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where w,(K) is a natural number which is easily computed. It follows from
the results of [MW] that the odd part of (7) is true if K is abelian. This makes
it possible to calculate the odd part of # K,(R) in concrete cases: by the
Kronecker-Weber theorem, K is a subfield of a cyclotomic field. From this one
derives that {x(s) is a product of Dirichlet series the values of which at
negative integers can be expressed by generalized Bernoulli numbers. Finally,
the 2-part of # K,(R) has been calculated in some real quadratic cases by
Browkin and Schinzel [BrS]. Collecting these informations, one has, e.g.,

#K,(R) = 12 for K = Q(/6) ,

([Hu3], Th. 8). Now it is not too difficult to write down sufficiently many
different elements of K,(R) (so-called Steinberg and Dennis-Stein symbols).
Thus, one knows K,(R), and presentations of SL,(R), n > 3, drop out.
In [Hu?2], Hurrelbrink treats the integral domains of the real subfields of
the 9-th and 15-th cyclotomic field, this time relying on the Birch-Tate
conjecture for these fields. A generalization of this line of thought to cases
involving skew fields seems to be out of sight at present.

I would like to mention here (although K-theory is not explicitely
used) a purely algebraic method due to P.M. Cohn [C] which gives
presentations of SL,(R) for certain subrings R of C; this method applies
to the integral domains of the euclidean imaginary quadratic
fields Q(/—d), d =1, 2, 3, 7, 11. The presentations involve a// matrices

x 1 y 0 )
and , Y aunit,
-1 0 0 y-!

hence are, by genesis, not finite. In the cases in question it is however possible
to reduce them to finite presentations. This is carried out in [F, p. 73 ff.].

7. COHOMOLOGY

We recall some notions from the cohomology theory of groups;
ideal references for our purposes are the book [Br] by K. Brown and
Serre’s article [Se3].

A group I' is said to have cohomological dimension n, cdT = n, if n is
the maximal dimension for which there exists a I'-module M such that
H"(', M) # 0. If there is no such n,cdl = o. If cdl < o, then I is
torsion free. It is known that cd ' = 1 if and only if T is free. There is a virtual
notion: vedT = n if T contains a torsion free subgroup A of finite index
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with cd A = n; this is independent of the choice of A because cdA; = cd A,
for A; C A, torsion free with finite index.
Let ¢dI’ = n. T is called a duality group if there exists a dualizing
module D such that
H{T,M)=H,_;I',DQ® M)

for all i and I'-modules M. If T" is of type FP (a condition virtually satisfied
by our unit groups) then an equivalent condition is

H T,ZT) =0 for i # n, and
H"(I', ZT) is torsion free.

The dualizing module is then D = H"(I',ZI"). If D=7, T is called a
Poincaré duality group. The corresponding virtual notion is clear.

Now let G be a linear algebraic group, semisimple and connected, defined
over Q, and let I' C G be an arithmetic subgroup. Suppose I is torsion free.
Let C < G(R) be a maximal compact subgroup. Then I' n C = 1. Hence I
operates properly discontinuously on

X =C\GR).

Since X is diffeomorphic to a Euclidean space, in particular contractible, it
follows that

XT):= C\GR)/T

is a K(I,1)-space, that is, n;(X(T)) =T and =n;(X(T)) =0 for i> 1.
Furthermore,

H*T, —) = H*(X(D), -) .

This implies that cdI' = dimXI) if X({I') is compact and < dim X(I")
otherwise. In the fundamental paper [BSe], Borel and Serre have shown how
to enlarge X to a manifold X with “corners” on which T still operates
properly, and for which X/T is a compact K(I', 1)-manifold with corners.
The boundary is explicit enough (it has the homotopy type of a bouquet
of (/ — 1)-spheres, where / = Q-rank of G), and one derives

cdl =dimX -/

([BSe], 11.4.3). Further, I" is a duality group, and Poincaré if and only if / = 0,
that is, X(I') is compact.

We apply this to G = norm-l-elements of A% and SG = elements of
reduced norm 1 over the center. Then

dimXI) = r(A4),
dim X(ST) = r(SA4) .
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The Q-rank equals n — 1 in both cases (see [BT], 6.21. The field- and skew
field part contribute nothing to the rank.) So we see from the general theory
that X(I') is compact if and only if A = D is a skewfield. The “if” part is
our Theorem 1, and for the “only if” a direct argument is available:
taking A = M,(Q) for simplicity it is not difficult to see that the points

of X represented by
0
‘ ) , a€Q
0 a-!

cannot be uniformly bounded by right multiplication with SL,(Z).
Summarizing, we obtain

THEOREM 4. Let T be a unit group. Then
vedT = r(A) —n+ 1,
vedST = r(SA) —n+ 1.

T is a virtual duality group, and Poincaré if and only if n = 1.

This is our second generalization of Dirichlet’s unit theorem. Recall that
the easy part of this theorem is

I'/torsion = Z", r < r(K) ,

and the hard part is to show that » = r(XK). But from the Kiinneth formula
one easily derives cdZ" = r. Another interesting consequence is

COROLLARY. I' contains a free subgroup of finite index if and only

if A= M,(Q).

Proof. In view of the theorem and formula (5) we have to show that
the equation

2 -1 -
r s + )Z(ns ) +ry (ns 2)2(ns tD trms-1)(s+1) =n

admits as only solution n = 2, r{ =s =1, r{’ = r, = 0. First, we must have
r, = 0 and next rir{’ = 0 because otherwise there would be two summands
> 7. The reader can work out that

ri’(ns—2)(ns+1) =2n
has no solution, the remaining equation only the one stated above.
In other words, SL,(Z) is not virtually isomorphic to any other unit

group, and is virtually free. This latter property is usually proved by applying
the Kurosh subgroup theorem to PSL,(Z) = C, * C,.
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The actual calculation of the integral cohomology H*(I') is hard. Being
satisfied with virtual results, we can consider the case I' = SL,(Z) as settled (if
you don’t, apply the Mayer-Vietoris sequence ([Se3], 1.3) to I' = Cy*¢, Cs.)
The next case I' = SL3(Z) requires already substantial work; the interested
reader is referred to [So], and, for congruence groups, to [LS].

In view of Theorem 4, it is natural to ask for a classifying space for I'" of
the “correct” dimension vedT'. Such a space has been constructed (for unit
groups I') by Ash [Ash] as a deformation retract of the space of forms which
was the object of reduction theory. Ash’s construction, which is as elementary
as ingenious, generalizes ideas pursued as early as 1907 by Voronoi;
see [Br], ch. VIII for a discussion. Thereby the general but very involved
construction of Borel-Serre can be avoided in the present case. Let us sketch
the procedure in the simplest case I' = SL,(Z): the space of forms is

H* =SOn)\SL,R ),
and what we eventually want, is a compact deformation retract of
H+/SL,(Z) = SO(n)\SL,(R)/SL,(Z) .
Now
SL,R)/SL,(Z) =:G

is naturally identified with a space of lattices in R”; so instead of working
with forms mod SL,(Z), we can work with lattices mod SO(n). For L € G
define

m(L) = min{{x,x) | x € L\(0)}
and
M(L) ={xe L|{x,x) =m(L)},

the set of “minimal vectors” of L. Ash calls L “well rounded” if
M(L) contains a basis of R”. It is clear that these definitions descend
to SO(n)\G. Ash’s main result is that the space W = {well-rounded
lattices with m (L) = 1} mod SO(n) is the required deformation retract.
Returning to the Dirichlet unit theorem once more, we observe that the
rank 7(K) is detected by the cohomology in still another way. Let us work with
the full unit group and write I' = C, X Z". Using the well-known coho-
mology of cyclic groups and the Kiinneth formula, one readily computes

r

H"T)=H"(I,Z) = Z(n) X (Cy) (niZ) " (ni4) H
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so that for n > r

(Cx) (6) ’ (;) T (’r') n even
H"(I') = ’ " .
(Ck)(1)+(3)+m+(f”) n odd,

where r’ = r for r even and r’ = r — 1 for r odd, and vice versa for r”.
Thus r is recovered from H* (') in two ways:

(1) r=max{n|rkH"(T) > 0},

(2) r+ 1= lowest dimension from which on H*(T) is periodic (of
period two).

The periodicity has been generalized by Venkov [Ve] to orders in skew
fields. He proves the following general theorem: Let G be a connected
noncompact Lie group and I’ < G a discrete subgroup with the properties

(i) every finite subgroup of T has cohomological period g;

(i) there is c e He(') such that, for every finite subgroup H <T,
resy,c generates He&(H).

Then the cup product by c¢ gives isomorphisms
HT,M)=H'"¢(I,M)

for all T-modules M and k> dimG — dimC,C a maximal compact
subgroup.

This too can be applied to G = norm-1-group of A%, where A = D has
to be a skew field. G is noncompact unless D is a totally definite quaternion
algebra, a case which we can happily omit from our considerations because
in this case ST is finite. The possible finite subgroups of D* have been
classified by Amitsur [Am]. As his results show, their Sylow groups are cyclic
or generalized quaternion groups; hence they have periodic cohomology
([Br], th. VI 9.5). Since I contains — up to isomorphism — only finitely many
finite subgroups, these have a common period. These arguments are not even
necessary because Venkov shows ([Ve] Prop. 5) that, for g = dimyD,

He(H)=17/|H|Z

for any finite subgroup H of T'; this implies g-periodicity by ([Br], Th. VI 9.1).
The harder part is condition (ii) which requires a spectral sequence argument.
One obtains
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THEOREM 5. Suppose that A = D is not a totally definite quaternion
algebra. Then there are isomorphisms

H*T, M) = H*+2(T, M)

Jor all I-modules and M and k > r(D). Moreover, r(D) + 1 is the
smallest dimension from which on H* (', —) is n-periodic.

The last statement follows from the facts that (1) I is a virtual duality group
and hence H"®P)(I', ZT') is torsion free ([Br], VIII 11.2) whereas (2) for any
group I' with ved T = k, H™(T') is torsion for m > k ([Se3], p. 101).

It should be possible to refine the period g in the theorem by one more
directly derived from the periods of the finite subgroups of I" as in the number
field case where the period equals 2 if there are nontrivial torsion units of
norm 1 (in which case n must be even!).

REMARK. We have seen (in the general case, I' torsionfree) that
H*T, —-) = H*(XT), —) .

Taking real coefficients (with trivial I'-action) the latter groups are, by
de Rham’s theorem, given by differential forms on X(I'); these in turn
correspond to I'-automorphic forms on X. In this way, the real cohomology
of I" becomes part of the theory of automorphic forms.

8. CONGRUENCE SUBGROUPS AND NORMAL SUBGROUPS

Recall that we have defined
I'(m) = kernel of (' = (A/mA)*),

the congruence subgroup of level m of I'. Obviously I'(m) has finite index
in T'. The following question is classical: does every subgroup of finite index
of I" contain a congruence group?

Let us say that I' satisfies (CP) if this is so. Let A C A’. If I’ satisfies (CP),
so does I'. To prove the converse, it suffices to show that every I'(n) contains
a I'’(m). This will be so if I" contains a I'’(m). But there is m € N with
mA’ C A, and this implies IT''(m) C An T’ =T. Thus, property (CP)
depends only on A.

For A = K a number field, (CP) has essentially been proved by
Chevalley [Ch]. Let H < R* be of finite index, and H, < R* any
congruence subgroup. Then H '5 C H for some k € N; so it suffices to show
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