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116 D. B. A. EPSTEIN AND C. PETRONIO

There are several reasons why it is better to use several convex building
blocks than only one. Firstly, as we have already pointed out, this is necessary
if we are to deal with all geometrically finite groups. Secondly many of the
most interesting examples are constructed using more than one piece, for
example the two ideal regular hyperbolic tetrahedra used to give a complete
hyperbolic structure to the figure-eight complement (see [Thu, Thu80]).
Thirdly the hypotheses come up naturally in the proof; if one starts with a
single convex piece, the natural inductive proof inexorably leads one to
consider glueing together several convex pieces in lower dimensions. Fourthly,
it may be convenient to use a non-convex fundamental domain, rather than
a convex fundamental domain. The non-convex fundamental domains that
arise in practice can be cut into_a finite number of convex pieces, making our
hypotheses applicable.

One way in which our treatment differs from all previous treatments, is
that we do not assume we start with an embedded fundamental domain.
Instead the fundamental domain is expressed as the union of convex cells, each
of which can be separately embedded, without knowing to begin with that their
union can be embedded. For example, suppose we are given three planar
wedges of angle 5n/6, 6n/7 and 7n/8 with face-pairings glueing them
together. The union of these pieces cannot form a fundamental domain,
because their union after giueing cannot be embedded. The point here is
whether this non-embeddability or embeddability needs to be checked
beforehand. Our proof shows that the usual checks for Poincaré’s Theorem,
in the case where there is only one convex piece, in any case imply the
embeddability of the potential fundamental domain, so no special separate
check is necessary. In this case the extra necessary checking is easy, but in a
more complicated situation, the algorithm presented here could lead to
significant saving of time and complication.

2. CONVEX POLYHEDRA

Let X” be hyperbolic, euclidean or spherical n-dimensional space. A
hyperplane (that is, a codimension-one X-subspace) divides X” into two
components; we will call the closure of either of them a half-space in X”.
Any X-subspace is the intersection of hyperplanes, and vice versa.

DEFINITION 2.1 (convex polyhedron). A connected subset P of X” is
called a convex polyhedron if it is the intersection of a family 27 of half-spaces
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with the property that each point of P has a neighbourhood meeting at most
a finite number of boundaries of elements of 7. A convex polyhedron in X”
is said to be thick in X7 if it has non-empty interior.

REMARK 2.2 (antipodal points). In H” and E” any two points are joined
by a unique geodesic segment, so the same property holds in any intersection
of half-spaces. In particular intersections of half-spaces are connected. In S”,
we have to make do with a slightly weaker form of this, in which any two
points x and y, such that d(x, y) < w, are joined by a unique shortest geodesic
segment, in any intersection of half-spaces. In S” a pair of antipodal points
can be obtained as the intersection of n + 1 half-spaces. Furthermore one can
easily check that if an intersection P of half-spaces in S” does not enjoy the
property that any two points of P are joined by a geodesic arc within P,
then P must be a pair of antipodal points. A single point in-S” is of course
an intersection of half-spaces. So the only intersection of a locally finite family
of half-spaces which is not a convex polyhedron is a pair of antipodal points
in the sphere.

LEMMA 2.3 (interior).  An intersection P of half-spaces in X7
either has non-empty interior in X" or is contained in a hyperplane.
Moreover, if the interior of P is not empty, it is dense in P.

Proof of 2.3. We may suppose that P # ¢j. Let & be the set of non-
empty X-subspaces S of X” such that P n S has non-empty S-interior
(V, say) and such that V' is dense in P n S. Clearly & has a 0-dimensional
member, so it is not empty. Let S be a maximal element of &

We claim that P C S. Otherwise, let x € P\S and let S’ be a minimal
X-subspace containing both x and S. Let ¥ C Pn S be the S-interior
of P n S. By definition V is not empty.

In the spherical case the antipodal point to x is not in ¥ C S, since x ¢ S.
So for any point in V, there exists a unique shortest geodesic path joining
1t to x.

The whole “cone” based on V with vertex x is contained in P ~ S’ and
this easily implies that x and P n S are in the closure of the S’-interior of
P n §’. This argument can be repeated for all x € (P N S)I\S. Hence S’ € &,
which gives a contradiction.

Our claim is proved and the conclusion follows. [ ]

We define the dimension of an intersection P of half-spaces in X" (in
particular of a convex polyhedron) as the smallest integer i such that P is
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contained in an i-dimensional X-subspace of X”. Lemma 2.3 shows that P is
then thick in this subspace and the subspace is uniquely determined. A non-
empty intersection of a convex polyhedron in X” with an X-subspace S of X”
is either a convex polyhedron in S or possibly a pair of antipodal points in
the spherical case.

Let P be a convex polyhedron in X”. We define the relative boundary 0P
of P to be the topological boundary of Pin S where S is the unique X-subspace
of X” in which P is thick. The relative interior of P, denoted Rellnt(P), is
defined to be P\QP. Both “interior” and ‘“boundary” of P coincide with the
topological interior and boundary respectively if and only if P is thick.

Let P be a convex polyhedron. A subset O of OP is said to be a
codimension-one face of P if P is thick in X", Q = P n S for some hyper-
plane S of X”, and Q is thick in S. (An exception has to be made when P is
a semicircle and 9P is a pair of antipodal points. In that case, we insist
that Q is equal to one of the boundary points.) If i > 2, the codimension-i faces
of P are defined inductively as codimension-one faces of codimension-(i — 1)
faces of P. If P is thick in X%, a codimension-i face of P is a convex
polyhedron of dimension n — i. Each codimension-i face of a convex
polyhedron is contained in a face of codimension i — 1.

LEMMA 2.4 (boundary). Let P be a thick convex polyhedron in X"
which is the intersection of a locally finite family 27 of half-spaces. Then
oP= U PnOoH.

He 2%

Proof of 2.4. Let x € 3P and let U be an open neighbourhood of x.
Let {H,, ..., H;} be the set of elements of 2 whose boundary meets U.
If U is small then k is finite, and we may assume that x € 0H, for 1 < i < k.
We must have k > 1, for, if kK = 0, x would be in the interior of P in X".

Conversely, if x € P n dH for some H € 77, then x is in the topological
boundary of P in X". [

PROPOSITION 2.5 (essential faces). Let P and 277 be asin Lemma 2.4.
Set

%z{Hoe%:P;& M H}.

He #\{H,)

Then:

(a) P is the intersection of the elements of .,
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(b) the elements of .# are characterized as the elements H, of 2 such
that P N O0H, is thick in 0H,,

(c) the set .« of half-spaces depends only on P and not on "

Note that neither Proposition 2.5 nor Lemma 2.4 need be true when the family
of half-spaces is not locally finite. For example, the closed unit ball in R” is
the intersection of a countable family of half-spaces, none of whose boundaries
meets the closed unit ball.

Proof of 2.5. Any element of 27 \ .# can be omitted from 27 without
affecting P. It follows that any finite number of elements of 7"\ .# can be
omitted without affecting P. Let P’ be the intersection of the elements of .#.
Then P C P’. If P’ is not connected, then P’ must consist of two antipodal
points and P must be a single point. But this contradicts the definition of .#,
and so P’ is connected. By the local finiteness property, every point of P has
a neighbourhood U such that P n U = P’ n U. This shows that P is an open
subset of P’. Since P’ is connected and P is a non-empty closed subset
of X", P=P’.

Assume that Hy e .#. Let P, be the intersection of the elements of
2#"\{H,} and choose x € Py\ P. Consider an open set U internal to P, and
let C be the cone over U with vertex x. As shown in Figure 1, C n 0H, is
contained in P and has non-empty interior in 8H,, which implies that
P N 0H, is thick in 0H,.

Conversely, if x is in the dH-interior of P n dH,, the only half-space
containing P and having x on its boundary is H,. Therefore, if H, is omitted,

FIGURE 1.

. . Thick intersections.
_ If a half-space is fesser}tlal for the definition of a polyhedron then its intersection
with the polyhedron is thick. In the diagram the boundary 8H, of H, is denoted by S.
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x becomes an interior point of the intersection of half-spaces. So Hy, € .Z.
The same argument proves that the elements of .# can be characterized
independently of 2#” as the half-spaces H containing P and such that P n 0 H
is thick in 8H. [

The elements of the set .# described in Proposition 2.5 are called the
essential half-spaces of P. According to Proposition 2.5, the essential half-
spaces are exactly those whose boundaries contain codimension-one faces of
P. Lemma 2.4 implies the following result.

COROLLARY 2.6 (union of faces). The boundary of a thick convex
polyhedron in X" is the union of its codimension-one faces.

LEMMA 2.7 (codimension-two faces). If P is a convex polyhedron in
X" and C is a codimension-two face of P there exist exactly two
codimension-one faces of P containing C.

Proof of 2.7. Without loss of generality we can assume P is thick
in X”7. Let S be the codimension-two subspace containing C. We may
suppose that P is defined by its essential half-spaces. It follows from our
definition of a face that there exist at least two essential half-spaces H; and
H, whose boundary contains S. So C is contained in the codimension-one
faces P n 0H, and P n 0H,. Conversely if a codimension-one face P n 0H
contains C then 0H contains S. But it is easily checked (see Figure 2) that
. there cannot be three essential half-spaces whose boundaries have a
codimension-two subspace in common. [

FIGURE 2.

Inessential half-spaces.
If three hyperplanes meet in a codimension-two subspace one
of the corresponding half-spaces is not essential.
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Let n > 2. A dihedral region with corner S is defined to be the intersection
of two half-spaces, whose boundaries intersect in a subspace S of codimension
two. The dihedral angle of the dihedral region is defined to be the angle
between the boundaries. This is measured by taking a two-dimensional
subspace orthogonal to S and seeing what angle is marked out on it by the
boundaries. If we think of one half-space as first and the other as second, and
if we orient the orthogonal plane, then the dihedral angle 6 is signed and
0 <|8|< n. The definition can be extended to the case where the boundaries
of the half-spaces coincide. If the half-spaces themselves coincide, the angle
is defined (ambiguously) to be =+ w, and if the half-spaces have the same
boundary, but are otherwise disjoint, the angle is defined to be zero.

DEFINITION 2.8 (convex cell). A convex cell is a slight generalization of
a convex polyhedron in X7; it is a convex polyhedron whose proper faces
may have been subdivided. Formally, a convex cell is a convex polyhedron P
in X”, together with a locally finite collection of convex polyhedra {P;}; <,
satisfying the following conditions:

(a) The relative interiors of P and of the P;, (i e I), form a disjoint covering
of P.

(b) For each i € I, P; together with {P;|j € I, P; C dP;} is a convex cell.
(This definition is not circular since the dimension of P; is smaller than
that of P.)

The P; are called the faces of the convex cell. By abuse of notation, we will
often denote the convex cell by P, without mentioning the P;. The most
obvious example of a convex cell is a convex polyhedron, together with all its
proper faces. A convex cell is said to be thick in X” if the underlying
polyhedron is thick in X”.

We now present some lemmas which will be useful in the sequel.

LEMMA 2.9 (positive distance 1). Two disjoint affine subspaces of E"
have positive distance from each other.

Proof of 2.9. Consider the orthogonal projection to an orthogonal
complement of one of the subspaces, and note that distances are not increased.
It follows that we can assume that one of the subspaces is a point, in which
case the conclusion is obvious. [

LEMMA 2.10 (positive distance 2). Let S, T be affine subspaces of E”
cind let SNT=V+D. Weassumethat S+ V. Let ¢>0 and define
Se={seS:d(s,V)>¢e}. Then d(S.,T)> 0.
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Proof of 2.10. Assume first that the intersection V is a point. We may
take V' = {0} with respect to the usual coordinates of R” = E”. As s varies
in S\{0} and ¢ varies in T, the distance between s /|| s | and ¢ is bounded away
from zero by compactness of the unit sphere in S. This proves the result
when V is a point.

Now consider the general case. Let 7 be the projection on some orthogonal
complement of V. Then

d(T,S,) = d(nT,nS.) > 0
as we see from the case where V is a point.  []

PROPOSITION 2.11 (positive distance 3). Let A and B be disjoint
convex cells in the sphere or in euclidean space, each having only a finite
number of faces. Then they are a positive distance apart.

Proof of 2.11. This fact is obvious in the sphere, by compactness.

We prove the assertion by induction on the sum of the dimensions of A
and B, which we denote by m. The case m = 0 is obvious, so we assume that
m > 0 and that the assertion is true for all integers less than m. Assume by
contradiction that there exist sequences {a;} C A and {b;} C B such that
d(a;, b;) = 0.

First of all we can assume that there is a & > 0, such that, for all i,
d(a;0A) = &; otherwise, using the fact that there are only finitely many
faces, we can find a subsequence (which we denote by {a;} as well) and a
proper face F of A such that d(a;, F)— 0; if we choose a; € F such that
d(a;,a;) = 0, we have d(a;, b;) = 0. The induction hypothesis applies to the
faces F and B, proving that they meet, and this is a contradiction. Similarly,
we can assume that the distance between the b;’s and 9B is bounded away
from 0; we can assume the same bound & works for both.

Now, let S and 7 be the minimal subspaces containing A and B respectively.
We claim that S ¢ T and 7 < S. Suppose for example that S C 7, and
choose i so that d(a;, b;) < 6. Then a; € T n Bs(b;) C B, which is false.
So we assume that S # 7. Lemma 2.9 implies that V=S T # &, and
Lemma 2.10 implies that d(a;, V) = 0. Then we can find {v;} C V such
that d(v;, a;) = 0, and hence d(v;, b;) = 0. Since A is thick in S, as soon as
d(;,a;) < & we have v; € A, and similarly if d(v;, b;) < & we have v; € B.
This is a contradiction. [

LEMMA 2.12 (constant multiple). Let P be a convex polyhedron
in X7 with only a finite number of faces. Let E be a face of P and
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let S be the subspace of X" containing E in which E is thick. Then
there exists a constant k > 0 such that, for x € P, d(x,S) 2 k-d(x, E).
(We make an exception of the case where S is a pair of antipodal points —
the result may then be false.)

Proof of 2.12. We will obtain a contradiction by assuming that there
exists a sequence (x;) in P\E for which d(x;,S)/d(x;, E)— 0. In the
spherical case d(x;, E) < m, so d(x;,S) — 0. Using compactness, it follows
that d(x;, E) also converges to zero. Therefore we may restrict our attention
to an approximately euclidean local picture. So we assume from now on that
we are in the hyperbolic or euclidean case.

Given x € P\E, let y be the nearest point in S and let z be the nearest point
in E. Let E, be the face of E containing z in its relative interior. The
geodesic xz is orthogonal to E, and xy is orthogonal to S. Moreover the
segment yz meets E only at z.

FIGURE 3.

Distance to face and subspace.
This picture illustrates the proof of Lemma 2.12. E'is a face which is thick in the subspace S.
The point z is the nearest point in E to x, and the smallest face containing z is Ej.
The point y is the nearest point in § to x.

In our proof by contradiction, we obtain a sequence x; € P\ E and corres-
ponding sequences y; and z;, defined as above, such that d(x;, y;)/d(x;, z;)
converges to zero. This means that the angle between the segment x;z; and S
converges to zero. Since there are only a finite number of faces, we may assume
that z; lies in the relative interior of the same E, for each i. For each i,
without changing the angle « x;z;y;, we may now, without loss of generality,
move Xx; nearer to z; along the ray x;z;, keeping z; fixed and moving y;
correspondingly; z; remains the nearest point of E. This moves y; along the
ray y;z;. The ratio d(x;, y;)/d(x;, z;) is unaltered by the movement in the
euclidean case, and is decreased in the hyperbolic case. We may therefore
assume that, for each essential half-space H of P such that 0H does not
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contain E, and for each i, d(x;,y;) < d(x;,z;) <d(z;,0H)/2. Therefore
d(z;,y;) < d(z;,0H).

It follows that for each essential half-space H of P, such that y; ¢ H,
0H must contain E,. Other half-spaces now become irrelevant, and we may
assume that the boundary of each essential half-space of P contains E,. The
local geometry is therefore unchanged as z; moves in Rellnt(E,), and we may
assume without loss of generality that z; = z € Rellnt(E,) is independent
of i.

Since only the angles are important, we may now move x; along the
ray zx;, and assume that d(x;, z) = r is independent of i. Then z remains the
nearest point of E to x; and d(x;, y;) tends to zero. We see that x; converges
(after taking a subsequence) to a point x € S. It follows that x € P n S and
therefore x € E. But this contradicts the fact that z is the nearest point of £
to x;. This contradiction proves the result. []

LEMMA 2.13 (positive distance 4). Let P,Q be convex polyhedra
with a finite number of faces in X" and let E=Pn Q be a non-
empty face of both- P and Q. We assume that E + P. Let &6 >0
and denote by Ngs(E) the Oo-neighbourhood of E. Then, provided
S is small enough so that P is not contained in Ns(E), we have
d(P\Ns(E), Q) > 0.

Proof of 2.13. The result is clearly true in the spherical case, so we
assume that X7 is hyperbolic or euclidean space. Let S be the subspace
containing £ in which £ is thick. By Lemma 2.12 there exists §” > 0 such
that P\Ns(E) C P\Ns-(S). Let P’ be the intersection of the essential half-
spaces of P whose boundary contains £ and define Q” similarly. It is easy to
check that P" n Q' =S by considering a neighbourhood of a point of
Rellnt(E). Now P C P" and Q C Q’, so it is sufficient to check that

d(P'\N; (S),0") >0 .

But now, everything is invariant under isometries which preserve S and act
trivially in the direction normal to S, so we can work in an orthogonal
complement to S.

Hence we only have to check that the result holds when P is replaced
by P’, Q is replaced by Q" and P" n Q" = E = S is a point. We argue by
contradiction. Let x; € P'\Ns-(E) and y; € Q', be sequences such that
d(x;, y;) converges to zero. We may clearly assume that d(y;, E) > &’/2 for
each i. The rays Ex; and Ey; (extended indefinitely) therefore converge to the
same ray, which must lie in both P’ and Q’. This contradicts the fact that

PPnQ =E U
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DEFINITION 2.14 (link). Let (P, {P;};<s) be a thick convex cell in X7,
and let E be one of the faces of P — that is, E is equal to one of the
P;,(jel). Let JC I be the set of indices j such that P, contains E.
Let p € Rellnt(E). Let S, be a sphere in X with centre p, whose radius is
chosen small enough so that it only meets faces of P which contain £. By a
change of scale, S, can be identified with S7~!. The /ink of p in P is defined
to be a convex cell in S7~1, given by S, n P, with the face structure given
by S, n P;. There is one exceptional situation we need to discuss, when E is
one-dimensional. In that case, S, N E consists of two points, and this gives
rise to two zero-dimensional faces in the link, not one. Note that if £ is a point,
then, for each j € J, P, n S, is a convex polyhedron in S, — the exceptional
case of two antipodal points cannot arise since E is in the relative boundary
of P;.

Notice that it does not matter where we choose p € Rellnt(E), as there is
an isometry between the links given by two different choices. This means that
up to isometry the link depends only on E and not on p.

3. CONDITIONS FOR POINCARE’S THEOREM

We describe in this section various conditions which come up when we are
given a set of convex cells and instructions for glueing them together: our basic
objective (see Remark 3.6) is to make orbifolds or manifolds from these
building blocks. Alternatively, we can express our basic objective as
constructing a tessellation of hyperbolic or euclidean space or the sphere.

Let n > 2. Let ¥ be a countable or finite set of thick convex cells in X”.

REMARK 3.1.

(a) In fact we are only interested in the members of ¢ up to isometry, and
all our considerations must take this into account. This means that any
P € 7 may be replaced by y(P), where y € Isom(X"), and this must
not affect any of our considerations in an essential way.

(b) Strictly speaking, the set &’ is an indexed set — that is, we allow
repetition. One could avoid this, using Remark 3.1(a), by moving each
repeated convex cell a little to a different place, but that seems artificial.

We denote by .7 (&) the set of all pairs (F, P) as P varies over £ and F varies
over the codimension-one faces of P. Notice that two faces of different convex
cells could be geometrically coincident, but nonetheless they must be viewed
as distinct according to Remark 3.1(a).
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