illustrates how general this problem is.

3.1 PROPOSITION. Given any finitely generated group T there exists
a finite generating set S and a finite subset Y C T such that the convex
hull of 'Y in the Cayley graph X(T',S) is the whole of X(T, S).

Proof. Let A be any finite generating set for I, and take S to be the set
of those elements of I" which are a distance 1 or 4 from the identity in the
Cayley graph of I with respect to S. Let Y be the set of elements of T which

are a distance at most 3 away from the identity in the Cayley graph associated
to A.
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Notice that the convex hull of Y with respect to .S contains the ball of radius
4 as measured in the 4 metric. Furthermore, a simple induction shows that
if this convex hull contains the balls of radius » and n + 3 about the identity
(as measured in the metric associated to A) then it contains the ball of
radius #n + 4. Thus the convex hull of Y is the whole of X(I', S). [

SECTION 4: CONCLUDING REMARKS

The type of limit spaces which we considered in Section 2 first arose in work
of Morgan and Shalen in which they reinterpreted and generalized Thurston’s
compactification of Teichmuller space (see [Sha]). The particular topology
with respect to which limits are taken in that setting is equivalent to what
Paulin has termed ‘‘Equivariant Gromov convergence’’ (see [P1, 2]). It can
be shown that the limit tree which we constructed in Section 2 is also a limit
in the sense of this topology. We recall Paulin’s recent definition:

4.1 DEFINITION. A sequence of metric spaces Y, which are equipped
with actions by isometries of a fixed group I, converge to a metric
space Y, which is also equipped with an action of T by isometries, if and
only if, given any finite set K C Y, any & >0, and any finite subset
P CT, for sufficiently large n, one can find subsets K, C Y, and
bijections x,— x from K, to K, such that

| d(vx, ) = du(YX, ¥a) | <&
forall x,ye K and all vy e P.

Limits are not unique in this topology, even if one allows only limit spaces
which are complete (cf. [P2], p. 55).

The technique of Equivariant Gromov convergence has been successfully
applied in the following settings:

(1) Y, = H" for every integer n and the action of the (abstract) group I is
discrete and varies with #;

(2) the spaces Y, are R-trees with isometric I'-actions;

(3) each Y, is equal to the Cayley graph of I" with respect to a fixed set of
generators and the action of I' is left-multiplication twisted by a sequence
of homomorphisms ¢,: ' = T.

The situation which we considered in Section 2 belongs to the third of the
above cases. In the first two cases, the spaces under consideration enjoy strong
convexity properties that allow one to form compact convex hulls of any finite
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set of points, and under suitable assumptions on the actions being considered
one can show that such convex hulls satisfy uniform compactness conditions.
The example of the previous section shows that case (3) is less hospitable to
analysis of this type. But the arguments which we presented in Section 2 show
that this difficulty can be accommodated by using suitable quasi-convex hulls
to imitate the more familiar convex hulls used in cases (1) and (2).

If one is interested purely in elucidating the structure of the group I' under
consideration, then arguments using Hausdorff-Gromov convergence, as in
Section 2, provide a direct method for constructing a limit object (X o, Xo)
which can be used to study properties of I'. If, on the other hand, one is
interested in some kind of representation space for I', then it is more
useful to formulate results in terms of the above notion of equivariant Gromov
convergence. If one is working in a situation where there is an a priori different
topology to be considered, then one is left with the task of showing that the
above notion of equivariant Gromov convergence agrees with the notion of
convergence in this other topology. Such verifications have been successfully
carried out for various discrete actions of non-elementary hyperbolic
groups I' by Bestvina [B] and Paulin [P 1-3]. In particular Paulin has shown
that the above notion of convergence leads to the same topology on small
actions of a fixed group on R-trees SLF(I") as the more familiar topology given
by length functions.

Somewhat surprisingly, similar Hausdorff-Gromov type arguments do not
seem to work so well without some assumption of smallness on the actions
considered. For example, the space of all length functions LF(I') on a fixed
group I' does not seem so amenable to such an analysis. The problem appears
to lie with the absence in this generality of any assumption to play the role
which the Margulis Lemma plays in the case of discrete actions on H”. One
final remark about length functions: an important subspace of SLF(I)
is VSLF(T'), the space of very small actions introduced by Cohen and
Lustig [CL]. Compactness of VSLF(T') (a result due to Cohen and Lustig) can
be proved using equivariant Gromov convergence in the same manner as one
shows compactness of SLF(T'); see Paulin [P5].

Rips and Sela ([RS], [S1], [S2]) have made extensive use of variations on
the arguments in Section 2 above to study hyperbolic groups. Most strikingly,
from Paulin’s theorem and deep work of Rips (see [RS], [BF]) one obtains

an analogue for hyperbolic groups of the annulus theorem from 3-dimensional
topology.
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4.2 (CYLINDRICAL SPLITTING THEOREM).

If T is a hyperbolic group with Out(I') infinite, and if I has one
end, then T s either an HNN-extension or an amalgamated free product over
a virtually infinite cyclic group.

Hyperbolic groups which do not admit a splitting over a virtually cyclic
group have been termed rigid by Rips and Sela. They show, by a variant of
the argument in Section 2 above (termed the Bestvina-Paulin method by Sela)
that rigid hyperbolic groups are co-hopf. If I" is torsion-free and rigid, then
they show that there are only finitely many conjugacy classes of embeddings
of T into any hyperbolic group. Sela [S2] has begun to investigate hopficity
for rigid hyperbolic groups. Thus the techniques which we have attempted to
exemplify in Section 2 appear to provide an extremely useful tool in the study
of hyperbolic groups.
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