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194 A. CONSTANTIN AND B. KOLEV

2. Background and Definitions

Let X be a topological space and / a homeomorphism of X. We say

that / is periodic if there is an integer n > 0 such that fn Id. The period

of / is the smallest positive integer n with this property.
As we will use them without further justifications, let us first recall some

basic properties of one-dimensional maps.
Let /:/-*/ be a periodic homeomorphism of the unit interval. If /

preserves the endpoints then / is the identity map. If / exchanges the

endpoints then /2 Id and / is conjugate to the reflection map a 1 - x.

Similarly, a periodic homeomorphism of the real line R is the identity map

or is a conjugate of the involution x - x according to whether it is an

increasing or a decreasing function.

Let f:Sl S1 be a periodic homeomorphism of period n of the unit
circle. If / is order-preserving then the rotation number of /, p (/) k/n,
where k and n are coprime (see [5] for an excellent exposition on rotation
numbers) and / is conjugate to a rotation of angle 2kn/n. If / is order-

reversing then / has exactly two fixed points, /2 is the identity map and the

two arcs delimited on S1 by the fixed points of / are permuted by /.
A metric space X is path connected if there exists a continuous map from

the unit interval [0, 1] into X which joins any two given points. It is arcwise

connected if there is a topological embedding of [0, 1] into X which joins any
two given distinct points. In fact, it can be shown that the two notions are

equivalent (see [14, Theorem 4.1] or [11, Lemma 16.3]).

Lemma 2.1. A metric space X is path connected if and only if it is

arcwise connected.

A useful characterisation of path connected spaces is given in term of local
connectivity. A metric space X is locally connected if each point of X possesses

arbitrary small connected neighbourhoods. The following can be shown

(see [8, Theorem 3.15] or [11, Lemma 16.4]):

Lemma 2.2. A compact, connected and locally connected metric space is

pathwise connected.

Another important ingredient used in this article, and in fact the ultimate
result we will need, is the famous Jordan-Schoenflies theorem on simple closed

curves in the plane (see [2,9] or [12, Theorem 17.1]).

Theorem 2.3 (Jordan-Schoenflies). Every simple closed curve J
divides the plane into exactly two components of each of which it is the
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complete boundary and the closure of the bounded component can be mapped

topologically onto the closed unit disc.

In what follows, a closed topological disc (or just a topological disc) D is

the image under a topological embedding of the closed unit disc and we

write D° for its interior and 9D for its boundary. However, the closure of a

bounded open set which is homeomorphic to the open unit disc is not
necessarily a closed topological disc [11, Chapter 15].

Proposition 2.4. Let Dx, D2i Dn be a finite number of closed

topological discs in the plane and J° be any connected component
of n"=1Z)JL Then 9 J is a simple closed curve and J the closure

of J° is a topological disc.

Proof of 2.4. We will use induction on n, the number of discs. If n 1

this is just the Jordan-Schoenflies theorem, so let us suppose that the result
holds for some n(n ^ 1) and let be any component of the complement
of n + 1 topological discs Dx, D2, Dn+1 in the plane. Let K° be the

component of n"=lDf that contains J°. By induction, its closure K is a

topological disc. Since J° is a component of K° n D°n + x, it suffices to show
that the result holds for two discs Dx and D2 (see Figure 1). Set C/ 9Z),
for / 1, 2 and let J be the closure of a component of D ° n D °2. We have
that 9/^0 and 9/ C C} u C2. If 9/ is entirely contained in one of the two
curves, say Cx, then J Dx and the lemma is proved. We can thus suppose
that 9/ <jt Ci and 9 J <jt C2.

Let x e 9 J, x C2. Then D°2, and we can find an arc y in Cx

such that:

x e y y C 9/ y\9y C D°2, 9y C C2

C2
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The endpoints of y determine on C2 an arc ô disjoint from J° and such

that ô n J 05. We note that there is an at most countable family of such

arcs y, noted (yi)ieN and that diam(yi) -> 0 as / oo. The boundary of / is

the simple closed curve obtained from C2 when substituting the arcs yt for the

arcs 5/ and / is a topological disc by the Jordan-Schoenflies theorem.

The following remarkable property of periodic homeomorphisms which is

a direct consequence of 2.4 is true in a more general setting than the plane
R2, namely in topological manifolds of dimension 2 because of its local
nature. We will give it in that context since we will use it for the disc and the

sphere, repeatedly in this article.

Lemma 2.5. Let f : S -* S be a periodic homeomorphism of an

arbitrary 2-dimensional topological manifold S and let x e Fix{f), afixed
point of f. Then for any neighbourhood N of x, there exists a

topological disc Ax such that:

1. Ax C N,

2. Ax is a neighbourhood of x,

3. /(Ax) Ax.

Proof of 2.5. We can first assume that N and its image under /, f(N),
are contained in some local chart U homeomorphic with R2 and will continue

to call x and //the corresponding point and set in R2. Let Dx be an euclidean

disc of centre x and radius rj where rj > 0 is chosen such that fk(Dx) C N
for k - 0,J, n - 1 and let Cx be its boundary. Let Ax be the closure

of the component of the invariant set C\nkZlfk(D°x) which contains x.
By 2.4, Ax is a topological disc which is invariant under / (components are

sent to components by a homeomorphism) and satisfies the three assertions

of the lemma.

Remark. The boundary yx of Ax, which is an invariant simple closed

curve, is contained in \JnkZ]Qfk(Cx).

3. Periodic Homeomorphisms of the Disc

Theorem 3.1. Let f :D2-+D2 be a periodic homeomorphism. Then

there exists r e 0(2) and a homeomorphism h :D2^>D2 such that

f hrh~l.
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