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26 P. BORWEIN AND C. INGALLS

6. Open Problems

There are many open questions and unproven conjectures about the

Prouhet-Tarry-Escott problem. We conclude by listing a few.

1. Find an ideal solution for any size higher than 10 or find some degree for
which an ideal solution does not exist. (Even a heuristic argument would
be of interest.)

2. Find another class of solutions of size 9 or 10.

3. Prove N(k) ^ o(k2).

4. Prove M(k) ^ 0(k2).
5. Show that there is no 7 factor (degree 6) pure product of norm 14.

6. Find a non-trivial lower bound for A(k). Almost equivalently prove

min
n i, ...,nk

fi (l -*"*) > 2k
1

for some k. (Problem 5 is the k 7 case of this.)

7. Find a true algorithm, even an impractical one, that determines if there is

an ideal solution of size 11.

8. Find a true algorithm, even an impractical one, that determines if there is

a degree 6 (k 7) pure product of norm 14.

9. Solve the ideal problem mod pn for all primes p smaller than the size of
the solution and all n.

The big prize is to find ideal solutions of all degrees, if indeed they exist.

Question 1 above is, of course, the first step. No progress on questions 3

and 4 has been made for many years. Questions 5, 6, and 8 all relate to
the Erdös-Szekeres Problem. The issue in Questions 7 and 8 is that it is

not known how to bound solutions so as to make the problems finite.
Question 9 is raised in [17] and would show that no local obstructions exist

to solutions.
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