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238 E. KLEINERT

COROLLARY. ST /I[ST, ST'] is finite.

Again, it is classic that the theorem fails for SL,(Z); for instance,
if n> 0, the verbal subgroup generated by all 6n-th powers has infinite
index ([Ne], p. 143). The corollary holds for SL,(Z) but fails for torsion free
subgroups (which are free). Theorem 7 however carries over to subgroups of
finite index.

Two more topics from the general theory of arithmetic groups, which
could be specialized to unit groups, are subgroup rigidity and strong
approximation. But having promised to keep as near as possible to the
unit groups ‘“‘themselves”, we omit this.

9. THE BASS UNIT THEOREM

In his paper [Ba2] Bass has proved (among other things) a far reaching
generalization of Dirichlet’s unit theorem which — together with the results
of sections 3 and 7 — is certainly one of the strongest general results we have
about I'. The core of the proof is a deep stability theorem from K-theory; we
will indicate how it implies the theorem but will say little about its proof. We
begin with the relevant definitions. For any ring A, define

Ki(A) = lim GL,(A)/[GL,(A), GL,(A)] ,

where the direct limit is taken with respect to the embeddings

x 0
GLn(A)ﬁGLnJrl(A)s x_)(o 1) »

One may also write

Ki(4) = im  GL,(A)/E,(4),

where E, (A) is the normal subgroup generated by the elementary matrices;
this is Whitehead’s lemma. Further, with Ky(A4) denoting the Grothendieck
group of finitely generated projective A-modules, we put

Ro(A) = R @ Ko(A), Ri(A) = R® K(A) .

Now we turn to algebras and allow A to be semisimple. Let A C 4
be an order. Any Agr-module V (of finite dimension) gives rise to a
homomorphism

A — Endgr V, hence by functoriality K;(A) = K, (Endg V) .
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Combining this with
log|det|: K; (Endg V)~ R,
we obtain a homomorphism
Sy Ri(A) >R,
and it is easy to see that V — f, gives a homomorphism

f:Ko(Ag) = Ri(A)* = Hom (R, (A),R) .

THEOREM 9. The sequence
(8) 0= Ro(A) = Ro(Ar) > Ri(M)*— 0

IS exact.

The following corollary (which can easily be derived from the sequence)
is shown in the course of the proof:

COROLLARY. Let R be the maximal order of the center K of A.
Then

rkK,(A) = rkR* .

Dirichlet’s theorem arises in the special case A = R, A = K. Clearly
rkK,(K) = 1, and writing

R®eK=R" X Cnm
as previously, we obtain
rkKi(R)y=ri+r,— 1.
But for Dedekind domains R one knows that
rkR>* = rkK,(R)

(see [CR2], §45A). However, Dirichlet’s theorem is used in the proof of
Theorem 7.

A case of interest is

A=QG,A=72ZG (G is a finite group) .

Here,

rkKo(QG) = number of conjugacy classes of cyclic subgroups of G
= Q(G)’

rkK,(RG) = number of real conjugacy classes of G
= :r(g)
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(see e.g. [Se6], 12.4). Thus the theorem gives
rkK,(RG) = r(G) — q(G) .

By Theorem 5 of [Ba2], (ZG) * is mapped onto a subgroup of finite index
in K,(ZG). Hence

K= ) 51 - a©)
r >r - .
2G>, ZG ] 7

The reader will find it an amusing exercise to work out that for G
cyclic this is an equality. However, if Q is a splitting field for G (as e.g.
for G = symmetric group) the inequality tells us nothing new.

Proof of the theorem (sketch). The injectivity of Ky(A) = Ky(AR)
follows from a wellknown theorem of representation theory (see [CR 1], §29).
Next, it is not difficult to show that Ry(4) = Ro(Ar) = R;(A)* is the zero
map: if V is already an A-module, then

KI(A) - K](EndR V) - R
factors through
Ki(A) = K, (EndgV) » R;

if x e K;(A) is represented by an element of G/,(A), the image of this
element in K;(Endq V) is an integral unit in a matrix ring over Q, hence has
determinant + 1. In order to state the crucial lemma, we recall the notion of
reduced norm. Assume for the moment that 4 is simple with center K. Then
there exists a splitting field L | K, for example, a maximal commutative
subfield of A, such that

L ®xA=M,(L)

is isomorphic to a full matrix algebra. Let ¢ be an isomorphism and define,
for a € A,

Nr(a) =deto(1 ®a) .

One shows that Nr(a) € K and is independent of the choice of L and ¢. The
effect of using Nr instead of the usual norm N, g taken with respect to the
regular representation of A over K is the elimination of superflous powers;
namely, one has

N4 k(a) = (Nra)*, where dimgA = s2.

For semisimple A, Nr is defined componentwise and induces homo-
morphisms
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Nr,: GL,(A)/E,(A) = R*
and in the limit
N:K (A~ R* .

It is easily seen that Nr, and N have finite cokernel. Let g be the number of
simple factors of A.

LEMMA. For n sufficiently large, Nr, and therefore N have finite
kernel. Consequently,

rkKI(A) =rkR* = ry+r,—4g.
Taking this for granted, we combine N with

log||:R* = R+, ¢c—(loglc|y...,loglels, +1ry) -

From the lemma, one first derives that every component of
log |[N| : K{(A) = R 1+ 72

has the form f, for suitable V. Then it follows that there are “enough”
linear functionals of this type, that is,

f: Ro(Ax) = Ry(A)*

is surjective. The exactness of (8) now follows by dimension count.
We cannot say much about the proof of the lemma and refer the
reader to [Bal]. The main point is that 2 defines a ‘‘stable range” for

the Z-algebra A ([Bal], Th. 11.1) which implies, among other things, that
for r > 2

GL,(A) = GL,(A)E,(A)
(hence GL,(A) = K (A) surjective) and for r > 4
E.(A) = [GL,(A), GL,(A)] .

([Ba1l}, th. 19.5). Put S/,(A) = Kernel of reduced norm. The above implies
that for n > 4 all maps

SLy(A)/En(A) = SLy 1 (A)/Eni1(A) = SL(A)/E(N)

are surjective and all these groups are abelian. Since everything is finitely
generated, this sequence becomes stationary, i.e.

SL,(A)/E,(A) = SL(A)/E(A)
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for all » > 0. One then has an exact sequence
0— SL(A)/E(A) = Ki(A) — Ki(A),

and it remains to show that K;(A) = K;(A) has finite kernel ([Ba 1], 19.12).
This implies the lemma.

We have presented Bass’ theorem here because it can be viewed as an
extension of Dirichlet’s unit theorem. For more results on K; of orders, we
refer the reader to [CR2, Ch. 5]. This chapter also contains a simplified
proof of Bass’ theorem.

10. WHAT IS A UNIT THEOREM?

In the search for the — still missing — ‘“basic structure theorem for units
of orders” it seems natural to keep Dirichlet’s theorem as our landmark; it
gives in fact a presentation for all commutative unit groups. However, if we
muster the small list of other cases in which explicit presentations have been
obtained so far, and if we realize the comparatively elementary character of
these examples, we have to admit that going for presentations is somehow
utopian. Worse still, it might even be inadequate; as the general insolvability
of Dehn’s problems shows, we can never be sure that a presentation, obtained
somehow, gives us the ‘“right” information. For example, how could the
congruence property be checked from a presentation? What then, it will now
be objected, is the aim of our research? This is certainly not the place to dwell
in considerations in the manner of ordinary language philosophy, but the
reader may find it fruitful to ask himself what he means by saying “I know
a certain group” or “I know the structure of that group’. Surely we
know SL,(Z) better than any other noncommutative unit group, but we will
never know everything about it (and hence about groups containing it) because
this would include knowledge of all finitely generated groups.

Leaving aside philosophy, let us try to specify what should be expected
from a ‘““‘general unit theorem” . Unable, of course, to presume its content,
we may be allowed to sketch a list of desiderata.

Let A be simple. The unit theorem should deal with torsion free subgroups
of finite index of ST for arbitrary A; such groups may be called ‘“generic unit
groups of A”’ . The set of generic unit groups is closed under intersections since
any two are commensurable. Naively, a unit theorem for A consists in
the definition, in purely group theoretical terms, of a class of groups
¢ (A) such that almost all generic unit groups of A are members

of ¥(A).
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