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144 D. B. A. EPSTEIN AND C. PETRONIO

as a result of face-pairings which are also in (Rg, Ag). Thus the strong form
of local finiteness (see 3.31) is satisfied by (%, R, A).

The composition of D;:Z(%#, R, A) — X" with the obvious map from
Z(Z?5,Rg, Ag) to Z(Z, R, A) can be identified with the developing map
Z(Zg,Rg,Ar) > S"~! by a change of scale in the range. By induction,
this developing map is an isometry. Therefore the obvious map of
Z(Zg,Rg,Ag) to Z(%, R, A) is injective and the image of Z(#r, Ry, AE) is
mapped injectively by D,. It follows easily that a neighbourhood of z in
Z(#,R,A) is the cone on S”-!, which is mapped isometrically to X~
by D,. [

The main part of the induction step for Theorem 4.14 will be proved in
Section 5. At this point, we prove only a small part of this result.

LEMMA 4.15 (locally finite). LocallyFinite(%’, R, A) follows from the
hypotheses of Theorem 4.14 and the inductive hypothesis that Theorem 4.14
is true in dimensions less than n.

Proof of 4.14. In the proof of Theorem 4.13 we used Locally-
Finite(Z, R, A) in order to show that the link of z is embedded in Z(Z, R, A)
and that the local picture is as we expect. Here we are trying to prove
LocallyFinite(#, R, A), so the argument needs to be modified. Note that
Metric(#), which we are now assuming, implies SecondMetric(%?), which in
turn implies Metric(Zg).

The version of Theorem 4.14 for S”-! is already known inductively, and
so we know that Z(%g, Rg, Ag) = S"~1. We deduce that the tessellation of
Z (7%, Rg, Ar) is finite. This means that we have proved the strong form of
LocallyFinite(%, R, A) (see 3.31). [

5. DEFINING A METRIC

If Pairing(%, R, A) and Connected(Z, R), we obtain the connected
quotient space Q = Q(Z, R, A) defined in Remark 3.6. We can define a
“metric”” on Q in the obvious way: Given two points z; and z, in Q, we join
them with a special kind of path in Q. The path is divided into a finite number
of subpaths, and each subpath is the image of a rectifiable path in some P € #.
The distance between z; and z, is defined as the infimum over all such paths
of the sum of the lengths of the subpaths. We get the same infimum if we
restrict to subpaths starting and ending in the interior of a codimension-one
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face; furthermore we may insist that each subpath is a geodesic. (Of course,
an exception may have to be made for z; and z, themselves.) The proof of
this is left to the reader — it uses the fact that if two points | |, . »P are
identified, there is a finite sequence of face-pairings connecting them. The
axioms for a metric space are easy to verify, except for the condition that
d(z,,z;) = 0 implies that z, = z,. Unfortunately, this condition is not
always true even if Cyclic(Z, R, A), as the following example shows.

EXAMPLE 5.1 (only a pseudometric). This example is a variant of
Example 3.30. The example will arise from a decomposition of a certain open
subset U of R? into regions. We define U = {(x, y,2) | — 2 < x < z} (which
implies in particular that z > 0). The boundary of U is the union of two
half-planes of slope # 1, each containing the y-axis x = z = 0.

We now explain how to cut U into smaller regions. First we use a countable
family of planes, each containing the y-axis, with slopes 1 + 1/m and
— 1 — 1/m, where m can be any positive integer. We also use the set of spheres
in R3, lying above and tangent to the plane z = 0 at 0, with radii equal either
to n or to 1/n, for some positive integer n. This cuts upper half-space into
an infinite number of pieces, parametrized by m and n. A single piece is
bounded by (parts of) two half-planes, each with boundary the y-axis, and -
parts of two spheres, each tangent to the plane z = 0 at 0. The piece is closed,
and contains 0.

As in the case of Example 3.30, the pieces described are not convex.
However, the spherical surfaces can be approximated by finite unions
of planar polygons, and then each region can be broken up into a finite
union of convex polyhedra. So we have a qualitative description of a
family 27 of convex polyhedra in E3, together with face-pairings. We have
Pairing(#, R, A), Connected(#’, R) and Cyclic(#, R, A). However, the
point 0 gives rise to two distinct points in Q(#, R, A), and these points
are zero distance apart. In fact Q(Z, R, A) is not even hausdorff. Also
Z(#,R,A) = Q(#, R, A) in this particular case.

A very similar example could have been described in dimension two, but
then it would not have been possible to satisfy Cyclic(Z, R, A).

LEMMA 5.2 (metrizable). Suppose Pairing(#, R, A), Connected(%, R),
Cyclic(#, R, A) and LocallyFinite(#, R, A). Then Q = Q(Z, R, A) isa
metric space, with the metric defined as at the beginning of this section. Also
Z=Z(#R,A) has a metric defined in a similar way, and Z with this
metric is locally isometric to X". The topologies defined by these metrics
are the appropriate quotient topologies.
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Proof of 5.2. We have already seen in Theorem 4.13 that Z is modelled
on X” under the given hypotheses and that the polyhedral cell structure of Z
is locally finite. It follows immediately that the metric structure on Z given
by piecewise rectifiable paths induces the correct topology on Z. We have also
seen in 4.13 that G acts properly discontinuously on Z. It follows that
QO = Z/G is hausdorff with the quotient topology. Also every point in Q has
a neighbourhood which is homeomorphic to the quotient of a disk in Z by
a finite group of isometries. The radius function is invariant under the finite
group, and therefore gives a map which does not increase distances from a
neighbourhood of a point in Q to [0, 8]. (This is proved by seeing that the
radius function does not increase distances on the intersection of any P € &
with the inverse image of our neighbourhood.) From this it is easy to
see that the metric on Q is indeed a metric, and that it induces the right
topology. [

Lemma 4.15 implies the following result.

COROLLARY 5.3. The conclusions of Lemma 5.2 hold if we have
Pairing(#, R, A), Connected(%’, R), Cyclic(#,R, A) and Metric(%).

We are now able to prove Theorem 4.14. We are allowed to assume the
truth of Theorem 4.13 in all dimensions up to and including dimension .

Proof of 4.14. We will prove that there is an € > 0 such that any point
of Z has a neighbourhood in Z which is isometric to a ball in X” of
radius €. We denote by Z' the i-skeleton of Z, namely the union of the
polyhedral cells of Z of dimension at most i. We prove, by induction on i for
0 < i < n, that there is an g; > 0, such that each point z € Z satisfying
d(z,Z;) < ¢; has a neighbourhood in Z which is isometric to an g;-ball
in X”.

Suppose 0 < j < n and that the induction statement is known for i < j. We
take €; < ¢g;_1/2. Then if d(z,Z'- ') < g;_,/2 the desired result is true
for z. So we suppose that d(z,Z'~!) > ¢€;_,/2. We have already seen in
Theorem 4.13 that z has a small neighbourhood in Z which is isometric
to a ball in X” with centre z. It is clear from the cone structure on the
neighbourhood in z that we can take the ball to have radius r, where r is the
distance from z to the union of the faces not containing z.

To proceed, recall that Remark 3.24 together with the hypothesis 4.14(k)
gives us the condition Metric(#’) in the euclidean or spherical case. Also
Remark 3.24 together with the hypothesis 4.14(1) imply Metric(#’) in the
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hyperbolic case. Looking through the statement of Theorem 4.14, we see that
we may therefore assume Metric(Z?). It is clear that Metric(%?) gives a lower
bound for r in terms of g;_;.

Having found & as promised, it is standard that the developing
map Dz:Z — X" is an isometry. For completeness, we give the proof. We
first note that the image of Dy is an open subset of X", since Dz is a local
isometry (by Theorem 4.13). Using ¢ it is clear that the image is also closed,
and is therefore the whole of X”. The inverse image in Z of the open &-ball
B centred at any point of X” is a disjoint union of open subsets of Z, each
mapped isometrically onto B. It follows that Dy is a covering map. Since X"
is simply connected and Z is connected, Dz is a homeomorphism and
therefore an isometry. [

LEMMA 5.4 (completeness of Q and Z). Under the same hypotheses as
in Lemma 5.2, Q is complete if and only if Z is complete.

Proof of 5.4. Suppose Q is complete. To deduce that Z is complete,
consider a Cauchy sequence (x,) in Z. Then (nz,(x,)) is a Cauchy sequence
in Q, and therefore has a limit p. We take a small neighbourhood N of p, in
particular a neighbourhood meeting only a finite number of polyhedral cells.
The inverse image of N under mg is a union of components, each of which
is isometric to a round ball in X”. The stabilizer in G of any such component
is a finite group. The quotient of the component by this finite group gives N,
and the inverse image of p in the component is a single point. By making N
smaller, we may assume that there is an € > 0 such that any two of these
components are at least € apart. From this we see that (x,) must eventually
stay in one of these components. It follows that (x,) converges to a point
in Z.

Now suppose that Z is complete. To deduce that Q is complete, consider
a Cauchy sequence (y;) in Q. By moving each y; a little, we may assume that
it lies in the interior of a top-dimensional cell. By taking a subsequence, we
may assume that d(y;, y;+1) < 2~ for each i. We may join y; to y,,; by a
path in Q of length less than 2~*, which avoids the (n — 2)-skeleton of Q.
This gives us a rectifiable path in Q from y,, going through each of the
points y;. We now choose a point z; € Z in the inverse image of y,. Since the
path avoids the (n — 2)-skeleton, there is a unique lift to Z of the path, starting
at z,. Since Z is complete, the path converges to a limit, which we call z,.

Since the projection map 7z, is continuous, it follows that (y;) converges to
the limit nz5(z0). [
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THEOREM 5.5 (Poincaré’s Theorem Version 2). Suppose the hypotheses
Pairing(#, R, A),  Connected(#, R), Cyclic(?,R,A) and Locally-
Finite(#, R, A) are satisfied. If Z is complete, then it is isometric
to X7,

Proof of 5.5. Since Z is complete, all geodesics can be extended
indefinitely. It follows that the developing map D;:Z — X" is a covering
map. Since Z is connected, the developing map is an isometry. []

6. COMPLETENESS

In this section we discuss questions of completeness in more detail, in
relation to the case of a finite number of finite-sided hyperbolic polyhedra.
We have already seen in Theorem 4.14 that completeness follows from
Finite(#?) in the euclidean and spherical cases, so no special discussion is
necessary in those cases. We also discuss the question of verifying the
hypotheses of Poincaré’s Theorem algorithmically, giving attention mainly to
completeness in the hyperbolic case. We give a detailed account of other
aspects of an algorithmic approach in Section 7. Such an algorithm only makes
sense if a single real number is regarded as a single datum, as opposed to the
Turing machine model where a real number is known only as a bitstring, and
can therefore never be specified precisely. (In practice, Poincaré’s Theorem is
often used in connection with a group of matrices over an algebraic number
field. In this case, the conventional Turing machine model can be used.) We
need a mathematical model which allows addition, multiplication and division
of two real numbers with perfect accuracy and in unit time. Such a model is
discussed in [BSS89].

THEOREM 6.1. There is an algorithm (in the sense of [BSS89]) which has
a finite set 77 of convex polyhedra, each with a finite number of faces, and
a set of face-pairings as its input, and as its output the answer to the question
“Does this data define a tesselation of X"?” More precisely, “Does this
data allow us to define Z and is Z isometric to X"?”

The proof of the theorem just stated is discussed in more detail in
Section 7; here we cover the main points only.

The various aspects of an algorithmic approach are fairly straightforward,
with the exception of an algorithmic check that Z is complete. In order to check
our conditions algorithmically, we are of course restricted to a finite set of



	5. Defining a metric

