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194 A. CONSTANTIN AND B. KOLEV

2. BACKGROUND AND DEFINITIONS

Let X be a topological space and f a homeomorphism of X. We say
that f is periodic if there is an integer n > 0 such that f” = Id. The period
of f is the smallest positive integer n with this property.

As we will use them without further justifications, let us first recall some
basic properties of one-dimensional maps.

Let f:I— I be a periodic homeomorphism of the unit interval. If f
preserves the endpoints then f is the identity map. If f exchanges the
endpoints then f2 = Id and f is conjugate to the reflection map x— 1 — x.
Similarly, a periodic homeomorphism of the real line R is the identity map
or is a conjugate of the involution x+ — x according to whether it is an
increasing or a decreasing function.

Let f:S!'— S! be a periodic homeomorphism of period # of the unit
circle. If f is order-preserving then the rotation number of f, p(f) = k/n,
where k and »n are coprime (see [5] for an excellent exposition on rotation
numbers) and f is conjugate to a rotation of angle 2kn/n. If f is order-
reversing then f has exactly two fixed points, f? is the identity map and the
two arcs delimited on S! by the fixed points of f are permuted by f.

A metric space X is path connected if there exists a continuous map from
the unit interval [0, 1] into X which joins any two given points. It is arcwise
connected if there is a topological embedding of [0, 1] into X which joins any
two given distinct points. In fact, it can be shown that the two notions are
equivalent (see [14, Theorem 4.1] or [11, Lemma 16.3]).

LEMMA 2.1. A metric space X is path connected if and only if it is
arcwise connected.

A useful characterisation of path connected spaces is given in term of local
connectivity. A metric space X is locally connected if each point of X possesses
arbitrary small connected neighbourhoods. The following can be shown
(see [8, Theorem 3.15] or [11, Lemma 16.4]):

LEMMA 2.2. A compact, connected and locally connected metric space is
pathwise connected.

Another important ingredient used in this article, and in fact the ultimate
result we will need, is the famous Jordan-Schoenflies theorem on simple closed
curves in the plane (see [2, 9] or [12, Theorem 17.1)).

THEOREM 2.3 (Jordan-Schoenflies). Every simple closed curve J
divides the plane into exactly two components of each of which it is the
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complete boundary and the closure of the bounded component can be mapped
topologically onto the closed unit disc.

In what follows, a closed topological disc (or just a topological disc) D is
the image under a topological embedding of the closed unit disc and we
write D¢ for its interior and 98D for its boundary. However, the closure of a
bounded open set which is homeomorphic to the open unit disc is not
necessarily a closed topological disc [11, Chapter 15].

PROPOSITION 2.4. Let D.,D,,...,D, be a finite number of closed
topological discs in the plane and J° be any connected component
of N!_,D?. Then d8J is a simple closed curve and J the closure
of J° is a topological disc.

Proof of 2.4. We will use induction on #n, the number of discs. If n = 1
this is just the Jordan-Schoenflies theorem, so let us suppose that the result
holds for some n(n > 1) and let J° be any component of the complement
of n + 1 topological discs D;,D,, ..., D,,; in the plane. Let K¢ be the
component of M7_,D? that contains J°. By induction, its closure K is a
topological disc. Since J° is a component of K° n D? |, it suffices to show
that the result holds for two discs D, and D, (see Figure 1). Set C, = 8D;
for i = 1,2 and let J be the closure of a component of D] n DJ. We have
that 0J # @ and 8J C C, u C,. If 8J is entirely contained in one of the two
curves, say C;, then J = D, and the lemma is proved. We can thus suppose
that 8J ¢ C, and 8J & C,.

Let x € 8J, x ¢ C,. Then x € C; n Dj, and we can find an arc vy in C,
such that:

xey, yCdJ, y\dycCc D3, 8y CC,.
C.

Ci

FIGURE 1
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The endpoints of y determine on C, an arc & disjoint from J° and such
that & N J = 06. We note that there is an at most countable family of such
arcs v, noted (7y;);e » and that diam(y;) — 0 as i = o. The boundary of J is
the simple closed curve obtained from C, when substituting the arcs y; for the
arcs 8; and J is a topological disc by the Jordan-Schoenflies theorem. [l

The following remarkable property of periodic homeomorphisms which is
a direct consequence of 2.4 is true in a more general setting than the plane
R?, namely in topological manifolds of dimension 2 because of its local
nature. We will give it in that context since we will use it for the disc and the
sphere, repeatedly in this article.

LEMMA 2.5. Let f:S8—S be a periodic homeomorphism of an
arbitrary 2-dimensional topological manifold S andlet x € Fix(f), a fixed
point of f. Then for any néighbourhood N of x, there exists a
topological disc A, such that:

I. A, CN,
2. A, is a neighbourhood of x,
3. f(Ay) = A,.

Proof of 2.5. We can first assume that N and its image under f, f(N),
are contained in some local chart U homeomorphic with R? and will continue
to call x and N the corresponding point and set in R2. Let D, be an euclidean
disc of centre x and radius n where n > 0 is chosen such that f¥(D,) C N
for k=0,1,..,n — 1 and let C, be its boundary. Let A, be the closure
of the component of the invariant set M} _; f¥(D?) which contains x.
By 2.4, A, is a topological disc which is invariant under f (components are
sent to components by a homeomorphism) and satisfies the three assertions
of the lemma. [

Remark. The boundary y, of A,, which is an invariant simple closed
curve, is contained in U} Z g f4(Cy).

3. PERIODIC HOMEOMORPHISMS OF THE DISC

THEOREM 3.1. Let f:D?— D? be a periodic homeomorphism. Then
there exists re OQR) and a homeomorphism h:D?— D? such that
f=hrh-1.
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