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By Satz 5 of [KV], if R is the (complete) root system of an even unimodular

lattice of rank 32, then

d(R) 0,8, 12, 14, 15 or 16

The proof consists in constructing from the given lattice a new lattice L,
still of rank 32 and containing the orthogonal sum of m 32 - d{R) copies

of Z. Thus, L Zm EE L0i where L0 is again unimodular and of rank d(R).
(Hence, rank(L0) ^ 16.)

By Martin Kneser's classification of unimodular (positive definite) lattices

of rank ^ 16, the rank of L0, i.e. d(R) can only take the above values.

(See [Kn], Satz 1.)

In setting up the tables we conveniently use the deficiency to discriminate
the various root systems R according to the value of d(R).

6. The tables

We now proceed to list the indecomposable even unimodular lattices L of
rank 32 with a complete root system R.

The presence in R of a factor of type E8 would produce a unimodular
sublattice ZE8 L0 C L, and hence a decomposition L L0 EE Lx for some
(even) unimodular Lx of rank 24. Hence, we assume throughout that R has
the form

R A/j EE EE A/r IS Dmi E E B mE6 B nE7

with no factor of type E8.
Altogether there are N 88523 such systems (of rank 32). The possible

dimensions for mE6 E nE7 are

D {0, 6, 7, 12, 13, 14, 18, 19, 20, 21, 24, 25, 26, 27, 28, 30, 31, 32}

and for d e D, there is a unique pair (m,n) such that d 6m + In. Hence

N Y*
d e i o P(i)d (32 — d — i)

wherep(i) is the number of partitions of i and q(j) is the number of partitions
Uli '"ijt) of j with 4 ^ j i ^ ^ j t. (Of course, we use the convention
P(0) q(0) 1.)

Among these, only 21209 have an acceptable deficiency, i.e. d 0,8,12,14,15
or 16. They are distributed as follows:
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Deficiency 0 8 12 14 15 16 Total

Number 347 9799 6282 3027 1523 231 21209

Number with zero
Witt class 347 848 306 90 57 28 1676

Number of connected

root systems with zero
Witt class 347 410 108 34 24 11 934

We say that a root system R is not connected if R Rx U R2 is a

disjoint union of mutually orthogonal root systems Ri,R2 such that T(R0
and T(R2) have relatively prime orders.

If R Ri U R2 is not connected, a metabolizer for T(R) T(Ri)
EE T(R2) will have the form M - M\ EE M2, where M, is a metabolizer
for T(Ri), i - 1,2 and any lattice L with (complete) root system R will split
as L Lx EE L2, with Li,L2 unimodular and with root systems R\,R2
respectively. Thus, if R is not connected, it does not qualify as a candidate

root system for an indecomposable unimodular lattice of the same rank.

Sifting the root systems for the purpose of setting up the tables, we retain

only the connected ones. Of course, a decomposable 32-dimensional lattice
which does not involve a ZE8 factor can only be the orthogonal sum
of 2 copies of the indecomposable 16-dimensional lattice T16 in the notation
of [MH], Lemma 6.1, p. 27. However, the criterion is a handy one to include
in a computer program and it does considerably shorten the lists of candidates.

The number of remaining systems is shown as the last line in the above table.

In order to get some experimental estimate on the relative strengths of the

various conditions we are using, let me display the (otherwise irrelevant) list
of connected systems of admissible deficiencies. (See the table next page.)

Comparing the last lines of the two tables we see that the condition on the

Witt class is fairly stronger than merely requiring the order of T(R) to be

an integral square. (Of course, if T(R) contains a metabolizer M M±,
then I T(R) | \M\2.) A simple example of a root system R with non-zero
Witt class but | 7%R) | a square is R 2A5 EE A8 EE D4 EE D8 which is

connected (and has deficiency 8). There are 1302 - 934 368 such.
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Deficiency 0 8 12 14 15 16 Total

Connected

root systems 347 2154 1051 425 150 25 4152

Connected root
systems with

T{R) a square 347 610 214 79 38 14 1302

The 934 root systems of the bottom row of the first table all possess a

metabolizer. However, a metabolizer M C T{R) will produce a unimodular

lattice L with root system exactly R only if for each non-zero 5 e M the norm

n{s) is an integer larger than 2:n(,s) > 2. (The norm has been defined in

Section 2.) Moreover if L is to be an even lattice, n(s) must in addition be

an even integer. A metabolizer M satisfying n^) 0 {modi) and n(s') > 2

for every s e M, s ^ 0 will be called admissible.

The norms of the elements of T(A/), T(D/), T(E6), and T(E7) have been

recalled in Section 3:

n(*r) r";++'rr> for 6 AA,), 0, 1, I,
nCfi) nO>3) §, n(y2) 1 for 7(D,)

'

I for z e r(Et), 0
n(z)

2 for z e T(E7), z ^ 0

Thus, the norm of any element in the discriminant T(R) of a root
system R can easily be calculated. Of course, in general n(s + s') ^ n(s)
+ n(s') for 5-, s' e T(R). However, n(5 + s') 11(5-) + n(s') holds true if s, s'
belong to the discriminants T(R{), T(R2) of mutually orthogonal root
sub-systems.

Only the weights of admissible elements may occur with non-vanishing
coefficient in the weight enumerator polynomial PM of a putative
(admissible) metabolizer M.

Before embarking on using the duality theorem, it is possible, in some
favorable cases, to eliminate a root system directly by inspection:

If M C T{R) is an admissible metabolizer, then for every prime number

p, the /^-component Mp of M is an admissible metabolizer for the induced
bilinear form on the p-component T(R)P of T(R). There are cases of root
systems R and suitable choice ofp for which it is apparent that no metabolizer
of T{R)P is admissible. As an example, suppose that R A2 EB A5 EB R\
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where the order of T(R') is prime to 3. Then, T(R)3 T(A2 ffl A5)3

T(A2) ffl T(A5)3 Z/3Z © Z/3Z generated by $1 (1, 0), s2 (0, 2),
where (1,0) stands for the projection of e (ZA2)# in T(A2) ffl T(A5)3
and (0,2) stands for the projection of x2 e (ZA5)# in T(A2) ffl T(A5)3 in
the notations of Section 3. Now, nCs© \ and n(i,2) f, and for every
s e T(A2 ffl A5)3 one has 11(5") ^ 2.

This argument eliminates the root systems of the form R X ES R', with
T(R') of order prime to 3 if A" is any member of the following (small but
frequently arising) black list:

X A2 BB As, 2A2 ffl 2A5, 2A2 ffl As 09 E6

Similarly, R mA2 ŒI nA5 ffl A8 ffl R', with T(R') of order prime to
3 cannot occur for any m, n ^ 0.

Indeed, for any putative admissible metabolizer M, one should
have M3 C T(mA2 ffl nA5)3 ffl 3T(A8) because any 5 e M3 with 3s 0

would produce an element s' 3s (0m, 0", ± 3) e M3, s' ± 0, of norm
n(s') 2, which is inacceptable.

But then M'3 M3 n T(mA2 ffl nA5)3 would be a metabolizer in
T(mA2 ffl nA5)3, and therefore M0 M n T(i?0) a metabolizer in r(i?0)»
where i?0 mA2 ffl nA5 ffl R'. (The subgroup M'z is obviously self-

orthogonal and it has the right order.) Setting n0 : (ZR0) * T(R0)k the
natural projection, the inverse image L0 710~1 (M0) would be a unimodular
sublattice and hence an orthogonal summand of L.

If no such simple argument is available, the root system is to be tested using
the duality theorem of Section 4.

For a given root system R, the coefficients in PM of weight monomials
which are not representable by any admissible elements in T(R) must be 0.

The duality theorem, using M M1, is then a linear system for the

remaining coefficients of PM which must be solvable in non-negative integers.
In many cases, this system is not even solvable in rational numbers or if it is,

some coefficients turn out to be negative or fractional. Here, all cases occur.
In most of the remaining cases where the existence of the polynomial is not
prohibited by MacWilliams duality, an admissible metabolizer and hence an

even unimodular lattice can actually be constructed.

Completeness of the lists thus relies on a lengthy elimination procedure,
let alone the heavy use of machine testing, subject to all sorts of failure. It
would certainly be desirable to supply an alternate, perhaps less computational,

approach.
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The above classification program really begins with the root systems of

deficiency 8. For the root systems of deficiency 0, there is another, fairly

different method, due to H. Koch and B. Venkov, which we recall in the

next paragraph.

Notations in the tables

The notation for root systems R is self-explanatory: If e.g. R 8Ai
EE 8A3, then ZR is the orthogonal direct sum

ZR ZAj EE • • • EE ZAj ffl ZA3 EE • • • ffl ZA3

of 8 copies of ZAt and 8 copies of ZA3.
In order to describe a unimodular lattice L containing ZR we display a

filling set S, i.e. a set of vectors in (ZR)# which together with ZR

generate L. The terminology is intended to be reminiscent of the similar

notion of a glueing set occuring in the paper of J. Conway and V. Pless [CP].
Let R Ri EE ••• ffl i?r be the decomposition of R in irreducible

components. The vectors in the filling set S contained in

(ZR)# (ZRA* ffl ••• ffl (ZRr)*

are specified by their coordinates in the successive (Zi?/)#, i 1, r.
Vectors in the filling set are taken with minimal norm in their class

modulo ZR. It is thus easy to read off the norm of an element in S from its

displayed expression in coordinates. If the z-th irreducible component R( of R
is A/,D/,E6, or E7, the number k as the z-th coordinate of a vector
of S stands for the element noted xk(Ri) in Section 3.

In order (hopefully) to improve readability, I have separated by a
semi-colon the components of a filling vector belonging to different
multiple root systems. Thus, for instance 5- (1 ; 2; 1, 0) in the filling set for
the root system A3 ffl A15 ffl 2E7, the 16-nth root system with deficiency 8

occuring in the tables, stands for the vector s x i(A3) + x2(A15)
+ x1(E7) + 0 in (ZA3)* ffl (ZA15)* ffl (ZE7)* ffl (ZE7)*. Its norm is

4 16 2

After the filling set, the reader will find the weight enumerator polynomial,
sometimes just called the "polynomial" of the metabolizer n(L),
where n:(Z R)*->T(R).Theweights refer to the indicated decomposition
of the root system under discussion, i. e. one variable only for each multiple
factor nR,,whereR, is irreducible. Thus, for instance, the term 56in the
polynomial for R 8A] ES 8A3 means that the metabolizer M contains
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56 vectors with 4 non-zero coordinates among the first 8 corresponding to
T^Ai)8 and 2 non-zero coordinates among the last 8 corresponding to
T(A3)8. As an example, we find among these vectors the images in T(R)
of the vectors s4is5,s6,s7 of the filling set.

The root systems with a fixed deficiency are listed in alphabetical order.

1. Root systems with deficiency 0

This case has been treated by H. Koch and B. Venkov. (See [KV], Satz 3.)

If L is an even unimodular lattice of rank 32 with a complete root system of
deficiency 0, then L contains 32 mutually orthogonal vectors of scalar

square 2, i.e. ax, a32 e L such that (ai9 cij) 28z7.

Let TV Zflj ffl Za2 ffl ffl Zö32 and let N# Zoo ffl ffl Za32 be

the dual lattice, where a, — \a\.
Since (x, u) e Z for all x e L, u e N, we have L C N#. The quotient

N*/N is the 32-dimensional vector space F322 with the standard scalar

product (8/, sj) \ ô/y (induced by the scalar product on N#), where 8Z

stands for the image of az- under the projection n :N# N*/N.
The image CL n(L) of the lattice L is then a self-dual code (of

dimension 16) in F322. Because L is even, it follows that CL is a doubly-even
code (i.e. all code words have a weight divisible by 4).

Now, the doubly-even self-dual codes in F^2 have been classified by
J. Conway and V. Pless in [CP]. There are 85 of them. Crossing out from this

list the decomposable ones, we arrive at a list of 75 codes, and therefore
75 irreducible even unimodular lattices, corresponding to 62 root systems.

For the details, see [CP] and [KV].
It turns out that all the examples of non-isomorphic even unimodular

32-dimensional lattices with the same complete root system occur in the case

of deficiency 0.

The reader who wishes to see these examples explicitly must therefore turn
to [CP].

In the following subsections 2 to 6, containing the list of lattices with

non-zero deficiency, each realizable root system uniquely determines the lattice

to which it belongs.

2. Root systems with deficiency 8

There are 29 even unimodular lattices of rank 32 having a complete root
system of deficiency 8. Each lattice is uniquely determined by its root system.
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(1) 8Ai EB 8A3

A filling set for the corresponding lattice consists of the following 8 vectors

s0 (0, 0, 0, 0, 0, 0, 0, 0; 1, 1, 1, 1, 1, 1, 1, 1),

s (1, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 1, 1, 1),

s2 (0, 1, 1, 0, 0, 0, 0, 0; 0, 0, 1, 1, 1, 1, 0, 0),

s3 (0, 0, 0, 1, 1, 0, 0, 0; 0, 1, 3, 0, 0, 1, 3, 0),

s4 (1, 1, 1, 1, 0, 0, 0, 0; 0, 0, 0, 0, 2, 2, 0, 0),

s5 (0, 0, 1, 1, 1, 1, 0, 0; 0, 0, 0, 0, 0, 2, 2, 0),

s6 (0, 1, 1, 0, 0, 1, 1, 0; 0, 0, 2, 0, 0, 2, 0, 0),

s7 (0, 0, 0, 0, 1, 1, 1, 1; 0, 0, 0, 0, 0, 0, 2, 2).

The weight enumerator polynomial is

P(x>y) 1 + xS+ 5 6x4y2+ 14y4 + 112x2y4 + 112x4.y4

+ 112x6y4 + 14x8y4 + 896x4y5 + 672x2y6 + 56x4y6

+ 672 x6y6+896x4y7 + 17y8 + 112x2y8 + 224x4y8

+ 112x6y8 + 17x8y8.

The (rather delicate) discussion of this root system in presented in Section 7.

(2) 4Ai EE] 4A5 EE! Dg

Filling set S<Sis2,s3, s4, s5, s6, s7 >, where

s, (1, 0, 0, 0; 3, 0, 0, 0; 1), s2 (0, 1, 0, 0; 0, 3, 0, 0; 1),

s3 (0, 0, 1,0;0, 0, 3, 0; 1), s4 (0, 0, 0, 1; 0, 0, 0, 3; 1),

s5 (1, 1, 1, 1; 0, 0, 0, 0; 3), s6 (0, 0, 0, 0; 0, 2, 2, 2; 0),
s7 (0, 0, 0, 0; 2, 0, 2, 4; 0).

Polynomial

P(x,y, z)1 + 6x2y2+ 8y3 + 24x2y3 + 24x2y4 + 9x4y4 + x4z + 4

+ 4x3yz + 6 x2y2z+ 36xy3z + 24x2y3z + 36x3y3z
+ 8x4y3z + 9 y4z +32xy4z + 24x2y4z + 32x3y4z.

(3) 2Ai ffl 2A3 IS 2A7 S D10

Filling set

S< Si, s2, s3, s4 >, where

Si (1, 0; 2, 0; 0, 0; 1), s2 (0, 1; 0, 2; 0, 0; 3),
s3 (0, 0; 1, 1; 2, 0; 2), s4 (1, 1 ; 0, 1 ; 1, 1 ; 1).
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Polynomial

P(x,y, z, t) 1 + 2y2z + 4x2y2z + z2 + 4yz2 + 8x.yz2 + 8xj>2z2

+ 4x2.y2z2 + 2xyt + x2y2t + 2x2zt + 4xyzt + 4y2zt
+ 8 xy2zt + 4xz2t + 8j>z2^ + 10xyz2t + 12x2.yz2£

+ \2y2z2t + 20xy2z2t + 9x2y2z2t.

(4) 2Ai EH 2A9 Œl D12

Filling set

S <(1, 0; 5, 0; 1), (0, 1; 0, 5; 1), (1, 0; 0, 5; 2),

(0, 0; 2, 4; 0) >

Polynomial

P(x,y,z) 1 + 4y2 + 5x2.y2 + x2z + 4xyz + 5 y2z + 16xy2z + 4x2y2

(5) Ai Œl A3 EH 2A7 EH D7 Œ E7

Filling set S < S\, s2, S3 > where

sx 1; 1; 1, 3; 0; 0), s2 (0; 1; 2, 4; 1; 0),

s3 (1; 0; 0, 4; 0; 1).

Polynomial

P(x,y, z, t,u) 1 + z2 + 2yz2 + 4xyz2 + 6yzt + 2z2t + 4xz2t
+ 4j>z2* + 8 xyz2t + 2xzu + 4yz2u + 2xyz2u
+ xytu + 4x.yz/w + 4z2tu + 2xz2tu + Syz2tu
+ 5xyz2tu.

(6) Ai Œ A5 Œ An Œ D5 Œ D10

Filling set S < (1 ; 3; 0; 2; 2), (0; 3; 0; 0; 1), (1; 0; 3; 1 ; 0), (0; 2; 4; 0; 0)

Polynomial

P(x, y, z,t,u)= 1 + 2j>z + zt + 2xzt + 2yzt + 4xj>zf + + xzw
+ 2yzu + 5 xyzu + xtu + xytu + 2ztu + 13yztu
+ 10xyztu.

(7) Ai Œ A17 Œ D14

Filling set S <(1; 0; 1), (0; 9; 3), (0; 6; 0)>.
Polynomial P(x,y, z) 1 + 2y + xz + 3^z + 5xyz.

(8) 8A3 Œ 2D4
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Filling set S <s{f s2i s3y s4, s5i s6>, where

si (1, 1, 1, 1, 1, 1, 1, 1; 0, 0), 52 (0, 1, 0, 0, 1, 3, 2, 1; 0, 0),

53 (0, 0, 1, 0, 1, 0, 1. 1; 1, 0), 54 (0, 0, 0, 1, 0, 1, 3, 3; 2, 0),

55 (0, 2, 0, 0, 0, 2, 0, 0; 1, 1), 56 - (0, 2, 0, 0, 2, 0, 0, 0; 2, 2).

Polynomial

P(x,y) 1 + 14x4 + 16a5 + 16a7 + 17a8 + 48a4j + 288A6y

+ 48a87 + 12a2^2 + 24A4j2 + 240A5^2 -1- 12A6J2

+ 240A7y2 + 48A8y2.

(9) 8A3 03 D8

Filling set S< Sj, s2, s3,s4,s5 >,where
s, (1, 0, 0, 0, 2, 1, 1, 1; 0), s2 (0, 1, 0, 2, 1, 0, 1, 1; 0),
s3 (0, 0, 1, 1, 0, 2, 1, 1; 0), s4 (0, 0, 0, 1, 1, 2; 1),

s5 (0, 0, 0, 0, 0, 0, 2, 2; 3).

Polynomial

P(x,y)1 + 14x4 + 48 a: 5 + 48x7 + 17x8 + 4x2y + + 112x5y
+ 100x6>' + 112x7.y + 32x8y.

(10) 7A3 03 Du
Filling set S <sIt s2, s3,s4>,where

s, (1, 0, 0, 2, 1, 1, 1; 0), s2 (0, 1, 0, 1, 2, 3, 1; 0),
s3 (0, 0, 1, 3, 3, 2, 1; 0), s4 (0, 0, 0, 1, 3, 1, 2; 1).

Polynomial

P(x,y) 1 + 7x4 + 42x5 + 14x7 + + 70 + + 17

(11) 6A3 EB 2D7

Filling set S<si, s2, s3, s4>,where
s, (1, 0, 0, 0, 1, 1; 0, 1), s2 (0, 1, 0, 0, 1, 3; 1, 0),
s3 (0, 0, 1, 0, 1, 2; 1, 1), j4 (0, 0, 0, 1, 2, 1; 3, 1).

Polynomial

P(x,y)1 + 3x4 + 12x5+ 24 x3y+ 12 + 48 + 12x6y
+ 3 x2y2+ 24 x3y2+ 48x4y2 + 36x5y2 + 33x6y2.
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(12) 4A3 œ 4D5

Filling set S< 5j, s2, 53, 54 >, where

5, (1, 1, 1, 1; 2, 0, 0, 0), 52 (1, 1, 0, 0; 1, 1, 0, 0),

53 (0, 1, 3, 0; 0, 1, 1, 0), 54 (0, 0, 3, 1; 0, 0, 1, 1).

Polynomial

P(x,y) 1 + x4 + 8 x4y + 36x2y2+ 24x4.y2 + 96x3^3 + 8x4_y3 + y4

+ 8x^4 + 24x2j4 + 8x3^4 + 41

(13) 2A3 EB 2A7 ES 2D6

Filling set

S= <(1,0; 1, 1; 1,0), (1, 1; 2,0; 2,0), (2, 0; 0, 0; 1, 1), (0, 2; 0, 0; 3, 3) >.

Polynomial

P(x,y,z) 1 + 2x2y + y2 + 4xy2 + 8 x2yz + 16xy2z + 24x2y2z

+ 2xz2 + x2z2 + 2yz2 + 4xyz2 + 8 x2yz2 + 4y2z2

+ 22xy2z2 + 29x2y2z2.

(14) A3 BS A5 EH An EH DÖ EB E7

Filling set S < s0, S\, s2, s3>, where

Ao (1; 3; 3; 0; 1), Si (2; 3; 0; 1; 0),

a2 (0;0;6;3; 1), *3 (0; 2; 4; 0; 0).

Polynomial

P(x,y, z,t,u) l+xz + 2yz + 2xyz + xyt + 2xzt + 3yzt + 12xyzt
+ 6xyzu + xtu + ytu + ztu + 2xztu + 4yztu
+ 9xyztu.

(15) A3 EH An EB Du EH EÖ

Filling set

S= <(1; 3; 2; 0), (0; 6; 1; 0), (0; 4; 0; 1) >.

Polynomial

P{x, y, z, t) m 1 + xy + xz + yz + 4xyz + 2yt + 2xyt -f 2yzt
+ 10xyzt.
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(16) A3 EB A15 EB 2E7

Filling set S <(1; 2; 1, 0), (2; 0; 1, 1) >.
Weight polynomial

P(x, y, z) 1 + y + 2xy + 8xyz + xz2 + 2yz2 + xyz2.

(17) 4A5 EE 2D6

Filling set S < S2, S3 > where

S2 <(3,0,0,0; 1,2), (0,3, 0,0; 3, 2), (0, 0, 3, 0; 2, 1), (0, 0, 0, 3; 2, 3) >,
S3 < (0, 2, 2, 2; 0, 0), (2, 0, 2, 4; 0, 0) >.

Polynomial

P(a, y) 1 + 8x3 + 2x2y + 20x3y + 32x4y + 4xy2 + 4x2y2

+ 40x3y2 + 33x4y2-

(18) 4A5 ffl D12

Filling set 5 < S2, S3>, where

S2 < (3, 3, 3, 3; 0), (3, 3, 0, 0; 1), (0, 3, 3, 0; 2) >
S3 <(0, 2, 2, 2; 0), (2, 0, 2, 4; 0) >.

Polynomial

P(x, y) 1 + 8a3 + 9xA + 6 x2y + 24x3y + 2AxAy.

(19) 3A5 ffl D4 ŒI EÖ EE E7

Filling set S < Si, s2, s3, s4, s5 >, where

5! - (0, 3, 3; 1; 0; 0), s2 (3, 0, 3; 2; 0; 0),
s3 (3, 3, 3; 0; 0; 1), s4 (2, 2, 0; 0; 1; 0),

(2, 4, 2; 0; 0; 0).

Polynomial

P(x,y, z, t) 1 + 2x3 + 3x2y + 6x3y + 6x2z + 6x2yz + 12x3yz
+ 3 x3t + 3 xyt + 6x3yt + 6x3zt + 12x2yzt + 6x3yzt.

(20) 2A5 EB D10 ffl 2E6

Filling set

5= <(3, 0; 1; 0, 0), (0, 3; 3; 0, 0), (2, 2; 0; 1, 0), (2, 4; 0; 0, 1)>.
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Polynomial

P(xfy, z) 1 + 2xy + x2y 4- 4x2z + 12x2yz 4- 4xz2 + 4xyz2
+ 8x2yz2.

(21) As ffl An ffi d9 œ Et
Filling set

S <(0; 3; 1; 1), (3; 6; 0; 1), (2; 4; 0; 0) >.
Polynomial

P(x,y, z, t) 1 4- 2xy + yz + 8xyz + 3xyt 4- xzt 4- 2yzt + 6xyzt.

(22) 2A7 EB 2D5 EB Ds

Filling set S < (1, 1; 1,0; 2), (2, 0; 1, 1; 0), (0, 0; 2, 2; 1) >.
Polynomial

P(x, y, z) 1 + x2 + 4x2y + 6xy2 + 4x2y2 + 2xz + 20x2yz + y2z
4- 4xy2z + 21 x2y2z.

(23) 2A7 ffl D5 EB D13

Filling set S <(1, 3; 1; 0), (2, 0; 1, 1)>.
Polynomial P(x,yyz) l + x2 + 6x2y + 6x2z + 6xyz + 12x2yz.

(24) 2A7 BB 2D9

Filling set S <(1, 1; 1,0), (2, 0; 1, 1)>.
Polynomial P(x,y) 1 + x2 + 12x2y + 6xy2 + 12x2y2.

(25) 2A9 ffl D14

Filling set S <(5, 0; 1), (0, 5; 3), (2, 4; 0)>.
Polynomial P(x,y) 1 4- 4x2 + 2xy + 13x2y.

(26) 2A9 Œl 2E7

Filling set S<(5, 0; 1, 0), (0, 5; 0, 1), (2, 4; 0, 0)>.
Weight polynomial P{x,y) 1 + 4x2 + 2xy + 8 + 5x2y2.

(27) An Œl Dis Œ EÔ

Filling set S<(3; 1; 0), (4; 0; 1)>.
Polynomial P(x, y,z) 1 + 3 xy+ 2x7, + 6xyz.
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(28) Ai5 EE Ü5 ffl Di2

Filling set S - <(2; 1; 1), (0; 2; 3)>.
Polynomial P(x, y, z) - 1 + x + 2xy + 2xz + yz + 9xyz.

(29) Ais IS Dit
Filling set S < (2; 1) >.
Polynomial P(x, y) I + x + 6xy.

3. Root systems with deficiency 12

There are 10 root systems of rank 32 and deficiency 12 appearing as the

root system of a (unique) even unimodular lattice of rank 32.

(1) 4Ai S 4A7

The filling set S < s2, s3, s4> is given by

si (1, 0, 0, 0; 1, 1, 1, 1), s2 - (1, 1, 0, 0; 2, 2, 0, 0),

s3 (0, 1, 1, 0; 0, 2, 6, 0), s4 (1, 1, 1, 1; 0, 0, 0, 4).

The weight enumerator polynomial of the corresponding metabolizer reads

P(x, y) 1 + 4x4y + 6y2 + 24x2y2 + 48x2y3 + 4x4y3 + 9y4 + 64xy4
+ 24x2y4 + 64x3y4 + Sx4y4.

(2) 4A2 S 4A5 S D4

Filling set S <su s2, s3> x < s4, s5, s6, s7 >, where

S! (0, 0, 0, 0; 3, 3, 3, 3; 0), s2 - (0, 0, 0, 0; 3, 3, 0, 0; 1),
s3 (0, 0, 0, 0; 0, 3, 3, 0; 2),

s4 * 1, 1, 1, 1; 2, 0, 0, 0; 0),
s5 (1, -1, 1,-1; 0, 2, 0, 0; 0),
s6 (1, 1, -1, -1; 0, 0, 2, 0; 0),
s7 (1, -1, -1, 1; 0, 0, 0, 2; 0).

Weight enumerator polynomial

P(x9y, z) 1 + Sx4y + 24x2y2 + 32x3y3 + y4 + 16xy4 + 24x2y4
+ 32x3y4 + 24x4y4 + 6y2z + 24x2^2z + 24x4y2z
+ 96x2y3z + 96x3y3z + 24x4y3z + 4Sxy4z + 24x2^4z
+ 96x3y4z + 48x4y4z.
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(3) 4A2 Œ 4E6

Filling set S < s2, s3, s4>, where

sl (1,0,0,0; 1, 1, 1, 1),

52 (0,1,0,0; 1,-1, 1,-1),
53 (0,0, 1,0; 1, 1, -1, -1),
54 (0,0,0, 1; 1, -1, -1, 1).

Weight enumerator polynomial

y) 1 + 8x4y + 24x2y2 + 32x3y3 + 8xy4 + 8x4y4.

(4) 2A2 EH 2An ES Dé

Filling set

S < (0, 0; 3, 3; 1), (0, 0; 6, 0; 2), (1, 1, 4, 0; 0), (1, 2; 0, 4; 0)

Polynomial

Pix, y, z) 1 + 4x2y + y2 + 8xy2 + 4x2j>2 + 2yz + 4x2yz + 4y2z
+ 24xy2z + 20x2y2z.

(5) A2 SB A9 Œ A14 Œ E7

Filling set 5= <(1; 0; 5; 0), (0; 2; 3; 0), (0; 5; 0; 1) >. «

Weight polynomial

Pix, y, z,t) 1 4- 2xz + 4yz + 8xyz + yt + 4yzt + 10xyzt.

(6) A2 EH A23 EH E7

Filling set S <(1; 8; 0), (0; 6; 1)>.
Weight enumerator polynomial

Pix, y, z) 1 + y + 4xy + 2yz + 4xyz.

(7) 6A3 Œl 2A7

Filling set S < Si, 52, 53, 54 >, where

5! (2, 1, 1, 1, 1, 0; 0, 0), 52 (1, 2, 1, 3, 0, 1; 0, 0),

53 (1, 1, 1, 0, 0, 0; 1, 1), 54 (0, 2, 1, 1, 0, 0; 2, 0).

Weight enumerator polynomial

P(x,y) 1 + 3x4 + 12x5 + 6x2y + 24x3y + 48x5y + 18x6y + y2

+ 72x3y2 + 123x4j2 + 132x5^2 + 72x6y2.



UNIMODULAR LATTICES 87

(8) 2A4 EE 2A9 EE DÖ

Filling set

<(0, 0; 5, 0; 1), (0, 0; 0, 5; 3), (1, 0; 2, 2; 0), (0, 1; 2, 8; 0) >.

Polynomial

P(x, y, z)1 + 8x2y+ 8xy2 + 8x2y2 + 2yz + 8 + y2z

+ 24x^2z + 40x2y2z.

(9) A4 EE A19 EB D9

Filling set S «=» < (0; 5 ; 1), 1 ; 4; 0) >
Polynomial P(x,y,z) 1 + 4xy + 3yz + 12xyz.

(10) As EE Ai7 EE E7

Filling set S < (4; 2; 0), (0; 9; 1) >.
Weight polynomial P(x, y, z) 1 + 8xy + yz + 8xyz.

4. Root systems of deficiency 14

There are 5 root systems with deficiency 14 which appear as a complete
root system in an even unimodular lattice of rank 32. There is only one lattice
for each realizable root system.

A filling set 5 < Si, s2, s3, s4, s5, s6> is as follows

(0, 1, 1, 1, 1, l, 1, l, 1, 1; 0, 0),
s2 «= (1, 1, 0, U 1, 2, 2, 2, 2, 1; 0, 0),
s3 (h 2, 1, 2, 0, 1, 1, 2, 2, 1; 0, 0),
s4 (1, 1, 2, 2, 1, 1, 0, 2, 1, 2; 0, 0),

*= (1, 1, 1, 1, 0, 0, 0, 0, 0, 0; 1, 0),
s6 (0, 0, 1, 2, 2, 1, 0, 0, 0, 0; 0, 1).

(1)

The weight enumerator polynomial is

P(x,y) 1+2y y 4x2y + 5y2 + 16xy2 + 4x2y2.

(2) ioa2 m 2e6
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The weight enumerator of the corresponding metabolizer is

P(x,y) 1 4- 60a6 + 20x9 + 60x4y + 240x7y 4- 24a1 V
+ 144x5y2 + 180x8.y2.

See the following Section 7 for the relationship of this root system with
conference matrices.

(3) 2A2 EE 2A3 EE 2An
Filling set

5= <(0,0; 1,2; 3,0), (0, 0; 2, 1 ; 0, 3), (1, 1 ; 0, 0; 4, 0), (1, 2; 0, 0; 0,4) >

Polynomial

P(x,y, z) 1 + 4x2z + 2yz + 4x2yz 4- 4y2z + 8x2y2z + 4xz2 + 4yz2
4- 24xyz2 4 20x2yz2 + 5^2z2 + 3 6xy2z2 4- 28x2y2z2.

(4) 2A5 SB 2An
Filling set

S <(3, 0; 3, 3), (3, 3; 6, 0), (2, 0; 4, 0), (0, 2; 0, 4) >.

Polynomial

P(x,y) 14* 4xy 4- 6x2y + y2 4- 16xy2 + 44x2y2.

(5) An ffl A15 EE EÖ

Filling set 5 < (3; 2; 0), (4; 0; 1) >.
Polynomial P(x,y, z) 1 + y 4- 6xy + 2xz 4- 14a^z.

5. Root systems of deficiency 15

There are 8 root systems of deficiency 15 which occur as the complete root
system of an even unimodular lattice of rank 32. Each lattice is uniquely
determined by its root system.

(l) Ai ES 3Ä6 EE A13

Filling set

S= <(1; 0, 0, 0; 7), (0; 1, 2, 3; 0), (0; 2, 6, 0; 2) >.

Polynomial

P(x,y,z) 1 4- 6y3 + az + 18y2z + 18xy2z + 24y3z 4- 30xy3z.
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Here again, the polynomial is the only candidate satisfying duality. In turn,

the given filling set is uniquely determined by the polynomial.

(2) Ai EB Aio IS An
Filling set S< (1 ; 0; 11), (0 ; 1 ; 8) >.
Polynomial P(x, y,z) I + xz + 10 + lOxyz.

(3) Ai S A31

Filling set S - < (1 ; 4) >
Polynomial P(x,y) 1 + 3y + 4xy.

(4) 13A2 EB EÖ

Filling set S <Sq, Si, s2, s3i S4, s5, s6> as follows

50 — (i, l, 1, l, l, l, 1, 1, 1, ip 1, 1, 1; 1),

51 (2, 0, 1, 0, 2, 1, 2, 1, 0, 0, 0, 0, 0; 0),

a2 - (0, 2, 0, 1, 0, 2, 1, 2, 1, 0, 0, 0, 0; 0),

s3 - (0, 0, 2, 0, 1, 0, 2, 1, 2, 1, 0, 0, 0; 0),

s"4 « (0, 0, 0, 2, 0, 1, 0, 2, 1, 2, 1, 0, 0; 0),

a5 (0, 0, 0, 0, 2, 0, 1, 0, 2, 1, 2, 1, 0; 0),

sß (0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 1, 2, 1; 0).

The weight enumerator is

P(x,y) 1 + 156x6 + 494x9 + 78x12 + 26x4y + 624x7y

+ 780xl0y + 28x13y.

Note that M0 M n F(13A2), where M is the metabolizer generated

by S in F(13A2 EE E6), is the cyclic code in F3[x]/(x13 - 1) generated by

g(x) x7 - x6 + x5 - x4 + x2 - 1

(x - 1) (x3 + X2 - 1) (X3 - X2 - X - 1)

with roots a4, a7, a8, a10, a11, a12, a13 1, where a is a root of
A3 - A - 1 in F27.

(5) A2 EB A5 EB As BB A17

Filling set

5= <(0; 3; 0; 9), (1; 4; 1; 4), (1; 2; 3; 0) >.

Polynomial

P(x,y, z,t) 1 + 2xyz + yt + 4xj>* + 2zt + 6xzt + I4yzt + 24xyzt.



90 M. KERVAIRE

Here, in order to prove uniqueness, one should first observe that the weight
enumerator of the metabolizer is uniquely determined by the duality theorem
of Section 4. It is then easy to see that the above filling set is the only
possible one.

(6) A2 EB 3Ag EB Eß

Filling set

S <(0; 1, 1, 1; 1), (1; 3, 0, 0; 1), (1; 0, 3, 0; 1) >.

Weight enumerator

P(x,y, z) 1 + 6yz + 2y3 + 18xy2 + 6xyz + 6xy2z + 18y3z

+ 24xy3z.

For the proof of uniqueness, one first observes that the above polynomial
is the only one compatible with the requirement of duality. Then, the only
6 candidates for the weight xyz are ± (1 ; 3, 0, 0; 1), ± (1 ; 0, 3, 0; 1) and

± (1 ; 0, 0, 3 ; 1).

The vector (0 ; 1, 1, 1 ; 1) is then uniquely determined, up to obvious

automorphisms, by the requirement of compatibility with the other 3 vectors.

(7) AÖ EB A20 EE Eg

Filling set S < (0; 7; 1), (2; 3; 0) >.
Polynomial P(x,y,z) 1 + 6xy + 2yz + 12xyz.

(8) A.26 ffl E6

Filling set S < (3 ; 1) >
Weight enumerator P(x,y) 1 + 2x + 6xy.

6. Root systems of deficiency 16

There are 5 root systems of deficiency 16 occuring as the root system of
even unimodular lattices of rank 32. Each of these lattices is determined by
its root system.

(l) i6A2
The system of filling vectors can be taken as the rows of an 8 x 16 matrix

S(/, H)
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where I is the 8x8 identi

/
y matrix and H is the Hadamard matrix

\
The weight enumerator is

P(x) 1 + 224x6 + 2720x9 + 3360a12 + 256x15.

The uniqueness of the lattice with this root system follows from the

classification of self-dual codes in F36 due to J. Conway, V. Pless and

N. Sloane in [CPS].

(2) 2A2 EB 2Ai4

Filling set S<(1, 0; 5, 0), (0, 1; 0, 5), (0, 0; 3, 6) >.
Weight enumerator P(x,y) 1 + 4xy + 4y2 + 16xy2 + 20x2y2.

(3) 8A4

Filling set S < Si, s2, s3, s4>, where Si, s2, s3, ^4 can be taken to be
the rows of the matrix

1 1 1 \
1 1-1
1 -1 -1
1 -1 1/

The weight enumerator is

P(x) - 1 + 48x4 + 32a5 + 288a6 + 128a7 + 128a8.

For the proof of uniqueness, see the comments in the next section.

(4) 4A8

Filling set S <(1, 1, 4, 0), (1, -1, 0, 4) >.
Weight enumerator P(a) 1 + 32a3 + 48a4.

(5) 2A16

Filling set S< (1, 4) >
Weight enumerator P(x) 1 + I6x2.
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