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AN EXPOSITION
OF POINCARE’S POLYHEDRON THEOREM

by David B.A. EPSTEIN and Carlo PETRONIO ')

1. INTRODUCTION

Poincaré’s Theorem is an important, widely used and well-known result.
There are a number of expositions in the literature (see [Mas71, Sei75, Mor78,
Apa86, Mas88]). However, as far as we know, there is no source which
contains a completely satisfying proof which applies to all dimensions and all
constant curvature geometries. There is a tendency for unnecessary hypotheses
to be included, which are sometimes implied by the other hypotheses and
sometimes unnecessarily restrict the range of validity of the theorem.

A feature of this paper is the emphasis on the algorithmic aspects of
Poincaré’s Theorem. This point of view was first stressed by [Ril83]. Riley’s
work is restricted to dimensions two and three, where various points become
easier to analyze. We want procedures which will tell us whether a given finite
set of finite-sided convex polyhedra and face-pairings do or do not give rise
to an orbifold, or, equivalently to a tessellation of X”. Such procedures have
been exploited to remarkable effect — readers are referred to the paper by
Bob Riley just cited, and to other contributions by him.

Riley’s computer programs start with a list of group generators, given
numerically, and attempt to find a fundamental domain for the group. The
procedure goes through a check on a putative fundamental domain, along the
lines explained in this paper. An essential further feature of his programs, and
of similar programs by others, is that it incorporates another procedure for
improving the guess on the shape of the fundamental domain, if the original
guess fails. This second feature is not addressed in this paper.

This paper elaborates notes of lectures given by Epstein in 1992 at Warwick
University. We will assume that the reader is familiar with the elementary
definitions of euclidean, spherical and hyperbolic spaces and their geodesic
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subspaces. We denote these spaces by E”, S* and H”. When we want to
denote one of these three spaces, without specifying which, we will call
it X”. Note that E' and H' are isometric to each other and locally isometric
to S,

DEFINITION 1.1 (X-subspace). An X-subspace of X" is a copy of X/, for
some [ with 0 < i < n, embedded geodesically. In the case when X is spherical,
every O-dimensional X-subspace is a copy of S? in S”, embedded as a pair of
antipodal points.

When reading this paper, it will be helpful for the reader to understand
the concept of a manifold or orbifold modelled on one of these spaces. The
reader is referred to [Thu, Thu80] for these definitions. [BP92] is also a useful
source of background matter.

Suppose G is a discrete group of isometries of X”. Then one can fix a
point p € X” such that no element of G fixes p, and define the Dirichlet
domain of G with centre p. This is the set of x € X" such that, for all
ge G,d(x,p) <d(x,gp). The Dirichlet domain is a convex polyhedron
(see Definition 2.1). It has a finite number of faces in many important cases
(for example if the quotient of X” by G-is compact), but in general may have
an infinite number of faces, even if G is cyclic as in Example 1.3. It is a
fundamental domain for the action of G on X”.

EXAMPLE 1.2. Consider the free abelian group on two generators acting
on the plane by translation by (m, n), where m and n are integers. The Dirichlet
domain centred on any point is a unit square. If the free abelian group acts
by translation but does not have a pair of generators acting by orthogonal
translations, then the Dirichlet domain has six sides.

EXAMPLE 1.3 (infinitely many faces). Take the isometry of E3 which is
translation along the z-axis followed by an irrational rotation about the
z-axis. Let G be the cyclic infinite group generated by this isometry. The
Dirichlet domain centred on any point not on the z-axis has an infinite number
of faces.

Each element g € G gives rise to a hyperplane A, of X", consisting of
points which are equidistant from p and g(p). Let F, be the intersection of
the Dirichlet domain with A,. If F, has dimension n — 1, it is a face of the
Dirichlet domain, and each face of dimension n — 1 is equal to F, for
some g. If F, is a face, so is Fy-1. The element g sends F,-1 to F, and is
called a face-pairing of the Dirichlet domain.




AN EXPOSITION OF POINCARE’S POLYHEDRON THEOREM 115

Now suppose one is presented with a convex polyhedron and, for each face,
an isometry pairing it with another face. Poincaré’s Theorem is concerned with
the question “Can this be the fundamental domain and face-pairings for the
action of a discrete group of isometries?” It turns out that this question can
be answered with conditions which are surprisingly simple to check, and the
answer is the content of Poincaré’s Theorem. If the polyhedron has a finite
number of faces, the conditions for Poincaré’s Theorem can be checked
algorithmically. |

Here is another point of view on Poincaré’s Theorem. A manifold or
orbifold modelled on X" can be cut along (# — 1)-dimensional geodesic
subspaces to obtain a single convex polyhedron (the fundamental domain), as
in the case of the Dirichlet domain. However, it may sometimes be convenient
not to use a single polyhedron. We could for example take an arbitrary
fundamental domain which is not necessarily convex (and does not necessarily
have geodesic faces). This fundamental domain can be approximated by a
union of convex pieces. The more convoluted the fundamental domain, the
greater the number of convex pieces we might need for a reasonable
approximation. As has been pointed out in [Bow93], in dimensions greater
than four a geometrically finite discrete hyperbolic group may have a
fundamental domain which needs to be built up from a finite number of finite-
sided convex pieces — one such does not suffice.

In [Bow93] one finds an example of a four-dimensional hyperbolic
manifold which has a fundamental domain with a finite number of faces, all
geodesic, but such that no Dirichlet region has finitely many faces. Probably
Bowditch’s example has the property that every convex fundamental domain,
even if not a Dirichlet domain, has to have an infinite number of faces. Since
it 1s nice to use convex building blocks — for example, they can easily be
specified using a finite set of real numbers — we would probably want to
decompose the fundamental domain in such a case into a finite number of
convex polyhedra.

Now suppose we are given a set of convex polyhedra with face-pairings.
The role of Poincaré’s Theorem is to determine whether this situation can arise
from a manifold or orbifold by cﬁtting along geodesic codimension-one
subspaces. In each case there is also the problem of determining the associated
(fundamental) group from the combinatorial data presented.

Poincare’s Theorem can be used to construct many interesting examples
of groups acting on hyperbolic or euclidean space or on the sphere, and many
interesting manifolds and orbifolds modelled on one of these spaces.
Readers are referred to [Thu, Thu80] for such examples.
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There are several reasons why it is better to use several convex building
blocks than only one. Firstly, as we have already pointed out, this is necessary
if we are to deal with all geometrically finite groups. Secondly many of the
most interesting examples are constructed using more than one piece, for
example the two ideal regular hyperbolic tetrahedra used to give a complete
hyperbolic structure to the figure-eight complement (see [Thu, Thu80]).
Thirdly the hypotheses come up naturally in the proof; if one starts with a
single convex piece, the natural inductive proof inexorably leads one to
consider glueing together several convex pieces in lower dimensions. Fourthly,
it may be convenient to use a non-convex fundamental domain, rather than
a convex fundamental domain. The non-convex fundamental domains that
arise in practice can be cut into_a finite number of convex pieces, making our
hypotheses applicable.

One way in which our treatment differs from all previous treatments, is
that we do not assume we start with an embedded fundamental domain.
Instead the fundamental domain is expressed as the union of convex cells, each
of which can be separately embedded, without knowing to begin with that their
union can be embedded. For example, suppose we are given three planar
wedges of angle 5n/6, 6n/7 and 7n/8 with face-pairings glueing them
together. The union of these pieces cannot form a fundamental domain,
because their union after giueing cannot be embedded. The point here is
whether this non-embeddability or embeddability needs to be checked
beforehand. Our proof shows that the usual checks for Poincaré’s Theorem,
in the case where there is only one convex piece, in any case imply the
embeddability of the potential fundamental domain, so no special separate
check is necessary. In this case the extra necessary checking is easy, but in a
more complicated situation, the algorithm presented here could lead to
significant saving of time and complication.

2. CONVEX POLYHEDRA

Let X” be hyperbolic, euclidean or spherical n-dimensional space. A
hyperplane (that is, a codimension-one X-subspace) divides X” into two
components; we will call the closure of either of them a half-space in X”.
Any X-subspace is the intersection of hyperplanes, and vice versa.

DEFINITION 2.1 (convex polyhedron). A connected subset P of X” is
called a convex polyhedron if it is the intersection of a family 27 of half-spaces
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