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14 P. BORWEIN AND C. INGALLS

PROPOSITION 8. For symmetric solutions we have
19|r7, 19"‘11, 17‘19|r13

Proof. This is a result of performing the calculation mod p and observing
that C, = 0 mod p. [

It is interesting to observe that an ideal solution in its third form has a large
factor

IT a —x»i).

This follows from Propositions 6 and 7. Hence the degree of this polynomial
grows at least like n2/(2 log n).

4. RELATED PROBLEMS

There are several related problems. We mention two.

4.1. THE ‘EASIER’ WARING PROBLEM

In [21] Wright stated, and probably misnamed, the following variation of
the well known Waring problem. The problem is to find the least s so that for
all n there are natural numbers {a,, ..., a,;} so that

+of+ - xa=n

for some choice of signs. We denote the least such s by v(k). Recall that the
usual Waring problem requires al positive signs. For arbitrary k the best known
bounds for v(k) derive from the bounds for the usual Waring problem. So to
date, the ‘““easier” Waring problem is not easier than the Waring problem.
However, the best bounds for small £ are derived in an elementary manner
from solutions to the Prouhet-Tarry-Escott problem.

Suppose {aj, ..., an}kéz{ﬁl, ...; Bn}. We see that

f: (x + a)k - Zn: (x+B)*¥=Cx+ D

i=1 1=1

where

C=k(Lat - L0

=1 i=1

and
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We define A (k, C) to be the smallest s such that every residue mod C
is represented by s positive and negative k" powers. We also define
A (k) = maxcA (k, C). Wright shows how to calculate A (k, C) and A(k)
in [9].

LEMMA 4. If

n

(x+a) — Y (x+B)*=Cx+D

1 i=1

=

then
v(k) <2n+ A(k,C) <2n+ A(k) .

Proof. This follows directly from the above definitions. [

PROPOSITION 9.

log; (k)
u(k)gzM(k—z)+A(k)<2(k—1)( — + 1
log(l +m)

1Bk—-1) k odd
+
2k k even .
Proof. This follows from the fact that

2@Bk—-1) k odd

A(k) <
2k k even

which is established in [22], and Lemma 4, and Hua’s bound for M (k) in [11].

Note that we must use M (k) and not N (k) since we require exact solutions
so that C # 0. [

The best bounds for small k are derived from the above lemma using
specific solutions of the Prouhet-Tarry-Escott problem and careful compu-

tation of A (k, C). In the following table we represent solutions as in the third
form of the problem, and we define

k
(1, ...,0] 1= H (1 — xm)

i=1
g:=1—-x+x+ x> — x* + x10 4+ x27 4+ x17 — x26 — x23 4 x22 4 x4
h::x+x25 +x31 +x84+x87 +x134+X158+x182+x198
_x2_x18__x42_x66_x113_xll6_x169_x175__x199
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k bound for v(k) solution

7 14 [1,1,2, 3,4, 5]

8 30 [3,5,7,11,13,17,19] - ¢

9 29 [1,2,3,5,7,8, 11, 13]

10 30 h

11 28 [1,2,3,4,5,7,9, 11, 13, 17]

12 37 [1,2,3,5,7,8,9, 11, 13, 17, 19]

13 39 [1,2,3,5,6,7,8,9,11,13,17, 19]

14 53 [1,2,3,4,5,6,7,8,9,11, 13,17, 19]

15 69 [1,2,3,4,5,6,7,8,9,11, 13, 15, 17, 19]

16 92 [1,2,3,4,5,6,7,9, 10, 11, 13, 15, 16, 17, 19]

17 14 1,1,2,3,4,5,6,7,7,8,9,10, 11, 13, 17, 19]

18 86 [1,2,3,4,5,6,7,9, 10, 11, 13, 14, 16, 17, 19, 23, 29]
19 88 [1,2,3,4,5,6,7,8,9,10, 11,13, 14, 16, 17, 19, 22, 23]
20 120 [1,2,3,4,5,6,7,8,9,10, 11, 13, 15, 17, 19, 21, 23, 25, 29]

This table is from [9] and [24] as are most of the results of this section.
Some of the bounds are improved by using Wright’s calculation of A (k) and
our solutions of smaller size.

4.2. A PROBLEM OF ERDOS AND SZEKERES

We call a solution {a,, ..., a,}, {B:, ..., B.} of the Prouhet-Tarry-Escott
problem a pure product if

n

n k
Z Z% — Z zBi = H (1 —zm)

i=1 i=1 =1

for some mn,;,...,n,. Note that pure products are obtained from ideal
solutions of degree zero by applying Lemma 2 repeatedly. These are a very
restricted class of solutions of the Prouhet-Tarry-Escott Problem.

PRroOPOSITION 10. If

n

k
Z% — Z 7Bi = H (1 —zm)
1

1 i= i=1

IIM:,

i

then {o;}, {B:} is equivalent to a symmetric solution of degree k and
size n.
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Proof. Note that symmetry in the third form of the problem requires

F@)= ¥ zu— Y 2= (~ DEf(1/2)

i=1 i=1

The appropriate equivalent solution can be shown to satisfy this con-

dition. [

o, z!, where n = deg f, we define the

For f(z) = II{_, (1 —z") = L]_,

norms

171 = Xl

1/2
( § (e,-e)zde)

|/l = su lf(z)l

I71- (3 )

i=0

N

We observe that | £, is twice the size of the solution {a;}, {B;} of the

Prouhet-Tarry-Escott problem.

LEMMA 5.

Va'e'_g% <Irl<lfle<lfl <IfI2.

Proof. This is all easily established. It all follows from well known
inequalities and the fact that the coefficients of f are integers. [

In 1958 [8] Erdds and Szekeres formulated the problem of finding

H (1—zm)

i=1

A(k) = min

Ny, euny ke

They have conjectured that A (k) > k¢ for any C. There has been very little
progress in this pretty old problem. Though an interesting and possibly related

problem is solved in [2]. See Section 6.
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We can use pure product solutions of the Prouhet-Tarry-Escott problem
to find upper bounds for A (k). These are not good general bounds, but we
do find good upper bounds for small values of k using specific solutions. The
following table was derived using various greedy algorithms to find the {#;}.

ksl
1 2
2 4
3 6
4 8
5 10
6 12
7 16
8 16
9 20
10 24
11 28
12 36
13 48
14 56
15 60
16 60
17 68
18 84
19 100
20 116
21 130
22 140
23 156
24 204
25 188
26 228
27 276
28 336
29 392
30 432

{n{,...,ng}

{1}

{1,2}

{1, 2, 3}

{1,2,3,4}

{1,2,3,5,7}

{1,1,2,3,4,5}

{1,2,3,4,5,7, 11}

{1,2,3,5,7,8,11, 13}

{1,2,3,4,5,7,9,11, 13}

{1,2,3,4,5,7,9,11, 13,17}
{1,2,3,5,7,8,9,11, 13,17, 19}

{1,...,9,11, 13,17}

{1,...,9,11, 13,17, 19}

{1,...,7,9,10,11, 13, 15, 16, 17}
{1,...,7,9, 10,11, 13, 15, 16, 17, 19}
{1,...,11,13,15,17, 19, 23}
{1,...,7,9,10, 11, 13, 14, 16, 17, 19, 23, 29}

{1,...,11,13, 14, 16, 17, 19, 22, 23}

{1,...,11, 13, 15, 17, 19, 21, 23, 25, 29}

(1, ..., 11,13, 15, 17,19, 21, 23, 25, 27, 31}
{1,...,11,13,15,17, 19, 21, 23, 25, 27, 29, 31}
{1,...,9,11,13,15,17,19, 21, 23, 25, 27, 29, 31, 33, 37}
{1,...,11,13,15,17,19, 21, 23, 25, 27, 29, 31, 33, 37}
{1,...,7,9,10,11,13,15, 16,17, 19,21, 23, 25, 27, 29, 31, 33, 35, 37}
{1,...,11,13,15,17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41}
{1,...,11,13,15,17,19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,41}
{1,...,13,15,17,19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41}
{1,...,13,15,17,18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41}
(1,1,2,2, ..., 27}

(1,1,1,2, ..., 28}




k
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60

80

|1
1900

1348
1936
2396
2492
2684
2336
3196
4080
4086
5088
5480

5296
6000

7352
5044
7536

7156
6268
7572
10848
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{ni, ..., ng}

{1,2,2,.n,17,19,.”,29,31,.n,37,43,47,49,49}
{1,2,2,.”,17,19,.n,29,31,.“,38,40,43,49,53}
{1,2,2,.“,17,19,.n,29,3l,.“,38,40,43,47,52,53}
{1,2,2,.“,17,19,.”,29,31,.“,38,40,43,46,52,53,60}
{1,2,2,.“,29,31,.“,38,40,43,46,52,53,60}
{1,2,2,.”,29,31,...,38,40,43,44,46,52,53,60}
{1,2,2,.”,29,31,...,38,40,43,44,46,48,52,53,60}
{1,2,2,.“,29,31,.”,38,40,40,43,44,46,48,52,53,60}
{1,2,2,...,29,31, ..., 38, 40, 40, 43, 44, 46, 48, 50, 52, 53, 60}
{1,2,2,...,29, 31, ..., 38, 40, 40, 43, 44, 46, 48, 50, 52, 53, 55, 60}
{1,2,2,.”,29,31,.”,38,40,40,43,44,46,48,49,50,52,53,55,60}
{1,2,2,.“,29,31,.“,38,40,40,43,44,46,48,49,50,52,53,55,
56, 60}
{1,.“,11,13,16,17,24,52,.“,56,.“,58,80,82,83,84,86,88,89,
92, 95,100}
{1,.”,11,13,16,17,24,52,53,54,56,58,.“,80,82,83,84,86,88,
89, 90, 92, 95, 100, 142}
{1,1,2,2,.”,29,31,...,38,40,42,43,44,46,48,.”,53,55,56,60}
1,1,2,2,...,29,31, ..., 38, 40, 42, 43, 44, 46, ..., 56, 60} |
{1,1,...,11,13,16, 17, 24, 52, 53, 54, 56, 58, ..., 80, 82, ..., 92,

95, 100}

(1,1,...,11,13, 16, 17, 24, 52, ..., 56, 58, ..., 80, 82, ..., 92,95, 100}
{1,1,2,2,...,29,31,...,38,41, ...,44, 46, ..., 60}

{1,1,...,11,13, ..., 17,24, 52, ..., 52, 58, ..., 80, 82, ..., 92,95, 100}
{1,1,...,11,13,...,17,24,52, ..., 56, 58, ..., 80, 82, ..., 92, 95,
100, 100}

1629900 {1,...,73,90,...,95,97}
100 41947220 {1, ..., 89,107, ..., 117}

For k = 1,2,3,4, 5, 6, and 8 these products are ideal solutions and therefore
also optimal. These may well be the only k£ for which pure products give ideal
solutions. We computed extensively on degree 6 (k = 7) and could not find a
degree 6 product with || f|; = 14. Since || f ||, is always an even integer we
therefore conjecture that the minimum attainable is 16 (as above). For larger
k there is no reason to believe that we have found minimal examples. This table
also provides some good bounds for N(k). For example N(29) < 216 which
is much better than the bound of 419 that derives from the discussion following
Proposition 3. There are many partial results on the Erdds-Szekeres problem
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to be found in [8], [1], [6], [14], [3], [20], [2], [16] and [13]. We give one such
new result here.

We now construct an easy example to show that we cannot in general expect
exponential growth of the norms of the partial products of [[;"_, (1 — z) on
the unit disk. From this point on, | f | without a subscript will denote || f | .

LEMMA 6. Let 1 <P, <By<... and let

W.z)= [ (Q-2zki8)

1<i<jgn

then

n

| w2 < n2.
Proof. We can explicitly evaluate the Vandermonde determinant

1 zB .o z-DB

Ii<j<n 1 ZBn o Z(H”I)Bn

and by Hadamard’s inequality, since each entry of the matrix has modulus at
most one in the unit disk,

| D | < nn2.
Thus
H (1 — zBi—Bi) n = H (2B — zB) ‘ < n"?, ]
1<i<j<n 1<i<j<n

Observe, as Dobrowolski did in [6], that if we take B; = i, we deduce that

fI (1 _Zi)n—i—l “ < nn/Z ,

i=1

a result originally obtained by Atkinson in [1].

PROPOSITION 11. Let PB; be the sequence formed by taking the set
{27 —2m:n>m > 0} in increasing order. Then for all n,

I TT a-2z8 ] < G2m)V™ .
i=1
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Proof. Note that 27" —2m > 27 if n>m and that 27 — 2" = 2"
— 2m2 if and only if (n;,m,) = (n,, my). So whenever n =——k(k2_” for
some k we have

While if “-1 < < $£DK then

n
)| <
i=1
k(k - 1)

_— s i -
< ]/znl/n/Zzn 2 g Vznlﬁzk*l

<V2nV"22Vm = @2n)/E O

fI (1 — zP7)
I=1

H (22" =227 ‘ < k*2 L Vﬂ‘l/n/Z )

1€i<jgk

(ZZJ L _ 2' 1) “ (1 — ZBi)
‘ k(k—l)
2

+1

This is not as good an estimate as Odlyzko’s in [16] (see also [13]) which
has exponent roughly n!/3. What distinguishes it is that it holds for all the
partial products of a single infinite product (with distinct increasing
exponents). Also, clearly any o > 2 could play the role of 2 in the construction
of the B; with the exact same conclusion.

THEOREM 1. Let {8;} be any sequence of integers and let {B;} be the
sequence of differences in the following order

{61 - 60962 - 80:'62 - 613 ceey 6)1 - 603 -“96n - 8n~—1a }
then

JICEELD) ” < (2m)"

5. PERFECT SOLUTIONS OF PRIME SIZE

The first unresolved case of the Prouhet-Tarry-Escott problem is the eleven
case. The previous ideal solutions were all found without computer assistance;
indeed the cases 1, ..., 10 were all resolved prior to 1950. It therefore seems
appropriate to discuss an algorithm for searching for such solutions. We
wish to perform a computer search for perfect symmetric ideal solutions
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