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UNIMODULAR LATTICES 73

By Satz 5 of [KV], if R is the (complete) root system of an even unimodular
lattice of rank 32, then

d(R)=0,8,12,14,15 or 16 .

The proof consists in constructing from the given lattice a new lattice L,
still of rank 32 and containing the orthogonal sum of m = 32 — d(R) copies
of Z. Thus, L = Z"™ L,, where L, is again unimodular and of rank d(R).
(Hence, rank (L) < 16.)

By Martin Kneser’s classification of unimodular (positive definite) lattices
of rank < 16, the rank of L, i.e. d(R) can only take the above values.
(See [Kn], Satz 1.)

In setting up the tables we conveniently use the deficiency to discriminate
the various root systems R according to the value of d(R).

6. THE TABLES

We now proceed to list the indecomposable even unimodular lattices L of
rank 32 with a complete root system R.

The presence in R of a factor of type Eg would produce a unimodular
sublattice ZEg = L, C L, and hence a decomposition L = L, L, for some
(even) unimodular L, of rank 24. Hence, we assume throughout that R has
the form

R=A,1...Aerml...DmsmE6nE7,

with no factor of type Es.

Altogether there are N = 88523 such systems (of rank 32). The possible
dimensions for mE; H nE, are

D =10, 6, 7, 12, 13, 14, 18, 19, 20, 21, 24, 25, 26, 27, 28, 30, 31, 32}
and for d € D, there is a unique pair (m, n) such that d = 6m + 7n. Hence
N=7Y, 220 p(gB2-d-1i),

where p (i) is the number of partitions of i and ¢ () is the number of partitions
(Jis--sJ0) of j with 4 < j; < ... <J,. (Of course, we use the convention
p0) =¢q(0) = 1)

Among these, only 21209 have an acceptable deficiency, i.e. d = 0,8,12,14,15
or 16. They are distributed as follows:
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Deficiency 0 8 12 14 15 16 Total

Number 347 | 9799 | 6282 | 3027 | 1523 | 231 || 21209

Number with zero
Witt class 347 848 | 306 90 57 28 1676

Number of connected
root systems with zero
Witt class 347 | 410 | 108 34 24 11 934

We say that a root system R is not connected if R=R, I R, is a
disjoint union of mutually orthogonal root systems R;, R, such that T(R;)
and T'(R,) have relatively prime orders.

If R=R,; IR, is not connected, a metabolizer for T(R) = T(R,)
T(R,) will have the form M = M, H M,, where M, is a metabolizer
for T(R;),i = 1,2 and any lattice L with (complete) root system R will split
as L = L, L,, with L, L, unimodular and with root systems R, R,
respectively. Thus, if R is not connected, it does not qualify as a candidate
root system for an indecomposable unimodular lattice of the same rank.

Sifting the root systems for the purpose of setting up the tables, we retain
only the connected ones. Of course, a decomposable 32-dimensional lattice
which does not involve a ZEg factor can only be the orthogonal sum
of 2 copies of the indecomposable 16-dimensional lattice I';¢ in the notation
of [MH], Lemma 6.1, p. 27. However, the criterion is a handy one to include
in a computer program and it does considerably shorten the lists of candidates.
The number of remaining systems is shown as the last line in the above table.

In order to get some experimental estimate on the relative strengths of the
various conditions we are using, let me display the (otherwise irrelevant) list
of connected systems of admissible deficiencies. (See the table next page.)

Comparing the last lines of the two tables we see that the condition on the
Witt class is fairly stronger than merely requiring the order of T'(R) to be
an integral square. (Of course, if T(R) contains a metabolizer M = M+,
then | T(R) | =|M|*.) A simple example of a root system R with non-zero
Witt class but | T(R) | a square is R =2As H Ay H D, H Dg which is
connected (and has deficiency 8). There are 1302 — 934 = 368 such.
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Deficiency 0 8 12 14 15 16 Total
Connected
root systems 347 | 2154 | 1051 | 425 | 150 25 4152

Connected root
systems with
| T(R) | @ square 347 | 610 | 214 | 79 | 38 | 14 || 1302

The 934 root systems of the bottom row of the first table all possess a
metabolizer. However, a metabolizer M C T(R) will produce a unimodular
lattice L with root system exactly R only if for each non-zero s € M the norm
n(s) is an integer larger than 2:n(s) > 2. (The norm has been defined in
Section 2.) Moreover if L is to be an even lattice, n(s) must in addition be
an even integer. A metabolizer M satisfying n(s) = 0 (mod2) and n(s) > 2
for every s € M, s # 0 will be called admissible.

The norms of the elements of T(A)), T(D,), T(Es), and T (E;) have been
recalled in Section 3:

n(x,) = 5220 for x, € T(A), r=0,1,..., 7,

n(y) =n(y;) =+, n(y)=17fr TMD),
for ze T(Eg¢), 2+ 0,
forze T(Eq),z+0.

Thus, the norm of any element in the discriminant 7(R) of a root
system R can easily be calculated. Of course, in general n(s + s”) # n(s)
+ n(s’)fors,s” € T(R). However,n(s + s") = n(s) + n(s’) holds trueif s, s’
belong to the discriminants 7(R;), T(R,;) of mutually orthogonal root
sub-systems.

Only the weights of admissible elements may occur with non-vanishing
coefficient in the weight enumerator polynomial P,, of a putative
(admissible) metabolizer M.

Before embarking on using the duality theorem, it is possible, in some
favorable cases, to eliminate a root system directly by inspection:

n(z) =

Nlw WA

If M C T(R) is an admissible metabolizer, then for every prime number
p, the p-component M, of M is an admissible metabolizer for the induced
bilinear form on the p-component 7 (R), of T(R). There are cases of root
systems R and suitable choice of p for which it is apparent that no metabolizer
of T(R), is admissible. As an example, suppose that R = A, H As; H R’,
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where the order of T(R’) is prime to 3. Then, T(R); = T(A, H Ajs);
= T(A;) H T(As);s = Z/3Z @ Z/37Z generated by s; = (1,0), s, = (0, 2),
where (1, 0) stands for the projection of x; € (ZA,)* in T(A,) H T(As);
and (0, 2) stands for the projection of x, € (ZAs)#* in T(A,;) H T(As); in
the notations of Section 3. Now, n(s;) =§ and n(s;) = -:-, and for every
s € T(A, H As); one has n(s) < 2.

This argument eliminates the root systems of the form R = X H R’, with
T(R") of order prime to 3 if X is any member of the following (small but
frequently arising) black list:

X=A2E]A5, 2A2E]2A5, 2A2A5E6.

Similarly, R = mA, H nAs HH Ay H R’, with T(R’) of order prime to
3 cannot occur for any m,n = 0.

Indeed, for any putative admissible metabolizer M, one should
have M; C T(mA, H nAs); H 3T(Ag) because any s € M; with 3s # 0
would produce an element s’ = 3s = (0™”,0”, +3) €e M3, s" # 0, of norm
n(s’) = 2, which is inacceptable.

But then M = M;n T(mA, H nAs); would be a metabolizer in
T(mA, H nAs);, and therefore My = M n T(R,) a metabolizer in T(R,),
where Ry, = mA, nAs; R’. (The subgroup M; is obviously self-
orthogonal and it has the right order.) Setting m,: (ZRy)#* = T(R,), the
natural projection, the inverse image L, = 7, '(M,) would be a unimodular
sublattice and hence an orthogonal summand of L.

If no such simple argument is available, the root system is to be tested using
the duality theorem of Section 4.

For a given root system R, the coefficients in P,, of weight monomials
which are not representable by any admissible elements in 7(R) must be 0.
The duality theorem, using M = M+, is then a linear system for the
remaining coefficients of P,, which must be solvable in non-negative integers.
In many cases, this system is not even solvable in rational numbers or if it is,
some coefficients turn out to be negative or fractional. Here, all cases occur.
In most of the remaining cases where the existence of the polynomial is not
prohibited by MacWilliams duality, an admissible metabolizer and hence an
even unimodular lattice can actually be constructed.

Completeness of the lists thus relies on a lengthy elimination procedure,
let alone the heavy use of machine testing, subject to all sorts of failure. It
would certainly be desirable to supply an alternate, perhaps less computa-
tional, approach.
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The above classification program really begins with the root systems of
deficiency 8. For the root systems of deficiency O, there is another, fairly
different method, due to H. Koch and B. Venkov, which we recall in the
next paragraph.

NOTATIONS IN THE TABLES

The notation for root systems R is self-explanatory: If e.g. R = 8A,
8A;, then ZR is the orthogonal direct sum

ZR =Z7ZA, H --- H ZA, H ZA; H --- H ZA;

of 8 copies of ZA; and 8 copies of ZAj;.

In order to describe a unimodular lattice L containing ZR we display a
filling set S, i.e. a set of vectors in (ZR)* which together with ZR
generate L. The terminology is intended to be reminiscent of the similar
notion of a glueing set occuring in the paper of J. Conway and V. Pless [CP].

Let R = R, -+« B R, be the decomposition of R in irreducible
components. The vectors in the filling set S contained in

(ZR)* = (ZR)* B - - B (ZR,)*

are specified by their coordinates in the successive (ZR))#*,i=1,...,r.

Vectors in the filling set are taken with minimal norm in their class
modulo ZR. It is thus easy to read off the norm of an element in S from its
displayed expression in coordinates. If the i-th irreducible component R; of R
is A;,D;,E¢, or E;, the number k£ as the i-th coordinate of a vector
of S stands for the element noted x,(R;) in Section 3.

In order (hopefully) to improve readability, I have separated by a
semi-colon the components of a filling vector belonging to different
multiple root systems. Thus, for instance s = (1;2; 1, 0) in the filling set for
the root system A; & A5 1 2E;, the 16-nth root system with deficiency 8
occuring in the tables, stands for the vector s = x;(A;) + x,(A5)
+ x,(E;) + 0 in (ZA3)* H (ZA5)* H (ZE;)#* H (ZE;)*. Its norm is
204,

After the filling set, the reader will find the weight enumerator polynomial,
sometimes just called the ‘‘polynomial”’ of the metabolizer M = n(L),
where 7 : (ZR)* — T(R). The weights refer to the indicated decomposition
of the root system under discussion, i.e. one variable only for each multiple
factor nR;, where R, is irreducible. Thus, for instance, the term 56x* y2%1in the
polynomial for R = 8A, 8A; means that the metabolizer M contains
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56 vectors with 4 non-zero coordinates among the first 8 corresponding to
T(A{)® and 2 non-zero coordinates among the last 8 corresponding to
T(A3)®%. As an example, we find among these vectors the images in T(R)
of the vectors s4, S5, ¢, 57 of the filling set.

The root systems with a fixed deficiency are listed in alphabetical order.

1. ROOT SYSTEMS WITH DEFICIENCY 0

This case has been treated by H. Koch and B. Venkov. (See [KV], Satz 3.)
If L is an even unimodular lattice of rank 32 with a complete root system of
deficiency 0, then L contains 32 mutually orthogonal vectors of scalar
square 2, i.e. ay, ..., a3 € L such that (a;,a;) = 25;;.

Let N = Za, Za, Za;, and let N* = Za; Zos, be
the dual lattice, where a; = % a;.

Since (x,u) € Z for all xe L, u € N, we have L C N#. The quotient
N#/N is the 32-dimensional vector space F3* with the standard scalar
product (g;,€;) = % §;; (induced by the scalar product on N#), where ¢g;
stands for the image of o; under the projection w: N#* = N#/N.

The image C; = n(L) of the lattice L is then a self-dual code (of
dimension 16) in F3*. Because L is even, it follows that C; is a doubly-even
code (i.e. all code words have a weight divisible by 4).

Now, the doubly-even self-dual codes in F* have been classified by
J. Conway and V. Pless in [CP]. There are 85 of them. Crossing out from this
list the decomposable ones, we arrive at a list of 75 codes, and therefore
75 irreducible even unimodular lattices, corresponding to 62 root systems.

For the details, see [CP] and [KV].

It turns out that all the examples of non-isomorphic even unimodular
32-dimensional lattices with the same complete root system occur in the case
of deficiency O. ’

The reader who wishes to see these examples explicitly must therefore turn
to [CP].

In the following subsections 2 to 6, containing the list of lattices with
non-zero deficiency, each realizable root system uniquely determines the lattice
to which it belongs.

2. ROOT SYSTEMS WITH DEFICIENCY &

There are 29 even unimodular lattices of rank 32 having a complete root
system of deficiency 8. Each lattice is uniquely determined by its root system.
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(1) 8A; H 8A;

A filling set for the corresponding lattice consists of the following 8 vectors

=(0,0,0,0,0,0,0,0; 1,1, 1,1, 1, 1, 1, 1),
ss=(@1,1,0,0,0,0,0,0;0,0,0,0, 1, 1, 1, 1),
s, =(,1,1,0,0,0,0,0;0,0, 1, 1, 1, 1, 0, 0),
s;y=1(0,0,0,1,1,0,0,0;0,1,3,0,0, 1, 3, 0),
s¢=(1,1,1,1,0,0,0,0; 0,0, 0,0, 2, 2, 0, 0),
ss=(0,0,1,1,1,1,0,0; 0, 0,0, 0, 0, 2, 2, 0),
s¢=(0,1,1,0,0,1,1,0; 0, 0, 2, 0, 0, 2, 0, 0),
s;=(0,0,0,0,1,1,1,1;0,0,0,0,0, 0, 2, 2).

The weight enumerator polynomial is

P(x,y) =1+ x3 + 56x*y? + 14y* + 112x2y* + 112x4y*
+ 112x6p4 + 14x8y* + 896x*y5 + 672x2y° + 56x*y°®
+ 672x%y6 + 896x*y7 + 17y% + 112x2y8 + 224x4y8
+ 112x6y8 + 17x8y3,

The (rather delicate) discussion of this root system in presented in Section 7.

(2) 4A1 H 4A5 Ds
Filling set S = <s;, $2, S3, S4, S5, Sg, S7>, where

si=(,0,0,0;3,0,00;1), s,=(0,1,0,

0;0,3,0,0; 1)
S3=(Os O: 13 Os O: 093 O 1) S4_(O’ O, 0519 09 Oa 033’ 1)9
ss=(1,1,1,1; 0, 0, 0, 0; 3), s¢ = (0, 0, 0, 0; 0, 2, 2, 2; 0),
§7 = (O; Os 09 Oa 23 09 23 43 O)
Polynomial

P(x,y,z) =1 + 6x2y* + 8y3 + 24x2y3 4+ 24x2y* + 9x4y* + x4z + 4xyz
+ 4x3yz + 6x2y2z + 36xy37 + 24x2y37 + 36x3y3z
+ 8x%y3z + 9y4z + 32xy4z + 24x2y%z + 32x3y4z.

3) 2A4 H 2A3 2A7 H D1
Filling set

S = <sy, 8, 83, 4>, where

si=(,0;2,0; 0, 0; 1), s;=1(0, 1; 0, 2; 0, 0; 3),
=(0,0; 1, 1; 2, 0; 2), sq=(1,1;0,1;1, 1; 1.
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Polynomial

P(x,y,2,8) = 1 + 2y2z + 4x2y%z + 22 + 4yz®> + 8xyz* + 8xy?z?
+ 4x2y2z%2 + 2xyt + x2y2t + 2x2zt + dxyzt + 4y*zi
+ 8xy?zt + 4xz%t + 8yz*t + 10xyz%t + 12x%yz%t
+ 12y2z%t + 20xy2z2t + 9x2y2z21.

(4) 2A4 2A¢9 i D12
Filling set

S=<(1,0;5 0,1, (0,1;0,5; 1), (1, 0; 0, 55 2),
0, 0; 2, 4; 0)>.
Polynomial

Px,y,2) =1+ 4y? + 5x*y* + x2z + 4xyz + 5y%z + 16xy%7 + 4x%y?z.

(5) A]EA3EBZA7ED7E]E7

Filling set S = <s,, 55, 53>, where

s1=(1;1;1,3;0; 0, s2=(0;1;2,4;1;0),
s;=(1; 0; 0, 4; 0; 1).
Polynomial
P(x,y,z,t,u) = 1 + 22 + 2yz% + 4xpz2 + 6yzt + 272t + 4x72t
+ 4yz*t + 8xyz?t + 2xzu + 4yz2u + 2xyzlu
+ xytu + 4xyztu + 4z%tu + 2xz%tu + 8yz:tu
+ Sxyz*tu.

(6) Aq H As H A1 H Ds H Do

Filling set S = < (1;3;0;2;2), (0;3;0;0;1), (1;0;3;1;0), (0;2;4;0;0) >.
Polynomial

P(x,y,z,t,u) =1+ 2yz + zt + 2xzt + 2yzt + 4xyzt + yu + xzu
+ 2yzu + Sxyzu + xtu + xytu + 2ztu + 13yztu
+ 10xyztu.

(7) A1 H Ay7 H Dy

Filling set § = < (1; 0; 1), (0; 9; 3), (0; 6; 0)>.
Polynomial P(x,y,z) =1+ 2y + xz + 3yz + 5xyz.

®) 8A; H 2Dy
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Filling set S = <sy, 83, $3, 84, S5, S¢ >, Where

Sl - (13 1, 19 1’ 19 1: 1, I; Os O)a SZ = (Os 13 0: Oa 1, 3; 23 1; Os O)’
S3 = (0: 0’ 19 O: 15 03 1 19 1: 0)9 Sq4 = (0, 0’ 09 1, 09 1, 33 33 29 O):
ss=1(0,2,0,0,0,2,0,0;1,1), s=1(0,2,0,0,2,0,0,0; 2, 2).
Polynomial

P(x,y) =1+ 14x* + 16x° + 16x7 + 17x® + 48x*y + 288x°y
+ 48x8y + 12x%y% + 24x*y? + 240x3y?% + 12x%y?
+ 240x7y? + 48x8y2.

€) SA; HH Dy
Filling set S = <s;, S5, S5, S4,85 >, where

s;=(,0,0,0,2,1, 1, 1; 0), s, = (0, 1
S3 = (05 O, 19 13 Oa 29 15 1; 0), Sq4 = (Os 09 ’ ’ )
0,0,0,2,2;3).

Polynomial

P(x,y) =1+ 14x* + 48x° + 48x7 + 17x8 + 4x%y + 24x*y + 112x5y
+ 100x%y + 112x7y + 32x8y.

(10) TA3; H Dy

Filling set S = <s,, 5,5, §3, 54>, where

S = (19 O: 0’ 23 ’ s ’ 0)9 S = (0, 13 09 13 23 39 1; 0)9
=0,0,1,3,3,2,1;0, s=(0,0,0,1,3,1,2;1).

Polynomial

Plx,y) = 1+ 7x* + 42x° + 14x7 + 7x3y + 70x*y + 98x6y + 17x7y.

(11) 6A; H 2D-
Filling set S = <sy, 5,5, 855, 54>, where

= (ls Oa 0, Os 19 13 05 1)3 S2 = (Oa 1; Os 0: la 3; 19 O);
=(0,0,1,0, 1, 2; 1, 1), s¢=1(0,0,0,1, 2, 1; 3, 1.

Polynomial

P(x,y) =1+ 3x* + 12x5 + 24x3y + 12x%y + 48x5y + 12x6y
+ 3x?y? 4+ 24x3y2 + 48x4y? + 36x°y? + 33x6y2,
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(12) 4A; H 4D
Filling set S = <s, $2, §3, §4>, where
S = (19 1a 13 19 29 Os Os 0)3 &g = (1, la Os O, 13 ls O, O)y
s3=1(0,1,3,0;0, 1, 1, 0), s¢=1(0,0,3,1;0,0, 1, 1).

Polynomial

P(x,y) =1+ x*+ 8x% + 36x2y2 + 24x*y? + 96x3y3 + 8x4y3 + p*
+ 8xy* + 24x%y* + 8x3y* + 41x4y“.

(13) 2A; 2A7 H 2Dg
Filling set
S=<(,0;1,1;1,0), (1,1;2,0;2,0), (2,0;0,0; 1, 1), (0,2;0,0; 3,3)>.

Polynomial

P(x,y,2) =1+ 2x%y + y2 + 4xy? + 8x2yz + 16xy2%z + 24x%y?z
+ 2x7% + X2z 4+ 2yz% + 4xyz? + 8x%yz? + 4y?z?
+ 22xy2z% + 29x2y?z2.

(14) A3z H As H A11 H Dg E~
Filling set S = <sp, S1, S2, S3>, Where
so = (1; 3; 3; 0; 1), st =1(2;3;0; 1; 0),
s, =1(0;0; 6;3;1), s3=1(0;2;4;0;0).

Polynomial

Px,y,z,t,u) =1+ xz + 2yz + 2xyz + xyt + 2xzt + 3yzt + 12xyzt
+ 6xyzu + xtu + ytu + ztu + 2xztu + 4yztu
+ 9xyztu.

(15) A3 H A1 H Dia Es¢
Filling set
S=<(;3;2;0), (0; 6; 1; 0), (0; 4, 0; 1)>.

Polynomial

P(x,y,z,) =1 + xy + xz + yz + 4xyz + 2yt + 2xyt + 2yzt
+ 10xyzt.
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(16) Az B Ais H 2E~

Filling set S = <(1; 2; 1, 0), (2; 0; 1, 1) >.
Weight polynomial

Px,y,2) =1+ y+2xy + 8xyz + xz? + 2yz* + xyz2.

(17) 4A5 BH 2Dg
Filling set S = < S,, S3>, where

S, = <(3,0,0,0;1,2), (0,3,0,0;3,2), (0,0,3,0;2,1), (0,0,0,3;2,3)>,
S; = <(0,2,2,2;0,0), (2,0,2,4;0,0)>.

Polynomial

P(x,y) =1+ 8x3 4+ 2x2y + 20x3y + 32x%y + 4xy? + 4x2y?
+ 40x3y2 + 33x4y2,

(18) 4A; H D12
Filling set S = < S,, S;>, where

§$,=<@G,3,3,3;0,3,3,0,0; 1), (0, 3, 3, 0; 2) >
Sy =<0, 2, 2, 2;0), (2,0, 2, 4; 0)>.
Polynomial

Plx,y) =1+ 8x3 + 9x* + 6x2y + 24x3y + 24x%y.

(19) RY. Dy Es H EA
Filling set S = <s4, 53, §3, S4, Ss>, Where
SI_(Os 39 3; 150; O)s 52:(35 0’ 3; 2'; 0; O)s
53=103,3,3;0;0; 1), s,=(2,2,0;0;1;0),

Polynomial

P(x,y,z,8) = 1 + 2x3 4+ 3x2y + 6x3y + 6x%z + 6x2yz + 12x3yz
+ 3x% + 3xyt + 6x3yt + 6x3z¢ + 12x2yzt + 6x3yzt.

(20) 2A5 H Dqg H 2Eg
Filling set

§=<3,0;1;0,0), (0,3;3;0,0), 2,2;0;1,0), (2,4;0;0, 1)>.
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Polynomial

P(x,y,2) =1 + 2xy + x%y + 4x2z + 12x%yz + 4x7% + 4xy7?
+ 8x2yz2.
21 As H A H Dy H EA
Filling set

§=<0;3;1; 1), B;6;0;1), 2;4;0;0)>.
Polynomial

Px,y,z,t) =1 + 2xy + yz + 8xyz + 3xyt + xzt + 2yzt + 6xyzt.

(22) 2A7 H 2Ds H Dg

Filling set S = < (1, 1; 1, 0; 2), (2, 0; 1, 1; 0), (0, 0; 2, 2; 1)>.
Polynomial

Plx,y,2) =1 + x2 + 4x%2y + 6xy? + 4x2y2 + 2x7 + 20x2%yz + y?z
+ 4xy?z + 21x%y2z.
(23) ‘ 2A4 H Ds B D3
Filling set S = <, 3;1;0), (2, 0; 1, 1)>.
Polynomial P(x,y,z) = 1 + x2 + 6x%y + 6x%z + 6xyz + 12x2%yz.
(24) 2A7 H 2Dy
Filling set S = < (1, 1; 1, 0), (2, 05 1, 1)>.
Polynomial P(x,y) = 1 + x% + 12x%y + 6xy? + 12x2y2.
(25) 2A9 HH D14
Filling set S = < (5, 0; 1), (0, 5; 3), (2, 4; 0)>.
Polynomial P(x,y) = 1 + 4x? + 2xy + 13x?y.
(26) 2A9 2E~

Filling set S = < (5, 0; 1, 0), (0, 5; 0, 1), (2, 4; 0, 0) >.
Weight polynomial P(x,y) = 1 + 4x? + 2xy + 8x%y + S5x?y2.

(27) A B Dis H Eg

Filling set S = <((3; 1; 0), (4; 0; 1)>.
Polynomial P(x,y,z) =1 + 3xy + 2xz + 6xyz.
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(28) As H Ds H Dq2

Filling set S = < (2; 1; 1), (0; 2; 3)>.

Polynomial P(x,y,z) = 1 + x + 2xy + 2xz2 + yz2 + 9xyz.
(29) As H Dry

Filling set S = < (2; 1) >.
Polynomial P(x,y) =1+ x + 6xy.

3. ROOT SYSTEMS WITH DEFICIENCY 12

There are 10 root systems of rank 32 and deficiency 12 appearing as the
root system of a (unique) even unimodular lattice of rank 32.

(1) 4A; H 4A4
The filling set S = <sy, 52, S3, 4> 1S given by
Sy = (13 O: 0) Oa 1’ 1: 1; l)a Sy = (1’ 1’ 03 O, 29 2: Os 0)9
sy=(0,1,1, 0; 0, 2, 6, 0), ss=(1,1,1,1; 0, 0, 0, 4).

The weight enumerator polynomial of the corresponding metabolizer reads

P(x,y) =1+ 4x*y + 6y2 + 24x2y? + 48x2y3 + 4x*y3 + 9y* + 64xy*
+ 24x2y4 + 64x3y* + 8x4y4.
(2) 4A, 4As5 Dy
Filling set S = <sy, 5, §5> X <54, Ss, S¢, 57>, where

s1=1(0,0,0,0;3, 3,3,3;0), s,=(0,0, 0, 0; 3, 3,0, 0; 1),
S3 = (O) O, Oa O; Os 33 39 O; 2)3

s« =1, 1, 1, 1;2,0,0,0;0),
ss=(1, -1, 1, —1;0, 2,0, 0; 0),
se=(1, 1, -1, —=1;0,0, 2, 0; 0),
s;=(1, -1, =1, 1;0,0,0, 2; 0).

Weight enumerator polynomial

P(x,»,2) =1+ 8x*y + 24x2y2 + 32x3p3 + y* + 16xy* + 24x2p*
+ 32x%y* + 24x4y* + 6y2z + 24x2y27 + 24x4y2g
+ 96x2y3z + 96x3y3z + 24x4y3z + 48xyiz + 24x2y4z
+ 96x3y4z + 48x4yz.
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3) 4A, H 4E

Filling set S = <s;, $,, §3, S4>, where
s1=(01,0,0,0;1, 1, 1, 1),
s =1(0,1,0,0;1, -1, 1, —1),
s3=1(0,0,1,0;1, 1,-1,-1),
s =(0,0,0,1;1, -1, —1, 1).
Weight enumerator polynomial

P(x,y) =1+ 8x%y + 24x?y? + 32x3y3 + 8xy* + 8x4y*.

4) 2A, H 2A11 H Dg
Filling set

§$=<(0,0;3,3;1, (0,0;6,0;2), (1, 1, 4, 0; 0), (1, 2; 0, 4; 0)>.

Polynomial

P(x,y,z) =1+ 4x%y + y* + 8xy? + 4x2y? + 2yz + 4x%yz + 4y?*z
+ 24xy?z + 20x%y?z.

&) A H Ay B A14 H EA

Filling set S = < (1; 0; 5; 0), (0; 2; 3; 0), (0; 5;0; 1)>. .
Weight polynomial

P(x,y,z,t) =1+ 2xz + 4yz + 8xyz + yt + 4yzt + 10xyzt.

(6) A, H Az H E;

Filling set S = <(1; 8; 0), (0; 6; 1) >.
Weight enumerator polynomial

P(x,y,2) =1+ y+4xy + 2yz + 4xyz.

(7) 6A3 H 2A4
Filling set S = <s;, S2, S3, S4>, where
si=@2,1,1,1,1, 0; 0, 0), s;=01,2,1,3,0,1; 0, 0),
S3 = (1: 13 la 09 Os Oa 1’ 1)3 S4 = (0’ 2, 1, la 0, O; 23 O)

Weight enumerator polynomial

P(x,y) = 1+ 3x* + 12x° + 6x2y + 24x3y + 48x%y + 18xSy + y?
+ 72x3p? + 123x%y? + 132x°y2 + 72x°y2,
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Filling set
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S=<(0,0;5,0;1), 0,0;0,5;3), (1,0;2,2;0), 0,1;2,8;0>.

Polynomial

P(x,y,2) =1 + 8x2y + 8xy? + 8x?y? + 2yz + 8x*yz + iz

)

+ 24xy?z + 40x%y2z.

A4 i____H A19 El D9

Filling set S = < (0; 5; 1), (1; 4; 0)>.
Polynomial P(x,y,z) =1 + 4xy + 3yz + 12xyz.

(10)

As H A7 H Es

Filling set S = < (4; 2; 0), (0; 9; 1) >.

Weight polynomial P(x,y,z) =1+ 8xy + yz + 8xyz.

4. ROOT SYSTEMS OF DEFICIENCY 14

There are 5 root systems with deficiency 14 which appear as a complete
root system in an even unimodular lattice of rank 32. There is only one lattice
for each realizable root system.

(1)
Filling set

2A, H 2A55

S=<(1,0;2,2), (1, 1; 4,

The weight enumerator polynomial is

0) >.

P(x,y) =1+ 2y + 4x%y + 5y + 16xy2 + 4x2y2,

(2)

A filling set S = <sy, $3, S3, S4, S5, S¢> is as follows

10A, H 2E,
si=(,1,1,1,1,1, 1, 1, 1,
s:=(1,1,0,1,1,2,2,2,2,
s5=0(1,2,1,2,0,1, 1, 2, 2,
sa=(,1,2,2,1,1,0,2, 1,
ss=(,1,1,1,0,0,0,0, 0,
s¢=1(0,0,1,2,2,1,0,0, 0,

1; 0, 0),
1; 0, 0),
1; 0, 0),
2; 0, 0),
0; 1, 0),
0; 0, 1).
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The weight enumerator of the corresponding metabolizer is

P(x,y) =1+ 60x% + 20x° + 60x*y + 240x7y + 24x'0y
+ 144x3y? + 180x8y2.

See the following Section 7 for the relationship of this root system with
conference matrices.

(3) 2A, H 2A3 2A11
Filling set
S=<(0,0;1,2;3,0), (0,0;2,1;0,3), (1,1;0,0;4,0), (1,2;0,0;0,4) >.

Polynomial

P(x,y,z) =1+ 4x2z + 2yz + 4x?yz + 4y?z + 8x%y2z + 4x7? + 4yz?
+ 24xyz? + 20x%yz? + 5y2%z% + 36xy2z2 + 28x%y?z>.
4) 2A5 H 2A11
Filling set
S=<(@3,0;3,3), (3,3;6,0), (2,0; 4,0), (0,2;0,4>.

Polynomial

P(x,y) =1+ 4xy + 6x%y + y2 + 16xy? + 44x2y2.

(5) A1 H A5 H Eg

Filling set S = <(3; 2; 0), (4; 0; 1) >.

Polynomial P(x,y,z) =1+ y + 6xy + 2xz + l4xyz.
5. ROOT SYSTEMS OF DEFICIENCY 15

There are 8 root systems of deficiency 15 which occur as the complete root
system of an even unimodular lattice of rank 32. Each lattice is uniquely
determined by its root system.

(1) A1 H 3Ag A3
Filling set
S=<(1;0,0,0;7), (0; 1, 2,3;0), (0; 2,6, 0;2)>.

Polynomial

P(x,y,2) =1 + 6y% + xz + 18y%z + 18xy2z + 24y3z + 30xy3z.



the given filling set is uniquely determined by the polynomial.

2)

3)

(4)
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Here again, the polynomial is the only candidate satisfying duality. In turn,

A1 Al() A21
Filling set S = < (1; 0; 11), (0; 1; 8)>.

Polynomial P(x, y,z) = 1 + xz + 10yz + 10xyz.

Al H Azq

Filling set S = < (1; 4)>.
Polynomial P(x,y) =1+ 3y + 4x).

b 1)
)
)

b

=)

=

-

b

; 0)
; 0)

-

13A, Es
Filling set S = <sg, Si, S2, S3, S4, Ss, S¢> as follows
50:(19 15 13 15 19 19 19 19 1: 19
s;=2,0,1,0,2,1, 2,1, 0,0,
S2 (Os 29 Oa 19 Oa 2, 13 25 1: Os
s5=(0,0,2,0,1,0,2, 1,2, 1,
S4 = (0’ 03 O) 23 Os 15 Os 29 19 23
S5 = (03 Oa 0, 09 29 Os 15 09 23 13
Se = (O, 03 Os 09 09 23 Oa 19 Oa 29

The weight enumerator is

P(x,y) =1+ 156x6 + 494x° + 78x!2 + 26x*y + 624x7y

+ 780x1%p + 28x13y.

1 1
0 0
0 0
0, 0, 0; 0)
1 0
2 0
1 1

; 0)

b

5
3
b
b
’
.

Note that M, = M n T(13A,), where M is the metabolizer generated
by S in T(13A, H Eg), is the cyclic code in F3[x]/(x'3 — 1) generated by

gx)=x"—x0+ x> —x*+ x> -1
=x-1D+x2-Dx3—-x2-x-1),
with roots o*,a’,ad, ol o!!, a!?, a!’®* =1, where o

X-X-1 inF27.
(5)
Filling set

§=<(0;3;0;9), (1; 4; 1; 4, (1;2; 3; 0)>.

Polynomial

AzAsE]AsEAy]

18

a root of

P(x,y,z,1) = 1 + 2xyz + yt + 4xyt + 22t + 6xzt + 14yzt + 24xyzt.
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Here, in order to prove uniqueness, one should first observe that the weight
enumerator of the metabolizer is uniquely determined by the duality theorem
of Section 4. It is then easy to see that the above filling set is the only
possible one.

(6) A, 3Ag H Eg
Filling set
S=<(0;1,1,1; 1), (1;3,0,0; 1), (1;0, 3, 0; 1)>.

Weight enumerator

P(x,y,2) =1+ 6y%+ 2y3 + 18xy? + 6xyz + 6xy2z + 18y3z
+ 24xy3z.

For the proof of uniqueness, one first observes that the above polynomial
is the only one compatible with the requirement of duality. Then, the only
6 candidates for the weight xyz are +(1;3,0,0;1), =£(1;0,3,0;1) and
+(1;0,0,3;1).

The vector (0;1,1,1;1) is then uniquely determined, up to obvious
automorphisms, by the requirement of compatibility with the other 3 vectors.

(7) A¢ H Ay B Eg
Filling set S = <(0; 7; 1), (2; 3; 0) >.
Polynomial P(x,y,2) =1+ 6xy + 2yz + 12xyz.

(8) Ass H Eg

Filling set S = <(3; 1) >.
Weight enumerator P(x,y) =1 + 2x + 6xy.

6. ROOT SYSTEMS OF DEFICIENCY 16

There are 5 root systems of deficiency 16 occuring as the root system of
even unimodular lattices of rank 32. Each of these lattices is determined by
its root system.

(1) 16 A,
The system of filling vectors can be taken as the rows of an 8 X 16 matrix

S=U,H),
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where I is the 8 x 8 identity matrix and H is the Hadamard matrix

1 1 1 1 1 1 1
-1 1 -1 1-1 1+-1
1 -1 -1 1 1-1-1
-1 -1 1 1 -1-1 1
1 1 1 -1 -1-1-1
-1 1 -1-1 1-1 1
1 -1-1-1-1 1 1
-1 -1 1 -1 1 1-1

) S G U T e S S

The weight enumerator is
P(x) =1 + 224x% + 2720x° + 3360x!? + 256x'5.

The uniqueness of the lattice with this root system follows from the
classification of self-dual codes in F;® due to J. Conway, V. Pless and
N. Sloane in [CPS].

(2) 2A; H 2Aq4

Filling set S = < (1, 0; 5, 0), (0, 1; 0, 5), (0, 0; 3, 6) >.
Weight enumerator P(x,y) = 1 + 4xy + 4y? + 16xy2 + 20x2y2.

3) 8A4

Filling set S = <s, s, 53, 54>, where s, s,, 53, S, can be taken to be
the rows of the matrix

1 0 0 0 1 1 1 1
o 1 0 0 1-1 1-1
0o 0 1 0 1 1-1-1
o 0 0 1 1-1-1 1

The weight enumerator is

P(x) =1+ 48x* + 32x° + 288x6 + 128x7 + 128x%.

For the proof of uniqueness, see the comments in the next section.
4) 4A3

Filling set S = < (1, 1, 4, 0), (1, —1, 0, 4) >.

Weight enumerator P(x) = 1 + 32x3 + 48x4.
(5) 2A16

Filling set S = < (1, 4) >.
Weight enumerator P(x) = 1 + 16x2.
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