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THE THEOREM OF KEREKJARTO
ON PERIODIC HOMEOMORPHISMS OF THE DISC
AND THE SPHERE

by Adrian CONSTANTIN and Boris KOLEV

ABSTRACT. We give a modern exposition and an elementary proof of the
topological equivalence between periodic homeomorphisms of the disc and the
sphere and euclidean isometries.

1. INTRODUCTION

In 1919, Kerékjarto published the first proof of the topological equivalence
between periodic homeomorphisms of the disc and the sphere and euclidean
isometries [3]. In the same journal just following Kerékjartd’s article,
Brouwer [1] gave his own argument for these theorems, explaining that these
results had been known to him for a long time and that they were consequences
of some earlier and slightly different theorems of his on periodic homeo-
morphisms of compact surfaces. However, Brouwer’s proof is not easy to
follow and the proof of Kerékjartd was just sketched and contained a gap.

It was only in 1934 that a complete proof of this important theorem was
presented by Eilenberg [6]. More recently Epstein [7] has reconsidered the
question for pointwise periodic homeomorphisms (each point is periodic
under f but the period n(x) depends on x and may not be bounded). Because
of the importance of these results and since no modern exposition of them
seems to be found in the litterature, the authors have thought that it would

be useful to present a modern and elementary proof. The essential arguments,
however, remain those of [1, 3, 6].
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2. BACKGROUND AND DEFINITIONS

Let X be a topological space and f a homeomorphism of X. We say
that f is periodic if there is an integer n > 0 such that f” = Id. The period
of f is the smallest positive integer n with this property.

As we will use them without further justifications, let us first recall some
basic properties of one-dimensional maps.

Let f:I— I be a periodic homeomorphism of the unit interval. If f
preserves the endpoints then f is the identity map. If f exchanges the
endpoints then f2 = Id and f is conjugate to the reflection map x— 1 — x.
Similarly, a periodic homeomorphism of the real line R is the identity map
or is a conjugate of the involution x+ — x according to whether it is an
increasing or a decreasing function.

Let f:S!'— S! be a periodic homeomorphism of period # of the unit
circle. If f is order-preserving then the rotation number of f, p(f) = k/n,
where k and »n are coprime (see [5] for an excellent exposition on rotation
numbers) and f is conjugate to a rotation of angle 2kn/n. If f is order-
reversing then f has exactly two fixed points, f? is the identity map and the
two arcs delimited on S! by the fixed points of f are permuted by f.

A metric space X is path connected if there exists a continuous map from
the unit interval [0, 1] into X which joins any two given points. It is arcwise
connected if there is a topological embedding of [0, 1] into X which joins any
two given distinct points. In fact, it can be shown that the two notions are
equivalent (see [14, Theorem 4.1] or [11, Lemma 16.3]).

LEMMA 2.1. A metric space X is path connected if and only if it is
arcwise connected.

A useful characterisation of path connected spaces is given in term of local
connectivity. A metric space X is locally connected if each point of X possesses
arbitrary small connected neighbourhoods. The following can be shown
(see [8, Theorem 3.15] or [11, Lemma 16.4]):

LEMMA 2.2. A compact, connected and locally connected metric space is
pathwise connected.

Another important ingredient used in this article, and in fact the ultimate
result we will need, is the famous Jordan-Schoenflies theorem on simple closed
curves in the plane (see [2, 9] or [12, Theorem 17.1)).

THEOREM 2.3 (Jordan-Schoenflies). Every simple closed curve J
divides the plane into exactly two components of each of which it is the
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complete boundary and the closure of the bounded component can be mapped
topologically onto the closed unit disc.

In what follows, a closed topological disc (or just a topological disc) D is
the image under a topological embedding of the closed unit disc and we
write D¢ for its interior and 98D for its boundary. However, the closure of a
bounded open set which is homeomorphic to the open unit disc is not
necessarily a closed topological disc [11, Chapter 15].

PROPOSITION 2.4. Let D.,D,,...,D, be a finite number of closed
topological discs in the plane and J° be any connected component
of N!_,D?. Then d8J is a simple closed curve and J the closure
of J° is a topological disc.

Proof of 2.4. We will use induction on #n, the number of discs. If n = 1
this is just the Jordan-Schoenflies theorem, so let us suppose that the result
holds for some n(n > 1) and let J° be any component of the complement
of n + 1 topological discs D;,D,, ..., D,,; in the plane. Let K¢ be the
component of M7_,D? that contains J°. By induction, its closure K is a
topological disc. Since J° is a component of K° n D? |, it suffices to show
that the result holds for two discs D, and D, (see Figure 1). Set C, = 8D;
for i = 1,2 and let J be the closure of a component of D] n DJ. We have
that 0J # @ and 8J C C, u C,. If 8J is entirely contained in one of the two
curves, say C;, then J = D, and the lemma is proved. We can thus suppose
that 8J ¢ C, and 8J & C,.

Let x € 8J, x ¢ C,. Then x € C; n Dj, and we can find an arc vy in C,
such that:

xey, yCdJ, y\dycCc D3, 8y CC,.
C.

Ci

FIGURE 1
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The endpoints of y determine on C, an arc & disjoint from J° and such
that & N J = 06. We note that there is an at most countable family of such
arcs v, noted (7y;);e » and that diam(y;) — 0 as i = o. The boundary of J is
the simple closed curve obtained from C, when substituting the arcs y; for the
arcs 8; and J is a topological disc by the Jordan-Schoenflies theorem. [l

The following remarkable property of periodic homeomorphisms which is
a direct consequence of 2.4 is true in a more general setting than the plane
R?, namely in topological manifolds of dimension 2 because of its local
nature. We will give it in that context since we will use it for the disc and the
sphere, repeatedly in this article.

LEMMA 2.5. Let f:S8—S be a periodic homeomorphism of an
arbitrary 2-dimensional topological manifold S andlet x € Fix(f), a fixed
point of f. Then for any néighbourhood N of x, there exists a
topological disc A, such that:

I. A, CN,
2. A, is a neighbourhood of x,
3. f(Ay) = A,.

Proof of 2.5. We can first assume that N and its image under f, f(N),
are contained in some local chart U homeomorphic with R? and will continue
to call x and N the corresponding point and set in R2. Let D, be an euclidean
disc of centre x and radius n where n > 0 is chosen such that f¥(D,) C N
for k=0,1,..,n — 1 and let C, be its boundary. Let A, be the closure
of the component of the invariant set M} _; f¥(D?) which contains x.
By 2.4, A, is a topological disc which is invariant under f (components are
sent to components by a homeomorphism) and satisfies the three assertions
of the lemma. [

Remark. The boundary y, of A,, which is an invariant simple closed
curve, is contained in U} Z g f4(Cy).

3. PERIODIC HOMEOMORPHISMS OF THE DISC

THEOREM 3.1. Let f:D?— D? be a periodic homeomorphism. Then
there exists re OQR) and a homeomorphism h:D?— D? such that
f=hrh-1.
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Before attacking the proof of the result above, let us first look at a special
case of Theorem 3.1, namely:

PROPOSITION 3.2. Let f:D?— D? be a periodic homeomorphism such
that f/sp2=1d. Then f = Id.

Proof of 3.2. Let d be an arbitrafy diameter of D? with endpoints A
and B and let A be one of the two connected components of D? — d.
The set:

E= N f1(A°)

i=1

1s invariant under f and the closure of each of its components is a
topological disc.
A

d

f(d)<

B
FIGURE 2

Let AB be the arc of circle joining A to B in the boundary of A.
Since f ”(A??) AB for all I, there exists a component of E, say J°, whose

closure J contains AB (see Figure 2). By 2.4, J is a topological disc which is
invariant under f.

We can write 8J = AB U & where & is an f-invariant, simple arc with
endpoints 4 and B such that:

d C knJ fid) .
i=1

Since f(A) = A and f(B) =B, f/5=1d. Let x be a point of the arc §.
There exists i€ {l,...,n} such that x € fi(d) and x=fr-i(x)ed so

LU S,
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that 8 = d and f/, = Id. Since the diameter d was chosen arbitrarily, we
have shown that f = Id on D2. [

From now on, f will denote a periodic homeomorphism of the disc of
period n with n > 1. In the sequel of this section, we prove Theorem 3.1, first
investigating the structure of the fixed point set of f.

PROPOSITION 3.3. Suppose f:D?— D? s a periodic homeomorphism
of period n (n>1); then:

1. if f is orientation-preserving, Fix(f) is reduced to a single point
which is not on the boundary of D? and for 1<i<n-—1,
Fix(f') = Fix(f),

2. if f is orientation-reversing, f>=1d and Fix(f) is a simple arc
which divides D?* into two topological discs which are permuted by f.

Proof of 3.3. Suppose first that f is orientation-preserving. By
Brouwer fixed point theorem, f has at least one fixed point. Since f/jp2
is orientation-preserving and periodic, f has no fixed point on 9D?2.
Otherwise f would be the the identity map on 8.D? and using 3.2, f would
be the identity map on the whole disc which is excluded by hypothesis.
Therefore, f has at least one fixed point in D?\90.D? which we can assume
to be, up to conjugacy, O, the center of the disc.

Let A = D?2\{O}. A is a half open annulus which is invariant under f.
Suppose now that an iterate f/ of f has a fixed point x, € 4. Let x, be a lift
of x, to the universal covering space A of A and G be the lift of f’ such
that G(x,) = xo. G" is a lift of Id which fixes one point, thus G” = Id. In
particular, G/47 is a periodic and orientation preserving homeomorphism of
the line, thus G = Id on dA. Therefore, fi = Id on 9D? and, according
to 3.2, f! = Id on the whole disc, so that 7 is a multiple of n according to
the definition of n.

Suppose now that f is orientation-reversing. In that case, f has exactly two
fixed points on d.D? which we denote by A and B and f? is the identity map
on dD?2, therefore, by 3.2, f?=1d on D? .

We assert that Fix(f) is connected. For if not, we can find two nonempty
compact sets K; and K, such that

FiX(f)ZKIUKz, K10K2:®.

If A €K, and B € K,, it is then possible to construct a simple arc vy in
D2\ (K, u K,) which intersect 8D? only on its endpoints and which
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separates A from B. Using the same argument as the one used in the proof
of 3.2, we can show the existence of an f-invariant simple arc:

n—1

8 C U fily) C D*\Fix(f)
i=0

which separates A from B. But f must then have a fixed point on & which
gives a contradiction. Therefore we can suppose that one of the two compact
sets, say K, is contained in D2\9D?. In that case, it is possible to construct
a simple closed curve ¢ C D?\9dD? which does not meet K; U K, and such
that the topological disc it bounds contains at least one point of K. Using
similar arguments as those of the proof of 2.5, we can find an f-invariant
topological disc in D?\dD? whose boundary contains no fixed point. This
gives again a contradiction, since any simple closed curve which bounds an
invariant disc has exactly two fixed points of f.

The previous arguments applied to an arbitrarily small invariant
topological disc around a fixed point given by 2.5 shows that Fix(f) is also
locally connected and by 2.2, Fix(f) is therefore pathwise connected. In view
of 2.1, there exists a simple arc v in Fix(f) which joins A and B. This arc
divides D? into two topological discs A, and A, by the Jordan-Schoenflies
theorem. D2\y is obviously invariant under f and the two arcs on 8?2
delimited by A and B are permuted by f, therefore f(A) = Ay, f(A;) = A,
and Fix(f) is reduced to y. [

Proof of 3.1. Suppose first that f is orientation-preserving. By 3.3,
we can suppose that Fix(f) = {O}, the center of the disc. Since f/4p:
is a periodic homeomorphism of period n, the rotation number of
S/ap2, p(f/sp2) = k/n, where k and n are coprime. We are going to
prove that f is conjugate to a rotation by angle 2k7n/n around the origin.
Without loss of generality, we can assume that k& = 1. Indeed, suppose
the result holds if p(f/sp2) = 1/n. Then, if k > 1 we replace f by f/ where
J €N 1s such that jk = 1(modn). Then p(f//sp2) = 1/n, thus S/ is
conjugate to a rotation by angle 271/ n around the origin and since (f/)* = £
it follows that f is conjugate to a rotation by angle 2kn/n.

Let us consider the quotient space D2/ r where two points are identified if
they belong to the same orbit under f. D2/ 7 1s endowed with the quotient

topology. It is a compact and pathwise connected metric space, the metric
being defined by:

d(n(x), n(y)) = inf — {d(f*(x), f1 ()},

0K<h, kg<n—-1

where n: D? — D2/, is the canonical projection.
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By 2.1, we can find a simple arc y from m(O) to an arbitrary point
on m(dD?2). Since the group of homeomorphisms generated by f acts
freely on D? except at O it follows that m: D% — D2/, is a regular branched
covering (see [10] page 49). Therefore, m ~!(y) is the union of n disjoint
simple arcs (with the exception of their common endpoint O)
Yos Yis ---» Yn—1, Which divide D? into n disjoint sectors, Ay, Ay, ..., An_1.
The hypothesis p(f/sp2) = 1/n implies that v; = fi(y,).

FIGURE 3

Let 4 be a homeomorphism between A, and R,, the fundamental region
in D? of the rotation by angle 2n/n around the origin, and such that
h\Yl = rh\yo. We can extend /4 to a homeomorphism of D? by defining A/ 4,
as rihf —!, r being the rotation of centre O and angle 2n/n. It is easy to
verify that 4 is an homeomorphism of D? and that f = A~ !rh.

Suppose now that f is orientation-reversing. By 3.3, Fix(f) is a simple
arc vy which divides D? into two topological discs A; and A, which are
permuted by f. Let & be a homeomorphism between A; and the upper half
disc D;. We define # on A, in the following way:

h(y) = Sh/a, f(¥), Yy € Ay,

where S is the reflection about the x-axis. It is then easy to verify that 4 is
a homeomorphism of D2 and this gives a conjugacy between f and S. [

Remark. Using 3.1, it can also be shown that any periodic homeo-
morphism of the annulus is topologically equivalent to an euclidean isometry
(modulo a flip of the boundary if it is not boundary-preserving).
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4. PERIODIC HOMEOMORPHISMS OF THE SPHERE
The main result of this section is

THEOREM 4.1. Let f:S8*— S? be a periodic homeomorphism. Then
there exists re OB) and a homeomorphism h:S?>— S? such that
f=hrh-1.

Proof of 4.1. We will divide the proof of Theorem 4.1 into two cases
according to whether or not f has at least one fixed point.

Suppose first that f has a fixed point. Using 2.5, we deduce the existence
of an invariant simple closed curve ¢ which divides S? into two invariant
discs D, and D,.

If f is orientation preserving and f # Id, then f has no fixed point on ¢
(cf. 3.2). Therefore, by Brouwer’s fixed point theorem we know then that f
has at least two fixed points; after a conjugacy, we can suppose that f fixes
the two poles N and S of S2. Using the results of last section, we are able to
find n arcs joining N and S such that their union is an invariant set under f.
As in Section 3, we can then construct a conjugacy between f and a rotation
by angle 2kn/n around the South-North axis.

If f is orientation-reversing, then f has two fixed points on c. In each of
the invariant disc D! and D?, the fixed point set of f consists of a simple arc
which joins the two fixed points of f on ¢. The union of these two arcs is a
simple closed curve which coincides with the fixed point set of f on S2. It is
then easy to construct a conjugacy between f and the reflection about the
equator.

Let now suppose that f has no fixed point on S2. Up to conjugacy, we
can assume that the second iterate of f, f? is a periodic rotation around the
North-South axis. In particular the points N and S are exchanged by f.
For t € (= 1, 1), let C, be the circle obtained by cutting the sphere by the
plane z = ¢, D, the disc bordered by C, on S? which contains N and:

to=inf{te(-1,1); D,n f(D,) =0}.

We write D = D, and C = C,, for convenience. Then D meets f(D) on its
boundary and only on its boundary (see Figure 4). Let P, € C N S(C) and
Py, Py, ..., P,_y, the orbit of P, under f. The points P,, P,, ..., P, and
P, Py, ..., P,_, are distinct because f2 is a rotation of period n/2.
Suppose that there exists i € {1,3,...,n — 1} such that P, and P; = fi(Py)
coincide. Then Py, S and N are fixed by f2/ so f2/ = Id. Therefore 2i = n.



202 A. CONSTANTIN AND B. KOLEV

Let by be the arc of great circle that joins N to P, in D and b,,, its image
under f7/2. Then b = by U b,,, is a simple arc joining N and S and not
meeting its first(n/2) — 1 iterates under f away from N and S. These arcs
divide the sphere into n/2 sectors and we can build a conjugacy between f
and the composition of a rotation of period #n/2 around the North-South axis
with a reflexion about the equator.

Suppose now that the points P,, P,, ..., P,_, are distinct. Let b, an arc
of great circle joining N and P, in D and b§ an arc joining S to P, in f(D)
disjoint from f(by) and from its first n» — 1 iterates (which is possible
since f? is a rotation). The union of these two arcs is again a simple arc
joining N and S which does not meet its first » — 1 iterates under f away
from N and S. The union of this arc and its iterates divides the sphere S?
into n disjoint sectors. In that case, f is topologically equivalent to the
composition of a rotation of period n around the North-South axis with a
reflexion about the equator. [

N

FIGURE 4

COROLLARY 4.2. Let f:R?—>R? be a periodic homeomorphism.
Then f is topologically conjugate to a finite order rotation around the origin
or to the reflexion about the x-axis.

Proof of 4.2. We can extend f to a homeomorphism of the Sphere S?
by identifying the plane R? with the complement of the North pole using the
stereographic projection. Looking at the proof of 4.1, f is either equivalent
to a rotation around the North-South pole or to a reflexion about a great circle
which we can assume to pass through the north pole N. It is not difficult to
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show that the conjugacy can be chosen to fix also the North pole N. This
equivalence induces, therefore, a topological equivalence between f and a
rotation or a reflexion about the x-axis. [l

Remark. The investigation of periodic homeomorphisms on surfaces of
positive genus has been studied extensively. We cannot give here a complete
bibliography on the subject. We would just like to cite original works of
Kerékjartd [4] and Nielsen [13] which lead to the conclusion that a periodic
homeomorphism of a Riemannian surface of positive genus is conjugate to a
conformal isometry.

Acknowledgement. The authors express their gratitude to Jerome
Fehrenbach, Lucien Guillou and Toby Hall for the discussions that helped to
improve this paper.
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