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A PROOF OF MARGULIS’ THEOREM
ON VALUES OF QUADRATIC FORMS,
INDEPENDENT OF THE AXIOM OF CHOICE

by S.G. DANI

A few years ago G.A. Margulis proved, thereby settling a longstanding
conjecture of A. Oppenheim, that if Q is a nondegenerate indefinite quadratic
form on R”, n > 3, which is not a scalar multiple of a rational form, then
the set Q(Z") of values of Q on the set of integral n-tuples is a dense subset
of R (cf. [M-1 and M-2]). In [DM-1] the result was strengthened, upholding
density of the set of values of Q as above on the set of primitive integral
n-tuples; an integral n-tuple is said to be primitive if there is no common
divisor for the entries, other than + 1. Subsequently, in [DM-2], an elementary
proof was given for this result, depending only on standard arguments in
topological groups and linear algebra. There are also some variations of the
theme, in [M-3] and [S], giving a proof of a somewhat weaker result. All these
proofs involve existence of minimal invariant subsets for various actions,
which depends on Zorn’s lemma and, in turn, on the axiom of choice
(cf. [H], Theorem 7.10). Since the end result is arithmetical, it seems to be of
interest to have a proof which does not depend on the axiom of choice. In
this note we give a variation of the proof in [DM-2] which meets this objective;
the modifications introduced for this purpose may also turn out to be useful
in other ways.

As in [DM-2] the proof will be achieved by proving a result about orbits
of certain actions on the homogeneous space SL(3, R)/SL (3, Z), namely the
Theorem below. We shall formulate the result after introducing some notation;
we choose it to be consistent with that in [DM-2] and refer to that paper
whenever convenient, to avoid repetition. Let G = SL(3, R)and I" = SL(3, Z).
Let R? be the 3-dimensional real vector space, viewed as the space of
3-rowed column vectors, equipped with the G-action by left multiplication.
Let {e,, e;, e} be the standard basis of R3. Let Q, be the quadratic form on
R® defined by Qo(pie; + pae; + pses) = 2pip; — p; for all py, p,, ps € R.
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Let H be the subgroup of G consisting of all elements leaving Q, invariant;
namely H = {g € G| Qo(gp) = Q¢(p) for all p e R}}. For each teR
let v,(#) be the element of G such that v,(f)e; = e; for i =1 and 2 and
va(t)es=es + te;. Let VS ={v,(t)|t >0} and V; = {v,(¢) |t < 0}. We
prove the following:

THEOREM. Let x e G/T and let X = Hx. Then either X = Hx
or there exists a y € G/T such that V) y or V,y is contained in X.

As seen in [DM-2] the theorem implies Oppenheim’s conjecture and in fact
the following stronger result.

COROLLARY. Let Q be a nondegenerate indefinite quadratic form
on R", n>=3. Suppose that cQ is not a rational quadratic form for
any ¢ >0. Let Z(L") denote the set of all primitive elements of Z".
Then Q(Z(Z")) is a dense subset of R.

Before concluding this introduction it should be mentioned that the above
theorem (and hence also the corollary) follows from Ratner’s theorem proving
Raghunathan’s conjecture (cf. [R]; see also [DM-3] for a strengthening of the
result and [M-4] for a general perspective of the area); however the proofs of
Raghunathan’s conjecture involve a considerably long argument (through
several papers) and though it is believable that it could yield a proof of the
above theorem independent of the axiom of choice, it is hard to ascertain this.
On the other hand, the present proof only involves, apart from what is
contained here, some results proved in [DM-2].

1. PRELIMINARIES

The remainder of the note deals with the proof of the Theorem. We begin
with some more notation. Let B denote the subgroup consisting of all the upper
triangular matrices in H. Let D* be the subgroup consisting of all the diagonal
matrices in B. Let D be the subgroup consisting of all the elements of D* in
which the diagonal entries are positive. Let V| be the subgroup consisting of
all elements of B in which the diagonal entries are all 1; it is a one-parameter
subgroup of H. Let V, = {v,(¢) | t € R}, where v,(¢), ¢ € R, are as defined
above. Let V' = V,V,; one can see that V is an abelian subgroup of G. It can
also be verified that V; and V, are normalised by D* and that B = D*V,. We
note that D, V;, V, and V defined here are the same as in [DM-2], where the
subgroups are described by their matrix forms. Also, we denote by I the
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identity element in G. We now begin the proof with the following simple
observation, analogues of which are involved in the earlier proofs as well, all
the way from that in [M-1].

1.1. LEMMA. Let Z be a closed H-invariant subset of G/I'. Let z€ Z
be such that V,z is compact. Le_t__ M={geG|gzeZ}. Then for
any g e HMV, there exists a y € V12 such that gy € Z.

Proof. Indeed if {h;}, {m,;} and {u,} are sequences in H, M and V),
respectively such that A;m;u; > g and y is a limit point of {u{lz} then
clearly gy € Z.

Another major component is the following Proposition due to Margulis;
(cf. Proposition 3 in [DM-2], where two different elementary proofs are given
for the result).

1.2. PROPOSITION. Let M be a subset of G — HV, such that Ie M.
Then either V3 or V, is contained in HMV,.

We next recall from [DM-2] some more results that are needed here.

1.3. PROPOSITION (cf. [DM-2], Proposition A.12). Any closed nonempty
V,-invariant subset of G/I" contains a compact nonempty V-invariant
subset.

(We mention that, as in [DM-2], this result is not needed in the proof of
the theorem in the case when X = Hx is known to be compact; the latter
special case is adequate in proving the weaker version of the Corollary as dealt
with in [M-3] and [S]; see [DM-2] for some details in this regard).

1.4. LEMMA. (i) Any discrete subgroup of DV is either contained
in V' or generated by an element of vDv~!, where v e V.

() If A is a discrete subgroup of BV, = D*V then either
VitV.n A) =V or there exists a neighbourhood ® of I in V, such
that BO® n A C B.

Proof.  Assertion (i) is the same as Lemma 5 of [DM-2]. Assertion (ii) can
be deduced (i) by a simple computation; also, the relevant argument is

available on page 157 of [DM-2], in the proof of case (c) of Proposition 8
there; we shall therefore not repeat it here.
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1.5. PROPOSITION. (i) HV, is a closed subset of G and the map
n:H X V,— HV, defined by n((h v))=hv, for all heH and
veV,, Iisahomeomorphism.

(i) If he H and there exists a veV,— {I} such that vh e HV,
then h € B.

Proof. Observe that H is the isotropy subgroup of Q, under the contra-
gradient action of G on the space of all quadratic forms on R3 (defined by
(g, Q) QO¢, where Q¢(p) = O(g~'p) for all g € G, quadratic forms Q
and p € R?). The V,-orbit of Q, under the action can be explicitly written
down (see [DM-2], page 148) and seen to be closed. Therefore V, H is closed
and hence so is HV,, the latter being the same as (V,H)~!. Now consider
the action of H X V, on G where the element (h, v), with # € Hand v € V,,
acts by g hgv~'. Then HYV, is the orbit of I and since it is closed and
Hn V,={I} it follows that (h,v)— hv-', he H and veV,, is a
homeomorphism (cf. [MZ], Section 2.13, for instance). Hence so is 7
as in the hypothesis. This proves assertion (i). Assertion (ii) is precisely
Proposition 4 from [DM-2].

For any z € G/T we denote by I', the isotropy subgroup {g € G |gz = z}
of z.

1.6. PROPOSITION. Let ze€ G/T" be a Vi-periodic point such that
H N T, is not contained in B. Then Hz is a closed subset of G/T.

Proof. Let Q be any quadratic form invariant under H n I';. Since z is
Vi-periodic there exists a v € V; — {I} such that vz = z. A straightforward
computation using the v-invariance of Q then shows that Q is of the form
aQo + bQ, for some a, b € R, where Q; is the quadratic form on R? defined
by Qi(pie; + pre; + pses) = p% for all p;, p2,ps € R. Now, Q and Q, are
h-invariant for all h €e H nT',, and hence so is Q. If b # 0 this implies
that 7 € B for all h € H N I'; (see the proof of Proposition 4 of [DM-2]).
Since by hypothesis H n I', is not contained in B this implies that » = 0 and
hence O = aQ,, with a € R.

Now let g € G be such that z = gI'. Then in view of the above observation,
any quadratic form invariant under g~ 'HgNn T =g ' (HnNnT,)g is a scalar
multiple of the form Q’ defined by Q'(p) = Q,(gp) for all p € R3. The
argument as on page 159 of [DM-2] (in the last part of the proof of
Proposition 9 there) then implies that QO is a scalar multiple of a rational form.
Then the I'-orbit of Q" under the contragradient action on the space of all
quadratic forms on R? is closed. This implies that I'g ~'Hg is closed and
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hence so is g~ ! HgI'. This shows that Hz = HgI'/T is closed, thus proving
the proposition.

We recall that if ¢ is a homeomorphism of a topological space X then x € X
is said to be a recurrent point for ¢ if there exists a sequence {n,} of natural
numbers such that n, = o and n;x — x. For the proof of the theorem we
also need the following general fact.

1.7. PROPOSITION. Let ¢ be a homeomorphism of a compact metric
space X. Then there exists a recurrent point for ©.

Proof. Given X and ¢ as in the hypothesis there exists a @-invariant
probability (Borel) measure on X (cf. [DGS], Proposition 3.8, for instance).
The Proposition now follows from the Poincare recurrence theorem; see [M],
Theorem 2.3, for a version of the Theorem in the form required here.

It can be seen, by perusing the proofs of the results quoted, from the
references mentioned, that the above proof is indeed independent of the axiom
of choice. For expositional purposes we also give in the Appendix a more self-
contained proof of the Proposition. For this we use the same general idea as
above but argue with invariant integrals (positive linear functionals on the
space of continuous functions) constructed from the data, without actually
using any measure theory.

Incidentally, it may be noted that the assertion in the Proposition is obvious
if we assume Zorn’s lemma, since in that case there exist compact minimal

(nonempty) ¢-invariant subsets of X and any point of such a subset is a
recurrent point.

2. PROOF OF THE THEOREM
We will prove the Theorem after some technical preparation.

2.1. PROPOSITION. Let xe G/T' and X = Hx. Let yeX and
suppose that there exists a neighbourhood Q of I in G such that
{eeQ|gye X} C HV,. Then at least one of the following conditions
holds: (i) Hx is openin X and y € Hx, (ii) Hy and DV,y are open
in their (respective) closures or (iii) Vy C X.

Proof. First suppose that in fact there exists a neighbourhood Q' of I
in G such that {g € Q"| gy € X} C H. Then Hy is open in X. Since Hx is
dense in X it follows that Hx = Hy. Then Hx is open in X and y € Hx, so
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condition (i) holds in this case. We may therefore assume that there does
not exist any neighbourhood Q' as above. In view of Proposition 1.5, (i),
and the H-invariance of X this implies that there exists a sequence {v;}
in V, — {I} such that v; = I and v,y € X for all i.

Observe that if V,(V nT,) is dense in V, then clearly Vy C Viyc X
so condition (iii) is satisfied. We may therefore assume that it is not the case.
Hence by Lemma 1.4, (ii), there exists a neighbourhood ® of I in V, such
that BO® n T, € B. By replacing Q as in the hypothesis by a smaller
neighbourhood we may assume that Q is open and Q N HV, C (Q n H)O,
the latter being possible because of Proposition 1.5, (i). Now let g € H be any
element such that gy € Qy; then there exist 1€ Q N H and v € ® such
that Av € Q and gy = hvy. Hence guv;y = (gu;g~—Y)gy = (guig " hvy.
Since gv;,g='— 1 and Q is a neighbourhood of hv it follows that
gv;g~thv € Q for all large i. Also gv;g ~'hvy = guv;y € X and hence by the
hypothesis we get that for all large i, guv,g 'hv e HV, and hence
v;g 'h e HV,. Since v; # I, for any i, by Proposition 1.5, (ii), this implies
that g~ 'h € B. Then g~'hv € B®. Also, since gy = hvy,g " 'hveT,. By
the choice of ® these two conditions imply that v = 1. Hence gy = hy. This
shows that Hy n Qy C (Q n H)y. Similarly, since we had g ~'h € B, it also
shows that By N Qy € (Q n B)y. These conditions imply that Hy and By are
open in their closures and since DV is open in B it also follows that DV, y
is open in its closure; therefore condition (ii) holds in this case. This proves
the Proposition.

2.2. PROPOSITION. Let x € G/I" be such that Hx is not closed and
let X =Hx. Let Y be a compact V,-invariant subset of X and
let yeY be recurrent for the action of some u eV, — {I}. Suppose
that either Hx is not open in X or y & Hx. Then either Vy C X
or Te{ge G- HV,|gye X}.

Proof. Suppose that the assertion does not hold. Then Vy is not contained
in X and there exists a neighbourhood Q of I in G such that
{g € Q|gy e X} C HV,. Then Proposition 2.1 and the condition as in the
hypothesis imply that Hy and DV,y are open in their respective closures
and y ¢ Hx. Let ® = DV, nT',. Since DV,y is open in its closure, it is
locally compact and hence g® — gy is a homeomorphism of DV,/® on to
DV,y commuting with DV -action on the two spaces (cf. [MZ], Section 2.13,
for instance). By hypothesis there exists a u € V; — {I} such that y is
recurrent for the action of u. The preceding observation therefore implies that
® is recurrent for the action of u on DV,/®. It is easy to see that this
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can not happen if ® is contained in vDv~! for some v € V. Applying
Lemma 1.4, (i), we can conclude therefore that ® is a nontrivial subgroup
contained in V,. Therefore y is a V,-periodic point. Since y € X = Hx and
{geQ|gy e X} Cc HV, it follows that there exists a sequence {v;} in V>
such that v; = I and v;y € Hx for all i. For each [ we have v;y € Hx = Hv,y
and therefore there exists a sequence {4;} in H such that v;y = h;v,y for
all i. Let i > 1 be arbitrary. Let A; = HnT,,. Clearly A; contains ® and
by the above relation it also contains h,(I)h,- . Since v;y is V;-periodic
and Hv;,y = Hx is not closed, by Proposition 1.6 A; must be contained in B.
Since h;®Ah; ' is contained in A; and consists of unipotent elements, this
implies that #;®A; ' C V,. This implies that 4; € B (since the subspaces
spanned by {e;} and {e;,e,} have to be h;-invariant). Therefore there
exist d;e D* and u; eV, such that h; = d;u;. Now, since Aa,®h;"
=Ty, yNVi=T,,nV, = ®and since ® is a nontrivial subgroup of Vi it
follows that the diagonal entries of d; are + 1. Since v,y is a V-periodic
point, the preceding conclusion implies that the sequence {/;0;y} has a limit
point in Hv,y = Hx. But h;u,y = v;y — y and therefore we get that y € Hx,
contradicting an earlier conclusion. This shows that the Proposition
must hold.

Proof of the Theorem. We shall asssume that Hx is not closed and
that X does not contain any V-orbit, since in either of these cases there is
nothing more to be proved. Let X' = X — Hxif Hxisopenin Xand X' = X
otherwise. Then X’ is a closed nonempty V,-invariant subset of X. By
Propositions 2.2 and 1.7 any compact V,-invariant subset of X’ contains
a y such that Te{ge G — HV,|gy € X}. Let {r;} be an enumeration of
the set of all rational numbers. We now construct a decreasing sequence { Y}
of compact V,-invariant subsets of X’ and a sequence {f,} of rational
numbers as follows. Recall that by Proposition 1.3 X’ contains a compact
nonempty Vi-invariant subset. Let Y; be such a subset and let #;, = 0. After
the sets Y1, ..., Y, and the numbers 7, ..., f; are chosen, for some k > 1, we
proceed to choose Y. and ¢, as follows. As observed above, Y, contains
a point y such that I € M where M = {g¢e G- HV,|gy e X}. Then by
Proposition 1.2 HMV contains either ¥, or V, . Now let i be the smallest
natural number satisfying the following conditions: a) r; # ¢; for any
J=1,...,k and b) r; is positive if V), ¢ HMV, and negative otherwise.
Put 7., L =T Then v, (#x+1) € HMV, and hence by Lemma 1.1 there exists
a y eVyyCY, such that v,(f,1)y € X. Put Yy, = I_/F This
completes the inductive construction of the sequences {Y,} and {¢#,}. It is
clear from the construction that {Y} is a decreasing sequence of compact
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Vi-invariant subsets of X and v,(¢,) Y, C X for all k. Also it is easy to
see that {7, |k > 1} contains either all positive rational or all negative
rational numbers. Now let Y = n;_,Y,. Since {Y,} is a decreasing
sequence of compact subsets, Y” is nonempty. Now if {#, | kK > 1} contains all
positive rational numbers then v,(r)Y’ € X for all positive rational numbers
r and hence by continuity V., Y’ € X and, similarly, in the alternative
case V, Y’ C X. This completes the proof of the theorem.

APPENDIX: RECURRENT POINTS

For a compact metric space X we denote by C(X) the space of all conti-
nuous real-valued functions on X equipped with the sup-norm topology and
by C(X)™* the subset of C(X) consisting of all nonnegative functions; the
supremum norm of f € C(X), namely sup{| f(x)| | x € X}, will be denoted
by | 7]l. By an integral on C(X) we mean a linear functional on C(X) which
takes nonnegative values on C(X)*. For an integral A on C(X) the support
of A is defined to be the subset of X consisting of all x € X such that A(f) > 0
for any f € C(X)* for which f(x) > 0; the support is easily seen to be a
closed subset of X. It can also be verified by a simple point-set topological
argument that if A is an integral on C(X) and f € C(X) vanishes on the
support of Athen A(f) = 0. If Ais anintegral on C(X), where X is a compact
metrizable space, and X" is the support of A then there exists a unique integral
A’ on C(X’) such that A'(f|x) = A(f) for all f e C(X), where f|x
denotes the restriction of f to X'; this follows from the Tietze-Urysohn
extension theorem (cf. [D], (4.5.1)) and the above mentioned property of the
support. We note also that the support of A" as above is the whole of X".

For any homeomorphism ¢ of a compact (metrizable) space X an
integral A on C(X) is said to be ¢@-invariant if A(f o ¢) = A(f) for
all f e C(X); clearly the support of a ¢-invariant integral on C(X) is
a @-invariant (closed) subset of X.

Proof of Proposition 1.7. We fix a dense sequence in C(X), say
fi-J=1,2,.... Let xo € X. Given f;, for any sequence {m,} of natural
numbers m; ' Y7 f; 0 ¢/ (xo) is a bounded sequence and therefore admits
a convergent subsequence. Using a standard procedure (finding {m{’}, with
each sequence a subsequence of the previous one, such that the corresponding
sequence for f; as above converges and considering {m{”}) we get a sequence
{ny} of natural numbers such that n,' Y}’ ' fi0 ¢i(xy) converges

for all j; also, the limit is between — | f;| and || £;|. Since {f;} is dense
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in C(X) this readily implies that #n, ! Zln’; ;1 f o @i(xy) converges for all
f € C(X); let ¢, be the limit corresponding to f. Then it can be verified that
A: C(X)— R defined by A(f) = ¢, for all f e C(X), is a ¢-invariant
integral on C(X). Also clearly A is not identically zero and therefore by our
observations above, the support, say X', is a nonempty closed ¢-invariant
subset of X and further C(X’) admits an integral with full support
(namely X’) which is invariant under the restriction of ¢ to X’. Replacing X
as in the hypothesis by X’ we may without loss of generality assume that C(X)
admits a @-invariant integral whose support is X; in the rest of the argument
we let A be any such integral.

Now suppose that there do not exist any recurrent points for .
Let p( -, - ) be the metric on X. Let 6 be the function on X defined
by 0(x) =inf{p(o’(x),x)|i=1,2,...}, for all xeX. There being
no recurrent points means that 6(x) > 0 for all x € X. For each natural
number k let E,={xe X|0(x) >1/k}. Then each E, is a closed
subset of X and X = u E,. Therefore by the Baire category theorem
there exists a k& such that E, has an interior point in X. In particular,
there exists an open ball, say A4, of radius at most 1/3k contained in E,.
The definition of Ej; and the condition on the radius of A then imply
that the sets ¢i(A), i € Z, are mutually disjoint. Now let x € A and
let f e C(X)* be such that f(x) > 0 and the support of f (the closure
of the set {y € X|f(y) >0}) is contained in A. For each natural
number n let S,(f) = E:Ol foeie C(X). The disjointness of
©'(A), i € Z, implies that, for any n,|S.(f)|=|s|. Also, by the
¢-invariance of A we have A(S,(f)) = nA(f). Hence A(f) = A(S,(f))/n
SIS (AHIAUx)/n=|flIA(x)/n for all n, where 15 denotes the
constant function with value 1. But this implies that A(f) = 0 contradicting
the assumption that the support of A is the whole of X. This proves the
proposition.

Acknowledgement: Thanks are due to J. Aaronson and M.G. Nadkarni
for a discussion on recurrent points and to Gopal Prasad and Nimish Shah
for useful comments on an earlier version.
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