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L'Enseignement Mathématique, t. p. 59-104

UNIMODULAR LATTICES
WITH A COMPLETE ROOT SYSTEM

by Michel Kervaire

1. Introduction

Let Q" be the «-dimensional euclidean space (over the field Q of rational

numbers) endowed with the standard scalar product

(x,y)£•=

where x (*i,...,xn), y(ji,... ,y„).A lattice LCQ" is a Z-submodule of rank n of Q", i.e.

L { e Z}

where vit u„ is some basis of Q". We are interested in integral lattices,

i.e. lattices L satisfying (x,y) e Z for all x,y e L.
An integral lattice L is said to be unimodular if

det(S) 1

where S is the nxnmatrixof scalar products

S ((üi,Vj)),1 </, j^n,
Ui, ...,un being a Z-basis of L. The number det(S) is called the determinant
of L and is denoted det(L). It does not depend on the choice of the Z-basis

l) j un of L.
If L is an integral lattice, the set

R {x e L \ {x,x) 2}

is a root system. (For the general notion of a root system see [B], p. 142.)

The author gratefully acknowledges partial support from the Fonds National Suisse de
la Recherche Scientifique during the preparation of this paper. In particular the FNSRS
provided the necessary computer.
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The root system R will be said to be complete in L if the sublattice N ZR
of L generated by the roots R is a subgroup of finite index in L.

Our purpose is to study unimodular lattices with a complete root system.

It is well known that there are finitely many isomorphism classes of
unimodular lattices ICQ" for a given n. (See [MH], p. 18.)

The subcollection consisting of the lattices with a complete root system is

particularly interesting, e.g. in view of the connection with the theory of
error-correcting codes as we shall recall below.

We begin by setting up some necessary conditions that a root system

must satisfy in order to be a complete root system in a unimodular lattice

(Sections 3, 4 and 5).
We are particularly interested in even unimodular lattices, i. e. (a, x) is even

for every x e L. In this case, as is well known, the rank of L has to be divisible

by 8. In dimensions 8, 16 and 24, where the classification of even unimodular
lattices is available, it turns out that every such lattice has a complete root
system, with the sole exception of the 24-dimensional Leech lattice. (History
and relevant literature in e.g. [N], p. 142.)

In dimension 32, there are millions of even unimodular lattices. (See [Se],

p. 95.) Among them as we shall see, only a small subcollection have a complete

root system. In this paper, we endeavour to provide the complete list of such

lattices.
There are 132 indecomposable even unimodular 32-dimensional lattices

with a complete root system. In some cases several lattices happen to have the

same root system. Thus, only a total number of 119 root systems correspond
to these lattices. They are listed in Section 6.

The enumeration of the lattices and their root systems could only be

completed using a computer, thanks to the generous help of Shalom Eliahou
who patiently explained to me the use of mulisp programming language. Of
course any mistake in the programs is my sole responsibility. It is a pleasure

to express to him here my warmest gratitude.
I am also deeply indebted to Boris Venkov for very valuable discussions,

in particular on the use of the notion of deficiency. (See Section 5.)

2. Relationship with codes

As is customary we shall use codes to describe lattices. We briefly recall

how this can be done.

If X C Q" is any finitely generated Z-submodule of Q", we set

X* - {u e QAf : (w, x) e Z for all x e X)
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Note that if Xl9X2C Qn are mutually orthogonal finitely generated

Z-submodules of Q", then

(Xi ffl x2)# xf ffl X*

where we write the symbol EB to mean orthogonal (direct) sum.

Clearly, a lattice L CQ" is integral if and only if L C L#, and L is

unimodular precisely if L — L*. Indeed, if V\,..., vn is a Z-basis of L, and

Wi,..., the dual basis of L*, where (y,-, w7) ô/,y-, then Vj 1,1 tkjwk
for some integral matrix T and if S is the matrix of scalar products

(Ui,Uj), then

(PiiUj) (Pi » S tkjWk) — hj
k 1

and thus

[L# : L] =|^t(r)| |^(S)|.
Suppose now that L is an integral lattice in Q" and that N C L is a

sublattice of finite index in L. Then, N C L C L* C iV# and the finite
abelian group T(N) N*/N inherits a non-degenerate Q/Z-valued bilinear

form

b : T(A0 x 7\A0 - Q/Z

defined by

h(£>, h) mcxiZ

where xje A^# project on Ç, ti e T(A/") N"#/iV respectively by the natural

map n : 7V# T(A^).
The finite scalar product module (T(N), Z?) is called the discriminant form

of N.
Let M 7i(L). Then Mis self-orthogonal, i.e. M C Mx, for the bilinear

form b on T(N). Thus M is a self-orthogonal code in (T(N), h). Conversely,
given a subgroup M C r(ZV) such that MC M1, we recapture the integral
lattice L as L n ~1 (M). Note that L is unimodular, i. e. L L# if and only
if M M1. If T is a finite (abelian) group with a non-degenerate bilinear
form b : T x T - Q/Z, and M C T is a subgroup such that M M-1, we

say that M is a metabolizer for the scalar product module T. A metabolizer
is the same object as a self-dual code.

Summarizing, one way of describing a unimodular lattice L C Qn consists
in giving the following data:

1) An integral lattice ACQ";
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2) A metabolizer M C T(N), where T(N) N*/N is the discriminant
form of N.

We will presently make use of this: If L is a unimodular lattice with a

complete root system R, then N ZR C L is a lattice of finite index in L,
and by the above, L can be encoded by the data of the root system R

which determines N ZR C Q", N* and T(R) N*/N with its

non-degenerate form b : T{R) x T(R) -» Q/Z, together with a metabolizer

M= M1- C 7XR).

Note however that if we start with a root system R C Q" and

construct L as L 71 _1(M), where M is a metabolizer in r(/?), then
i?' {# e T : (a, a) 2} will contain i? but may possibly be strictly larger.

We shall say that M is an admissible metabolizer if indeed we have

R {a e L : (a, a) 2}, where L n _1(M).
Thus, the problem of deciding whether there exists a unimodular lattice

L C Q" with given root system R such that QR Qn is equivalent to the

question: Does the finite scalar product module (T(R),b) possess an
admissible metabolizer?

If R C Q" is a root system and N ZR C N# is the lattice generated

by R, we define the norm

n : T(R) - Q

by n(£) «= min{{x, x) : 7i(x) £}, where the minimum of (x, x) is taken over
all the elements x e N# representing £ e T(R) N*/N.

We say that ^ is admissible if n(Ç) 0, or n(^) is an integer >2. It is

easy to see that a metabolizer MC T(R) is admissible if and only if every
e M is admissible. (Note that if R is a complete root system in L, then L

cannot contain any vector u with («, u) 1.)

If an even unimodular lattice L is required with a prescribed root
system R, then the metabolizer MC T(R) will have to satisfy the additional
condition: For all non-zero £ e M, the norm n(£) must be an even

integer ^ 4. Depending on the context, we occasionally change the meaning
of "admissible" to include this stronger condition, e.g. in Section 6,

when setting up the tables of even unimodular lattices in dimension 32.

The classification of root systems is well known. (See [B], p. 197.) We recall
the facts which are relevant to us in the next section, following mostly the

notations of [N]. The possible lattices N ZR are thus easily described as well
as the finite scalar product modules T(R) N*/N.
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The existence of a mere metabolizer for (T(R), b), perhaps not admissible,

is already a strong restriction on R. We study this condition in the next

Section 3.

We give some necessary conditions for the existence of an admissible

metabolizer using coding theory in Section 4.

In Section 6, after explaining the notations used in the tables, we list the

even unimodular lattices with complete root systems in dimension 32.

3. The Witt class associated
WITH A ROOT SYSTEM

Recall the Witt group W(Q/Z) of finite scalar product modules: If T
and T' are two finite abelian groups with non-degenerate bilinear forms
b : T x T -* Q/Z, b' : T' x T' Q/Z, then T and T' are said to be Witt
equivalent if there exist finite scalar product modules H, H' each with a

metabolizer M ML C H, M' M'x C H' such that TS H and T' EE H'
are isometric. The Witt equivalence classes of finite scalar product modules

form an abelian group W(Q/Z) under the operation induced by orthogonal
direct sum EEL

We recall below the explicit determination of W(Q/Z).
Let R C Q" be a root system. As before, we denote by T(R) the

associated finite scalar product module. As a group, T(R) {ZR)*/ZR,
where

(ZR) * {v e QR Q": {u, R) C Z}

The bilinear form b: T{R) x T{R) Q/Z is induced from the scalar
product in Q", restricted to {ZR)*.

The Witt class of (T(R), b) is an element of W(Q/Z) which we call the
Witt class associated with the root system R and denote by w(R) e W(Q/Z).

As we saw in Section 2, if R is the root system of a unimodular lattice
L C Q", and R is complete in L, i.e. QR QL Q", then (T(R), b)
possesses a metabolizer and therefore w(i?) must be 0 in W(Q/Z).

If R Ri EE R2 is an orthogonal decomposition of the root system R,
i.e. if R is the disjoint union Rx U R2 of two mutually orthogonal root
systems Ri,R2, then

w(i?) w(R\) + w{R2)

Indeed,

{ZR)* (ZRx)* ffl (ZR2)*



64 M. KERVAIRE

and T(R) is the direct product of the two subgroups T(Ri) and T(R2) which
are mutually orthogonal under the form b.

Now, any root system is an orthogonal sum of uniquely determined

indecomposable root systems. It is therefore sufficient to calculate the Witt
class associated with the indecomposable orthogonal summands.

As is well known, the list of indecomposable root systems (in which every
root has scalar square 2) consists of the two infinite families A/, / ^ 1

and D/, / ^ 4 and of three exceptional systems E6, E7, E8. In each case the
index indicates the rank, i.e. dimQQR. (See [B].)

If the decomposition of the root system R contains at copies of the

indecomposable system R(, i 1,..., r, we write

R a\R\ EB a2Ri EE IS arRr

By the above, we have

w(Ä) « ï,ri=iaMRi) e W(Q/Z)

and w(R) 0 is a necessary condition for R to be the complete root system

of a unimodular lattice.

In order to evaluate w(i?) for a given root system R, we have to determine
the Witt classes w(A/), w(D/) and w(E/) in W(Q/Z) associated with the

indecomposable root systems. This is the purpose of this section.

We first briefly recall the calculation of W(Q/Z). (See [Sch], p. 166-170

for more details.)

Theorem. W(Q/Z) ®pePW(Fp), where P {2,3,5,...} is the

set of prime numbers, and where W(Fp) is the Witt group of the finite
field Fp.

W(F2) Z/2Z

where the generator, denoted <1>, is represented by the finite group
T Z/2Z endowed with the bilinear form b : T x T Q/Z determined

by b(1, 1) \ modZ.
For p an odd prime, we have

W(FP) Z/2Z © Z/2Z if p= 1 mod A

The group W(Fp) is generated in this case by the classes, denoted < 1 >

and <8>, of (T,b), (T',b'), where as finite groups T=Tr FP

and b, b' are respectively determined by

b{1,1)=^ modZ b'{1, 1) | modZ
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where s e Z is a non-square modpZ. (The class of b' is of course

independent of the choice of e.J

W(FP) Z/4Z if p - 1 mod4.

The group W(ßp) is generated in this case by the class, denoted < 1 >,

of (7, Z>), where T=¥p and b is the bilinear form determined by

b{ 1, 1) ~p modZ

Proof. For every finite scalar product module (7, b), we have an obvious

orthogonal sum decomposition

(T,b) SpePm(Tpibp)
where 7(7) is the set of primes dividing the order of T and Tp is the

/^-primary subgroup of T (consisting of the elements whose order is a power
of p)9 and where bp is the restriction of b to the subgroup Tp.

It follows that
W(Q/Z)= ®pePWp,

where Wp is the Witt group of finite scalar product modules (7, b), where T
is a ^-group and b : T x r-^Z[^]/ZC Q/Z is a non-degenerate bilinear
form.

The isomorphism Wp W(¥p)9 where W(FP) is the Witt group of the

finite field Fp is a consequence of the following lemma: If (T, b) is a finite
scalar product module and U C T is a subgroup of ÜT, let UL denote the

orthogonal subgroup of U9 i.e. U1 - {x e T: b(x, U) 0}

Lemma. With these notations, suppose that U C T is a self-orthogonal
subgroup of T, i.e. U C U1. Let T' UL/U. Then the form b
induces on T' a non-degenerate bilinear form b' : T' x T' Q/Z
and (T, Z?), (TA, Z?') represent the same Witt class.

Proof. Consider the scalar product module

(T, b) ffl (T\ - br) (T®T',b® (- b'))

The subgroup M=f(U±)i where f:UL-*T@T' is given by
f{x) with xr the class of x e U± modulo U, is a metabolizer.

It follows that (T, b) ES (T', — Z?') ~ O, where — denotes Witt equivalence
and O on the right hand side is the trivial scalar product module.

Hence,

(r, b) œ (T', - b') œ (T\ b') - {T\ b').
Since (7', - b') EE) (7', b') ~ O, the lemma follows.
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It is easy to see by induction on the order of T that this lemma implies

Wp W(FP).
Finally, the asserted values of W(Fp) for the various primes p result from

the classification of inner product spaces over finite fields. See for instance

[MH, p. 87, Lemma 1.5].

In concrete examples, such as the scalar product module (T(R),b)
associated with a root system R, the above lemma enables us to find the Witt
class w(R) e W(Q/Z) by explicit calculation.

Case R A/.

Here,

ZA i{'Z'l 0xiei:xi eZ,l' 0 x, 0} C Q/+ 1

where e0fei9..., e{ is the standard basis of Q/+1, such that (e/,e,) ô;y

The root system proper A/ is the set {et - ej : / 4=- j) of vectors in ZA/
with square length 2.

It is well known and easy to verify that the coset decomposition
of (ZA/)# modulo ZA/ reads

(ZA/) * -I—l'= 0(ZA/ +

where

x -1— y l~r e - l~r + 1 yl ei+i L i o I + 1 Lj « / - r + 1 Vj

Whenever the root system A/ has to be specified in the notation, we

denote xr by xr (A/).
The group T(A/) (ZA/)#/ZA/ is cyclic of order / + 1, generated by

the class of X\ modulo ZA/.
An easy calculation shows that

(xr,xr) r^f^,
and in fact, this number is the minimum of the scalar square of any vector
in the class of xr modulo ZA/. Thus n(xr) L^f~y~ for r 0, 1, ...,/,
where n(xr) is the norm of xr, as defined in Section 2.

Let p be a prime and let e be the exponent of the largest power of p
dividing / + 1. Set q pe and s (/ + 1 )/q, prime to p.

The p-primary subgroup Tp of T(A/) is cyclic of order q generated by the
class of xs modulo ZA/. The.scalar square of this element is

(xs,x,)='v;Xl) -\modZ.
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Thus we have to calculate the Witt class represented by a cyclic /»-group

with non-degenerate bilinear form.
Let Tbe the cyclic group Z/qZ, where q pe is a power of the prime/».

Let a be an integer prime to p and let

b: Tx Z [|] /Z

be the bilinear form on T determined by

b( 1, 1) -q modZ

Then the Witt class of (T, b) in W(Fp) is given by

(a) if e is odd,

0 if e is even,
w(T,b)

where < a> is the Witt class in W(Fp) of the form b on given by

b( 1, 1) I modZ.
Indeed, if e is even, e 2/, then the subgroup generated by pf in Z/qZ

is a metabolizer. If e 2/ -1, let U pfZ/qZ be the subgroup generated

by pf. Then, UL pe~fZ/qZ pf~lZ/qZ. The quotient T' U±/U
with the induced form is isomorphic, as a scalar product module, to ¥p with
the form given by (1,1) ~p. By the lemma above, (T, b) and (T',br)
belong to the same Witt class. The result follows.

Applying this to our example arising from the root system A / with
T(A/) Z/(/ + 1)Z, q pe the exact power of p dividing / + 1 and
s (I + 1 )/q, we get:

The /»-component of the Witt class associated with A / is

w„(A/)
< - 5) if e up(l -f 1) is odd,

0 if e vp(l + 1) is even,

where e vp (I + 1) is the exponent of the exact power of p dividing / + 1.

Note that for p 1 mod 4,

< - s) (s) < 1 >, resp. < s >

in W{¥p) Z/2Z<1> © Z/2Z<8> depending on whether 5 is or is not a

square modp respectively.
For p - 1 mod 4, then

<-s> <1> in W(¥p) Z/4Z< 1 >

if - 5" is a square modp, and

<-*> <-l> -<1> in W(J?p) Z/4Z< 1 >

if - 5 is a non-square modp.
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Case R D/.

By definition

ZD/ { Z- j *;£/ : Xi e Z, £(= j X/ 0 mod2Z}

It is easy to check that

(ZD,)* ={£{_, Ç,e,:Ç,e|Z, - Ç,morfZ}

and thus

f Z/2Z © Z/2Z if / is even,
r(D,) (ZD/)*/ZD,= \

\ Z/4Z if / is odd.

In this case, the associated finite scalar product module T(D/) always

represents 0 in the Witt group W(Q/Z).
The coset decomposition of (ZD/) * modulo ZD/ is

(ZD/)# ZD/ LI (ZD/ + j© U (ZD/ + y2) U (ZD/ + y3)

with
1 T-i /

y i — 2 S / i

J2

^3 5 (Ei: !**-*/)>
and y i, y2 » y 3 as above are of minimal square length in their class mod ZD/.
Therefore, n(yO n(y3) { and n(y2) 1.

When we need to include the root system in the notations, we write

Xk(D/) for yk.

Case R E6.

Recall that

ZE6 {lf j
: 2x/ e Z, X/ - x, e Z, 2 x,- x7 + x8 0}

(ZE6)* ZE6 U (ZE6 + zi) U (ZE6 - zi)

where

Z\ — \ {ß\ + e2 + e2 + e4 — 2(e5 + ee))

and (zi,Zi) |. Here again, Zi has minimal square length in its class

modulo ZE6 and hence n(zi) (Z\, Zi) - f.
We write Xi(E6) for Zi when convenient.
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The associated Witt class is

w(E6) < 1 > in W(F3).

Case R E7.

The definition is

ZE7 { Ez8= i X/E; : 2x/ E Z, A/ - X/ e Z, j X/ 0}

Zl 4 (^1 + ^2 + £3 + £4 + £5 + ^6 — 3 (e7 + eg))

satisfies (zi,Zi) \ and is of minimal scalar square in its class modZE7,
Again, Zi is noted Xi(E7) if convenient.

The Witt class w(E7) is the generator < 1 > of W(F2) Z/2Z.

Case R E8.

Here, T(E8) 0. The associated Witt class is 0.

Let T be a finite abelian group with a non-degenerate bilinear form
b:Tx T-+ Q/Z.

Suppose that we have a decomposition of T as an orthogonal direct sum
of subgroups Ti, Ts:

Then we can define the weight xw{u) e Z[xi, x5] of an element

u e T by tabulating its non-zero components in the decomposition
u u 1 + u2 + + uS) U; e Ti, as

Here,

(ZE7)* ZE7 U (ZE7 + Z\)

where

4. Weight enumerators
of finite scalar product modules

T= Ti ffl T2 BB ffl Ts

xw(u) — • X2
("2) *

••• ' X^("5)

where
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If M is a subset of T, the weight enumerator of M is the polynomial

PM(xu...,xs) lueMx»w.
We denote by qi9 i 1, 5 the order of the subgroup Tt.
We show in this section that MacWilliams duality is still valid in this more

general setting:

Theorem. Let M C T be a subgroup of the scalar product module
T Tx EB T2 EH EE Ts. Set qt Card(Tt), and let ML be

the subgroup orthogonal to M. Then, we have the formula, where

\M\= CardiM):

1 -ir / 1 — JCi 1 - xs \
— n (1+(«/-!) xJ PmI- 7 —)\M\i i \l+(ç,-l)xi l+(qs-l)xsJ
Note that if some of the subgroups Tx, Ts are mutually isomorphic

(or more generally have the same order), then we can write the decomposition
of T in the form

T= nx T\ ffl n2T2 ffl ffi nrTr

where ntTi stands for the orthogonal sum

niTi Tt ffl Ti ffl ES Tt

of nL copies of Tt.
The weight of an element

u (^1,1 + + ux>ni) + + (ur>x + + ur>nr)

is then defined as

xw(u) _ XV\ xv2 ^ xvr
^

where V/ is the number of non-zero components of uitX + + u^n. in ntTi.
The duality theorem then takes the seemingly more general form

Pm±(XI,

n I—*
Card{M) i=\ \ 1 H- (<^i — l)^Ti \ + (qr-\)xrj
This identity can be viewed as a system of linear equations for the

coefficients of the weight enumerator polynomial PM of any putative
metabolizer M ML. If M exists, this system must be solvable in
non-negative integers.
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Proof of the duality theorem. One of the classical proofs of MacWilliams

duality in a vector space over a finite field goes over with only insignificant
changes. We repeat the argument for the reader's convenience.

Let %:Q/Z->C* be the character given by %(a) e2nia. Set

ß(",f) x(b(u,v)).
We cook up the function f:T->C[xi,...,xs\ given by

/(") - S„<=rßO> y) " xW(u)

and evaluate EW6M/(w) in two different ways, using the following lemma:

Lemma.

Card {M) if v e M1,
0 if v $ ML

We first recall the proof of the lemma.

If ueM±, then ß(w, u) 1 for every u e M, thus £weMß(w,
Card (M) as stated in this case.

If u $ M1-, there is an element u{ e M such that b(ux, v) ^ 0, and then
ßOj, y) 1. We have

S„eMß(Wi,y)ß(W, y) ß(Hi,U) EueMß(W,

This implies the statement of the lemma for u $ ML.

We now proceed to the proof of the duality theorem.
Firstly,

I«*/(") I„eMIUerß(".y) •*W(B} E„er(E„6^(">U>) ^'W
EpeM-L Card(M)• Card(M) PM±(xlt

Secondly,

/(") E„6rß(w> y) • *w(")

L.er, „sSTsß(«l,y,) • • HUs.O.) -x^
n;=1(i0Eriß("/,y)-xr<e)),

where uuj+ + usisthe decomposition of T, ES EB

Using the lemma again, we have

1 + - 1 if 0,

1 - X,- if 0
E ttTlMu„o)-x?w
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Thus,

/("> n o + iii-i>x') - n —
»

/ e 5 / e 5'

where 5 C {1, 5} is the set of indices i for which ut 0, and S' C {1, s}
the set of indices i for which wz 0.

Another way of writing f(u) is

/(H) J! (1 -*,)•"<»'> • (1 + (<?;- 1 }X,)1-M,<ai) •

; 1

Plugging this formula into E„sM/("), we get

E„**/(") iiî-.a+ (?/-!)*/)• (1+(g;-i)x,)>>("')

II 1 0 + (<7/ — 1)^/) ' Pm (1
+ (?] - l)x, ' •••' 1 + (qs - l)xs) •

Comparing the two expressions for £M6M/(w), we get the theorem.

5. The deficiency

The main further necessary condition for a root system to be contained in
an even unimodular lattice of the same rank is provided by the notion of
deficiency (Defekt) introduced and studied in [KV].

If R is a root system of rank n, the deficiency of R, denoted d(R),
is the difference n — m, where m is the maximal cardinality of a set

{#!, am} C R of mutually orthogonal roots

(at, aj) 25/7, for all 1 ^ i, j ^ m

We use this notion only if all roots in R have the same scalar square 2.

If R Ri EE R2, then d(R) d{R\) + d(R2). The values of the

deficiency for the irreducible root systems are

d(A,)[I]

(0
for I even,

1 for / odd

d(E6)2, d(E7)Eg) 0
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By Satz 5 of [KV], if R is the (complete) root system of an even unimodular

lattice of rank 32, then

d(R) 0,8, 12, 14, 15 or 16

The proof consists in constructing from the given lattice a new lattice L,
still of rank 32 and containing the orthogonal sum of m 32 - d{R) copies

of Z. Thus, L Zm EE L0i where L0 is again unimodular and of rank d(R).
(Hence, rank(L0) ^ 16.)

By Martin Kneser's classification of unimodular (positive definite) lattices

of rank ^ 16, the rank of L0, i.e. d(R) can only take the above values.

(See [Kn], Satz 1.)

In setting up the tables we conveniently use the deficiency to discriminate
the various root systems R according to the value of d(R).

6. The tables

We now proceed to list the indecomposable even unimodular lattices L of
rank 32 with a complete root system R.

The presence in R of a factor of type E8 would produce a unimodular
sublattice ZE8 L0 C L, and hence a decomposition L L0 EE Lx for some
(even) unimodular Lx of rank 24. Hence, we assume throughout that R has
the form

R A/j EE EE A/r IS Dmi E E B mE6 B nE7

with no factor of type E8.
Altogether there are N 88523 such systems (of rank 32). The possible

dimensions for mE6 E nE7 are

D {0, 6, 7, 12, 13, 14, 18, 19, 20, 21, 24, 25, 26, 27, 28, 30, 31, 32}

and for d e D, there is a unique pair (m,n) such that d 6m + In. Hence

N Y*
d e i o P(i)d (32 — d — i)

wherep(i) is the number of partitions of i and q(j) is the number of partitions
Uli '"ijt) of j with 4 ^ j i ^ ^ j t. (Of course, we use the convention
P(0) q(0) 1.)

Among these, only 21209 have an acceptable deficiency, i.e. d 0,8,12,14,15
or 16. They are distributed as follows:
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Deficiency 0 8 12 14 15 16 Total

Number 347 9799 6282 3027 1523 231 21209

Number with zero
Witt class 347 848 306 90 57 28 1676

Number of connected

root systems with zero
Witt class 347 410 108 34 24 11 934

We say that a root system R is not connected if R Rx U R2 is a

disjoint union of mutually orthogonal root systems Ri,R2 such that T(R0
and T(R2) have relatively prime orders.

If R Ri U R2 is not connected, a metabolizer for T(R) T(Ri)
EE T(R2) will have the form M - M\ EE M2, where M, is a metabolizer
for T(Ri), i - 1,2 and any lattice L with (complete) root system R will split
as L Lx EE L2, with Li,L2 unimodular and with root systems R\,R2
respectively. Thus, if R is not connected, it does not qualify as a candidate

root system for an indecomposable unimodular lattice of the same rank.

Sifting the root systems for the purpose of setting up the tables, we retain

only the connected ones. Of course, a decomposable 32-dimensional lattice
which does not involve a ZE8 factor can only be the orthogonal sum
of 2 copies of the indecomposable 16-dimensional lattice T16 in the notation
of [MH], Lemma 6.1, p. 27. However, the criterion is a handy one to include
in a computer program and it does considerably shorten the lists of candidates.

The number of remaining systems is shown as the last line in the above table.

In order to get some experimental estimate on the relative strengths of the

various conditions we are using, let me display the (otherwise irrelevant) list
of connected systems of admissible deficiencies. (See the table next page.)

Comparing the last lines of the two tables we see that the condition on the

Witt class is fairly stronger than merely requiring the order of T(R) to be

an integral square. (Of course, if T(R) contains a metabolizer M M±,
then I T(R) | \M\2.) A simple example of a root system R with non-zero
Witt class but | 7%R) | a square is R 2A5 EE A8 EE D4 EE D8 which is

connected (and has deficiency 8). There are 1302 - 934 368 such.
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Deficiency 0 8 12 14 15 16 Total

Connected

root systems 347 2154 1051 425 150 25 4152

Connected root
systems with

T{R) a square 347 610 214 79 38 14 1302

The 934 root systems of the bottom row of the first table all possess a

metabolizer. However, a metabolizer M C T{R) will produce a unimodular

lattice L with root system exactly R only if for each non-zero 5 e M the norm

n{s) is an integer larger than 2:n(,s) > 2. (The norm has been defined in

Section 2.) Moreover if L is to be an even lattice, n(s) must in addition be

an even integer. A metabolizer M satisfying n^) 0 {modi) and n(s') > 2

for every s e M, s ^ 0 will be called admissible.

The norms of the elements of T(A/), T(D/), T(E6), and T(E7) have been

recalled in Section 3:

n(*r) r";++'rr> for 6 AA,), 0, 1, I,
nCfi) nO>3) §, n(y2) 1 for 7(D,)

'

I for z e r(Et), 0
n(z)

2 for z e T(E7), z ^ 0

Thus, the norm of any element in the discriminant T(R) of a root
system R can easily be calculated. Of course, in general n(s + s') ^ n(s)
+ n(s') for 5-, s' e T(R). However, n(5 + s') 11(5-) + n(s') holds true if s, s'
belong to the discriminants T(R{), T(R2) of mutually orthogonal root
sub-systems.

Only the weights of admissible elements may occur with non-vanishing
coefficient in the weight enumerator polynomial PM of a putative
(admissible) metabolizer M.

Before embarking on using the duality theorem, it is possible, in some
favorable cases, to eliminate a root system directly by inspection:

If M C T{R) is an admissible metabolizer, then for every prime number

p, the /^-component Mp of M is an admissible metabolizer for the induced
bilinear form on the p-component T(R)P of T(R). There are cases of root
systems R and suitable choice ofp for which it is apparent that no metabolizer
of T{R)P is admissible. As an example, suppose that R A2 EB A5 EB R\
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where the order of T(R') is prime to 3. Then, T(R)3 T(A2 ffl A5)3

T(A2) ffl T(A5)3 Z/3Z © Z/3Z generated by $1 (1, 0), s2 (0, 2),
where (1,0) stands for the projection of e (ZA2)# in T(A2) ffl T(A5)3
and (0,2) stands for the projection of x2 e (ZA5)# in T(A2) ffl T(A5)3 in
the notations of Section 3. Now, nCs© \ and n(i,2) f, and for every
s e T(A2 ffl A5)3 one has 11(5") ^ 2.

This argument eliminates the root systems of the form R X ES R', with
T(R') of order prime to 3 if A" is any member of the following (small but
frequently arising) black list:

X A2 BB As, 2A2 ffl 2A5, 2A2 ffl As 09 E6

Similarly, R mA2 ŒI nA5 ffl A8 ffl R', with T(R') of order prime to
3 cannot occur for any m, n ^ 0.

Indeed, for any putative admissible metabolizer M, one should
have M3 C T(mA2 ffl nA5)3 ffl 3T(A8) because any 5 e M3 with 3s 0

would produce an element s' 3s (0m, 0", ± 3) e M3, s' ± 0, of norm
n(s') 2, which is inacceptable.

But then M'3 M3 n T(mA2 ffl nA5)3 would be a metabolizer in
T(mA2 ffl nA5)3, and therefore M0 M n T(i?0) a metabolizer in r(i?0)»
where i?0 mA2 ffl nA5 ffl R'. (The subgroup M'z is obviously self-

orthogonal and it has the right order.) Setting n0 : (ZR0) * T(R0)k the
natural projection, the inverse image L0 710~1 (M0) would be a unimodular
sublattice and hence an orthogonal summand of L.

If no such simple argument is available, the root system is to be tested using
the duality theorem of Section 4.

For a given root system R, the coefficients in PM of weight monomials
which are not representable by any admissible elements in T(R) must be 0.

The duality theorem, using M M1, is then a linear system for the

remaining coefficients of PM which must be solvable in non-negative integers.
In many cases, this system is not even solvable in rational numbers or if it is,

some coefficients turn out to be negative or fractional. Here, all cases occur.
In most of the remaining cases where the existence of the polynomial is not
prohibited by MacWilliams duality, an admissible metabolizer and hence an

even unimodular lattice can actually be constructed.

Completeness of the lists thus relies on a lengthy elimination procedure,
let alone the heavy use of machine testing, subject to all sorts of failure. It
would certainly be desirable to supply an alternate, perhaps less computational,

approach.



UNIMODULAR LATTICES 77

The above classification program really begins with the root systems of

deficiency 8. For the root systems of deficiency 0, there is another, fairly

different method, due to H. Koch and B. Venkov, which we recall in the

next paragraph.

Notations in the tables

The notation for root systems R is self-explanatory: If e.g. R 8Ai
EE 8A3, then ZR is the orthogonal direct sum

ZR ZAj EE • • • EE ZAj ffl ZA3 EE • • • ffl ZA3

of 8 copies of ZAt and 8 copies of ZA3.
In order to describe a unimodular lattice L containing ZR we display a

filling set S, i.e. a set of vectors in (ZR)# which together with ZR

generate L. The terminology is intended to be reminiscent of the similar

notion of a glueing set occuring in the paper of J. Conway and V. Pless [CP].
Let R Ri EE ••• ffl i?r be the decomposition of R in irreducible

components. The vectors in the filling set S contained in

(ZR)# (ZRA* ffl ••• ffl (ZRr)*

are specified by their coordinates in the successive (Zi?/)#, i 1, r.
Vectors in the filling set are taken with minimal norm in their class

modulo ZR. It is thus easy to read off the norm of an element in S from its

displayed expression in coordinates. If the z-th irreducible component R( of R
is A/,D/,E6, or E7, the number k as the z-th coordinate of a vector
of S stands for the element noted xk(Ri) in Section 3.

In order (hopefully) to improve readability, I have separated by a
semi-colon the components of a filling vector belonging to different
multiple root systems. Thus, for instance 5- (1 ; 2; 1, 0) in the filling set for
the root system A3 ffl A15 ffl 2E7, the 16-nth root system with deficiency 8

occuring in the tables, stands for the vector s x i(A3) + x2(A15)
+ x1(E7) + 0 in (ZA3)* ffl (ZA15)* ffl (ZE7)* ffl (ZE7)*. Its norm is

4 16 2

After the filling set, the reader will find the weight enumerator polynomial,
sometimes just called the "polynomial" of the metabolizer n(L),
where n:(Z R)*->T(R).Theweights refer to the indicated decomposition
of the root system under discussion, i. e. one variable only for each multiple
factor nR,,whereR, is irreducible. Thus, for instance, the term 56in the
polynomial for R 8A] ES 8A3 means that the metabolizer M contains
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56 vectors with 4 non-zero coordinates among the first 8 corresponding to
T^Ai)8 and 2 non-zero coordinates among the last 8 corresponding to
T(A3)8. As an example, we find among these vectors the images in T(R)
of the vectors s4is5,s6,s7 of the filling set.

The root systems with a fixed deficiency are listed in alphabetical order.

1. Root systems with deficiency 0

This case has been treated by H. Koch and B. Venkov. (See [KV], Satz 3.)

If L is an even unimodular lattice of rank 32 with a complete root system of
deficiency 0, then L contains 32 mutually orthogonal vectors of scalar

square 2, i.e. ax, a32 e L such that (ai9 cij) 28z7.

Let TV Zflj ffl Za2 ffl ffl Zö32 and let N# Zoo ffl ffl Za32 be

the dual lattice, where a, — \a\.
Since (x, u) e Z for all x e L, u e N, we have L C N#. The quotient

N*/N is the 32-dimensional vector space F322 with the standard scalar

product (8/, sj) \ ô/y (induced by the scalar product on N#), where 8Z

stands for the image of az- under the projection n :N# N*/N.
The image CL n(L) of the lattice L is then a self-dual code (of

dimension 16) in F322. Because L is even, it follows that CL is a doubly-even
code (i.e. all code words have a weight divisible by 4).

Now, the doubly-even self-dual codes in F^2 have been classified by
J. Conway and V. Pless in [CP]. There are 85 of them. Crossing out from this

list the decomposable ones, we arrive at a list of 75 codes, and therefore
75 irreducible even unimodular lattices, corresponding to 62 root systems.

For the details, see [CP] and [KV].
It turns out that all the examples of non-isomorphic even unimodular

32-dimensional lattices with the same complete root system occur in the case

of deficiency 0.

The reader who wishes to see these examples explicitly must therefore turn
to [CP].

In the following subsections 2 to 6, containing the list of lattices with

non-zero deficiency, each realizable root system uniquely determines the lattice

to which it belongs.

2. Root systems with deficiency 8

There are 29 even unimodular lattices of rank 32 having a complete root
system of deficiency 8. Each lattice is uniquely determined by its root system.
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(1) 8Ai EB 8A3

A filling set for the corresponding lattice consists of the following 8 vectors

s0 (0, 0, 0, 0, 0, 0, 0, 0; 1, 1, 1, 1, 1, 1, 1, 1),

s (1, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 1, 1, 1),

s2 (0, 1, 1, 0, 0, 0, 0, 0; 0, 0, 1, 1, 1, 1, 0, 0),

s3 (0, 0, 0, 1, 1, 0, 0, 0; 0, 1, 3, 0, 0, 1, 3, 0),

s4 (1, 1, 1, 1, 0, 0, 0, 0; 0, 0, 0, 0, 2, 2, 0, 0),

s5 (0, 0, 1, 1, 1, 1, 0, 0; 0, 0, 0, 0, 0, 2, 2, 0),

s6 (0, 1, 1, 0, 0, 1, 1, 0; 0, 0, 2, 0, 0, 2, 0, 0),

s7 (0, 0, 0, 0, 1, 1, 1, 1; 0, 0, 0, 0, 0, 0, 2, 2).

The weight enumerator polynomial is

P(x>y) 1 + xS+ 5 6x4y2+ 14y4 + 112x2y4 + 112x4.y4

+ 112x6y4 + 14x8y4 + 896x4y5 + 672x2y6 + 56x4y6

+ 672 x6y6+896x4y7 + 17y8 + 112x2y8 + 224x4y8

+ 112x6y8 + 17x8y8.

The (rather delicate) discussion of this root system in presented in Section 7.

(2) 4Ai EE] 4A5 EE! Dg

Filling set S<Sis2,s3, s4, s5, s6, s7 >, where

s, (1, 0, 0, 0; 3, 0, 0, 0; 1), s2 (0, 1, 0, 0; 0, 3, 0, 0; 1),

s3 (0, 0, 1,0;0, 0, 3, 0; 1), s4 (0, 0, 0, 1; 0, 0, 0, 3; 1),

s5 (1, 1, 1, 1; 0, 0, 0, 0; 3), s6 (0, 0, 0, 0; 0, 2, 2, 2; 0),
s7 (0, 0, 0, 0; 2, 0, 2, 4; 0).

Polynomial

P(x,y, z)1 + 6x2y2+ 8y3 + 24x2y3 + 24x2y4 + 9x4y4 + x4z + 4

+ 4x3yz + 6 x2y2z+ 36xy3z + 24x2y3z + 36x3y3z
+ 8x4y3z + 9 y4z +32xy4z + 24x2y4z + 32x3y4z.

(3) 2Ai ffl 2A3 IS 2A7 S D10

Filling set

S< Si, s2, s3, s4 >, where

Si (1, 0; 2, 0; 0, 0; 1), s2 (0, 1; 0, 2; 0, 0; 3),
s3 (0, 0; 1, 1; 2, 0; 2), s4 (1, 1 ; 0, 1 ; 1, 1 ; 1).
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Polynomial

P(x,y, z, t) 1 + 2y2z + 4x2y2z + z2 + 4yz2 + 8x.yz2 + 8xj>2z2

+ 4x2.y2z2 + 2xyt + x2y2t + 2x2zt + 4xyzt + 4y2zt
+ 8 xy2zt + 4xz2t + 8j>z2^ + 10xyz2t + 12x2.yz2£

+ \2y2z2t + 20xy2z2t + 9x2y2z2t.

(4) 2Ai EH 2A9 Œl D12

Filling set

S <(1, 0; 5, 0; 1), (0, 1; 0, 5; 1), (1, 0; 0, 5; 2),

(0, 0; 2, 4; 0) >

Polynomial

P(x,y,z) 1 + 4y2 + 5x2.y2 + x2z + 4xyz + 5 y2z + 16xy2z + 4x2y2

(5) Ai Œl A3 EH 2A7 EH D7 Œ E7

Filling set S < S\, s2, S3 > where

sx 1; 1; 1, 3; 0; 0), s2 (0; 1; 2, 4; 1; 0),

s3 (1; 0; 0, 4; 0; 1).

Polynomial

P(x,y, z, t,u) 1 + z2 + 2yz2 + 4xyz2 + 6yzt + 2z2t + 4xz2t
+ 4j>z2* + 8 xyz2t + 2xzu + 4yz2u + 2xyz2u
+ xytu + 4x.yz/w + 4z2tu + 2xz2tu + Syz2tu
+ 5xyz2tu.

(6) Ai Œ A5 Œ An Œ D5 Œ D10

Filling set S < (1 ; 3; 0; 2; 2), (0; 3; 0; 0; 1), (1; 0; 3; 1 ; 0), (0; 2; 4; 0; 0)

Polynomial

P(x, y, z,t,u)= 1 + 2j>z + zt + 2xzt + 2yzt + 4xj>zf + + xzw
+ 2yzu + 5 xyzu + xtu + xytu + 2ztu + 13yztu
+ 10xyztu.

(7) Ai Œ A17 Œ D14

Filling set S <(1; 0; 1), (0; 9; 3), (0; 6; 0)>.
Polynomial P(x,y, z) 1 + 2y + xz + 3^z + 5xyz.

(8) 8A3 Œ 2D4
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Filling set S <s{f s2i s3y s4, s5i s6>, where

si (1, 1, 1, 1, 1, 1, 1, 1; 0, 0), 52 (0, 1, 0, 0, 1, 3, 2, 1; 0, 0),

53 (0, 0, 1, 0, 1, 0, 1. 1; 1, 0), 54 (0, 0, 0, 1, 0, 1, 3, 3; 2, 0),

55 (0, 2, 0, 0, 0, 2, 0, 0; 1, 1), 56 - (0, 2, 0, 0, 2, 0, 0, 0; 2, 2).

Polynomial

P(x,y) 1 + 14x4 + 16a5 + 16a7 + 17a8 + 48a4j + 288A6y

+ 48a87 + 12a2^2 + 24A4j2 + 240A5^2 -1- 12A6J2

+ 240A7y2 + 48A8y2.

(9) 8A3 03 D8

Filling set S< Sj, s2, s3,s4,s5 >,where
s, (1, 0, 0, 0, 2, 1, 1, 1; 0), s2 (0, 1, 0, 2, 1, 0, 1, 1; 0),
s3 (0, 0, 1, 1, 0, 2, 1, 1; 0), s4 (0, 0, 0, 1, 1, 2; 1),

s5 (0, 0, 0, 0, 0, 0, 2, 2; 3).

Polynomial

P(x,y)1 + 14x4 + 48 a: 5 + 48x7 + 17x8 + 4x2y + + 112x5y
+ 100x6>' + 112x7.y + 32x8y.

(10) 7A3 03 Du
Filling set S <sIt s2, s3,s4>,where

s, (1, 0, 0, 2, 1, 1, 1; 0), s2 (0, 1, 0, 1, 2, 3, 1; 0),
s3 (0, 0, 1, 3, 3, 2, 1; 0), s4 (0, 0, 0, 1, 3, 1, 2; 1).

Polynomial

P(x,y) 1 + 7x4 + 42x5 + 14x7 + + 70 + + 17

(11) 6A3 EB 2D7

Filling set S<si, s2, s3, s4>,where
s, (1, 0, 0, 0, 1, 1; 0, 1), s2 (0, 1, 0, 0, 1, 3; 1, 0),
s3 (0, 0, 1, 0, 1, 2; 1, 1), j4 (0, 0, 0, 1, 2, 1; 3, 1).

Polynomial

P(x,y)1 + 3x4 + 12x5+ 24 x3y+ 12 + 48 + 12x6y
+ 3 x2y2+ 24 x3y2+ 48x4y2 + 36x5y2 + 33x6y2.
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(12) 4A3 œ 4D5

Filling set S< 5j, s2, 53, 54 >, where

5, (1, 1, 1, 1; 2, 0, 0, 0), 52 (1, 1, 0, 0; 1, 1, 0, 0),

53 (0, 1, 3, 0; 0, 1, 1, 0), 54 (0, 0, 3, 1; 0, 0, 1, 1).

Polynomial

P(x,y) 1 + x4 + 8 x4y + 36x2y2+ 24x4.y2 + 96x3^3 + 8x4_y3 + y4

+ 8x^4 + 24x2j4 + 8x3^4 + 41

(13) 2A3 EB 2A7 ES 2D6

Filling set

S= <(1,0; 1, 1; 1,0), (1, 1; 2,0; 2,0), (2, 0; 0, 0; 1, 1), (0, 2; 0, 0; 3, 3) >.

Polynomial

P(x,y,z) 1 + 2x2y + y2 + 4xy2 + 8 x2yz + 16xy2z + 24x2y2z

+ 2xz2 + x2z2 + 2yz2 + 4xyz2 + 8 x2yz2 + 4y2z2

+ 22xy2z2 + 29x2y2z2.

(14) A3 BS A5 EH An EH DÖ EB E7

Filling set S < s0, S\, s2, s3>, where

Ao (1; 3; 3; 0; 1), Si (2; 3; 0; 1; 0),

a2 (0;0;6;3; 1), *3 (0; 2; 4; 0; 0).

Polynomial

P(x,y, z,t,u) l+xz + 2yz + 2xyz + xyt + 2xzt + 3yzt + 12xyzt
+ 6xyzu + xtu + ytu + ztu + 2xztu + 4yztu
+ 9xyztu.

(15) A3 EH An EB Du EH EÖ

Filling set

S= <(1; 3; 2; 0), (0; 6; 1; 0), (0; 4; 0; 1) >.

Polynomial

P{x, y, z, t) m 1 + xy + xz + yz + 4xyz + 2yt + 2xyt -f 2yzt
+ 10xyzt.
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(16) A3 EB A15 EB 2E7

Filling set S <(1; 2; 1, 0), (2; 0; 1, 1) >.
Weight polynomial

P(x, y, z) 1 + y + 2xy + 8xyz + xz2 + 2yz2 + xyz2.

(17) 4A5 EE 2D6

Filling set S < S2, S3 > where

S2 <(3,0,0,0; 1,2), (0,3, 0,0; 3, 2), (0, 0, 3, 0; 2, 1), (0, 0, 0, 3; 2, 3) >,
S3 < (0, 2, 2, 2; 0, 0), (2, 0, 2, 4; 0, 0) >.

Polynomial

P(a, y) 1 + 8x3 + 2x2y + 20x3y + 32x4y + 4xy2 + 4x2y2

+ 40x3y2 + 33x4y2-

(18) 4A5 ffl D12

Filling set 5 < S2, S3>, where

S2 < (3, 3, 3, 3; 0), (3, 3, 0, 0; 1), (0, 3, 3, 0; 2) >
S3 <(0, 2, 2, 2; 0), (2, 0, 2, 4; 0) >.

Polynomial

P(x, y) 1 + 8a3 + 9xA + 6 x2y + 24x3y + 2AxAy.

(19) 3A5 ffl D4 ŒI EÖ EE E7

Filling set S < Si, s2, s3, s4, s5 >, where

5! - (0, 3, 3; 1; 0; 0), s2 (3, 0, 3; 2; 0; 0),
s3 (3, 3, 3; 0; 0; 1), s4 (2, 2, 0; 0; 1; 0),

(2, 4, 2; 0; 0; 0).

Polynomial

P(x,y, z, t) 1 + 2x3 + 3x2y + 6x3y + 6x2z + 6x2yz + 12x3yz
+ 3 x3t + 3 xyt + 6x3yt + 6x3zt + 12x2yzt + 6x3yzt.

(20) 2A5 EB D10 ffl 2E6

Filling set

5= <(3, 0; 1; 0, 0), (0, 3; 3; 0, 0), (2, 2; 0; 1, 0), (2, 4; 0; 0, 1)>.
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Polynomial

P(xfy, z) 1 + 2xy + x2y 4- 4x2z + 12x2yz 4- 4xz2 + 4xyz2
+ 8x2yz2.

(21) As ffl An ffi d9 œ Et
Filling set

S <(0; 3; 1; 1), (3; 6; 0; 1), (2; 4; 0; 0) >.
Polynomial

P(x,y, z, t) 1 4- 2xy + yz + 8xyz + 3xyt 4- xzt 4- 2yzt + 6xyzt.

(22) 2A7 EB 2D5 EB Ds

Filling set S < (1, 1; 1,0; 2), (2, 0; 1, 1; 0), (0, 0; 2, 2; 1) >.
Polynomial

P(x, y, z) 1 + x2 + 4x2y + 6xy2 + 4x2y2 + 2xz + 20x2yz + y2z
4- 4xy2z + 21 x2y2z.

(23) 2A7 ffl D5 EB D13

Filling set S <(1, 3; 1; 0), (2, 0; 1, 1)>.
Polynomial P(x,yyz) l + x2 + 6x2y + 6x2z + 6xyz + 12x2yz.

(24) 2A7 BB 2D9

Filling set S <(1, 1; 1,0), (2, 0; 1, 1)>.
Polynomial P(x,y) 1 + x2 + 12x2y + 6xy2 + 12x2y2.

(25) 2A9 ffl D14

Filling set S <(5, 0; 1), (0, 5; 3), (2, 4; 0)>.
Polynomial P(x,y) 1 4- 4x2 + 2xy + 13x2y.

(26) 2A9 Œl 2E7

Filling set S<(5, 0; 1, 0), (0, 5; 0, 1), (2, 4; 0, 0)>.
Weight polynomial P{x,y) 1 + 4x2 + 2xy + 8 + 5x2y2.

(27) An Œl Dis Œ EÔ

Filling set S<(3; 1; 0), (4; 0; 1)>.
Polynomial P(x, y,z) 1 + 3 xy+ 2x7, + 6xyz.
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(28) Ai5 EE Ü5 ffl Di2

Filling set S - <(2; 1; 1), (0; 2; 3)>.
Polynomial P(x, y, z) - 1 + x + 2xy + 2xz + yz + 9xyz.

(29) Ais IS Dit
Filling set S < (2; 1) >.
Polynomial P(x, y) I + x + 6xy.

3. Root systems with deficiency 12

There are 10 root systems of rank 32 and deficiency 12 appearing as the

root system of a (unique) even unimodular lattice of rank 32.

(1) 4Ai S 4A7

The filling set S < s2, s3, s4> is given by

si (1, 0, 0, 0; 1, 1, 1, 1), s2 - (1, 1, 0, 0; 2, 2, 0, 0),

s3 (0, 1, 1, 0; 0, 2, 6, 0), s4 (1, 1, 1, 1; 0, 0, 0, 4).

The weight enumerator polynomial of the corresponding metabolizer reads

P(x, y) 1 + 4x4y + 6y2 + 24x2y2 + 48x2y3 + 4x4y3 + 9y4 + 64xy4
+ 24x2y4 + 64x3y4 + Sx4y4.

(2) 4A2 S 4A5 S D4

Filling set S <su s2, s3> x < s4, s5, s6, s7 >, where

S! (0, 0, 0, 0; 3, 3, 3, 3; 0), s2 - (0, 0, 0, 0; 3, 3, 0, 0; 1),
s3 (0, 0, 0, 0; 0, 3, 3, 0; 2),

s4 * 1, 1, 1, 1; 2, 0, 0, 0; 0),
s5 (1, -1, 1,-1; 0, 2, 0, 0; 0),
s6 (1, 1, -1, -1; 0, 0, 2, 0; 0),
s7 (1, -1, -1, 1; 0, 0, 0, 2; 0).

Weight enumerator polynomial

P(x9y, z) 1 + Sx4y + 24x2y2 + 32x3y3 + y4 + 16xy4 + 24x2y4
+ 32x3y4 + 24x4y4 + 6y2z + 24x2^2z + 24x4y2z
+ 96x2y3z + 96x3y3z + 24x4y3z + 4Sxy4z + 24x2^4z
+ 96x3y4z + 48x4y4z.
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(3) 4A2 Œ 4E6

Filling set S < s2, s3, s4>, where

sl (1,0,0,0; 1, 1, 1, 1),

52 (0,1,0,0; 1,-1, 1,-1),
53 (0,0, 1,0; 1, 1, -1, -1),
54 (0,0,0, 1; 1, -1, -1, 1).

Weight enumerator polynomial

y) 1 + 8x4y + 24x2y2 + 32x3y3 + 8xy4 + 8x4y4.

(4) 2A2 EH 2An ES Dé

Filling set

S < (0, 0; 3, 3; 1), (0, 0; 6, 0; 2), (1, 1, 4, 0; 0), (1, 2; 0, 4; 0)

Polynomial

Pix, y, z) 1 + 4x2y + y2 + 8xy2 + 4x2j>2 + 2yz + 4x2yz + 4y2z
+ 24xy2z + 20x2y2z.

(5) A2 SB A9 Œ A14 Œ E7

Filling set 5= <(1; 0; 5; 0), (0; 2; 3; 0), (0; 5; 0; 1) >. «

Weight polynomial

Pix, y, z,t) 1 4- 2xz + 4yz + 8xyz + yt + 4yzt + 10xyzt.

(6) A2 EH A23 EH E7

Filling set S <(1; 8; 0), (0; 6; 1)>.
Weight enumerator polynomial

Pix, y, z) 1 + y + 4xy + 2yz + 4xyz.

(7) 6A3 Œl 2A7

Filling set S < Si, 52, 53, 54 >, where

5! (2, 1, 1, 1, 1, 0; 0, 0), 52 (1, 2, 1, 3, 0, 1; 0, 0),

53 (1, 1, 1, 0, 0, 0; 1, 1), 54 (0, 2, 1, 1, 0, 0; 2, 0).

Weight enumerator polynomial

P(x,y) 1 + 3x4 + 12x5 + 6x2y + 24x3y + 48x5y + 18x6y + y2

+ 72x3y2 + 123x4j2 + 132x5^2 + 72x6y2.
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(8) 2A4 EE 2A9 EE DÖ

Filling set

<(0, 0; 5, 0; 1), (0, 0; 0, 5; 3), (1, 0; 2, 2; 0), (0, 1; 2, 8; 0) >.

Polynomial

P(x, y, z)1 + 8x2y+ 8xy2 + 8x2y2 + 2yz + 8 + y2z

+ 24x^2z + 40x2y2z.

(9) A4 EE A19 EB D9

Filling set S «=» < (0; 5 ; 1), 1 ; 4; 0) >
Polynomial P(x,y,z) 1 + 4xy + 3yz + 12xyz.

(10) As EE Ai7 EE E7

Filling set S < (4; 2; 0), (0; 9; 1) >.
Weight polynomial P(x, y, z) 1 + 8xy + yz + 8xyz.

4. Root systems of deficiency 14

There are 5 root systems with deficiency 14 which appear as a complete
root system in an even unimodular lattice of rank 32. There is only one lattice
for each realizable root system.

A filling set 5 < Si, s2, s3, s4, s5, s6> is as follows

(0, 1, 1, 1, 1, l, 1, l, 1, 1; 0, 0),
s2 «= (1, 1, 0, U 1, 2, 2, 2, 2, 1; 0, 0),
s3 (h 2, 1, 2, 0, 1, 1, 2, 2, 1; 0, 0),
s4 (1, 1, 2, 2, 1, 1, 0, 2, 1, 2; 0, 0),

*= (1, 1, 1, 1, 0, 0, 0, 0, 0, 0; 1, 0),
s6 (0, 0, 1, 2, 2, 1, 0, 0, 0, 0; 0, 1).

(1)

The weight enumerator polynomial is

P(x,y) 1+2y y 4x2y + 5y2 + 16xy2 + 4x2y2.

(2) ioa2 m 2e6
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The weight enumerator of the corresponding metabolizer is

P(x,y) 1 4- 60a6 + 20x9 + 60x4y + 240x7y 4- 24a1 V
+ 144x5y2 + 180x8.y2.

See the following Section 7 for the relationship of this root system with
conference matrices.

(3) 2A2 EE 2A3 EE 2An
Filling set

5= <(0,0; 1,2; 3,0), (0, 0; 2, 1 ; 0, 3), (1, 1 ; 0, 0; 4, 0), (1, 2; 0, 0; 0,4) >

Polynomial

P(x,y, z) 1 + 4x2z + 2yz + 4x2yz 4- 4y2z + 8x2y2z + 4xz2 + 4yz2
4- 24xyz2 4 20x2yz2 + 5^2z2 + 3 6xy2z2 4- 28x2y2z2.

(4) 2A5 SB 2An
Filling set

S <(3, 0; 3, 3), (3, 3; 6, 0), (2, 0; 4, 0), (0, 2; 0, 4) >.

Polynomial

P(x,y) 14* 4xy 4- 6x2y + y2 4- 16xy2 + 44x2y2.

(5) An ffl A15 EE EÖ

Filling set 5 < (3; 2; 0), (4; 0; 1) >.
Polynomial P(x,y, z) 1 + y 4- 6xy + 2xz 4- 14a^z.

5. Root systems of deficiency 15

There are 8 root systems of deficiency 15 which occur as the complete root
system of an even unimodular lattice of rank 32. Each lattice is uniquely
determined by its root system.

(l) Ai ES 3Ä6 EE A13

Filling set

S= <(1; 0, 0, 0; 7), (0; 1, 2, 3; 0), (0; 2, 6, 0; 2) >.

Polynomial

P(x,y,z) 1 4- 6y3 + az + 18y2z + 18xy2z + 24y3z 4- 30xy3z.
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Here again, the polynomial is the only candidate satisfying duality. In turn,

the given filling set is uniquely determined by the polynomial.

(2) Ai EB Aio IS An
Filling set S< (1 ; 0; 11), (0 ; 1 ; 8) >.
Polynomial P(x, y,z) I + xz + 10 + lOxyz.

(3) Ai S A31

Filling set S - < (1 ; 4) >
Polynomial P(x,y) 1 + 3y + 4xy.

(4) 13A2 EB EÖ

Filling set S <Sq, Si, s2, s3i S4, s5, s6> as follows

50 — (i, l, 1, l, l, l, 1, 1, 1, ip 1, 1, 1; 1),

51 (2, 0, 1, 0, 2, 1, 2, 1, 0, 0, 0, 0, 0; 0),

a2 - (0, 2, 0, 1, 0, 2, 1, 2, 1, 0, 0, 0, 0; 0),

s3 - (0, 0, 2, 0, 1, 0, 2, 1, 2, 1, 0, 0, 0; 0),

s"4 « (0, 0, 0, 2, 0, 1, 0, 2, 1, 2, 1, 0, 0; 0),

a5 (0, 0, 0, 0, 2, 0, 1, 0, 2, 1, 2, 1, 0; 0),

sß (0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 1, 2, 1; 0).

The weight enumerator is

P(x,y) 1 + 156x6 + 494x9 + 78x12 + 26x4y + 624x7y

+ 780xl0y + 28x13y.

Note that M0 M n F(13A2), where M is the metabolizer generated

by S in F(13A2 EE E6), is the cyclic code in F3[x]/(x13 - 1) generated by

g(x) x7 - x6 + x5 - x4 + x2 - 1

(x - 1) (x3 + X2 - 1) (X3 - X2 - X - 1)

with roots a4, a7, a8, a10, a11, a12, a13 1, where a is a root of
A3 - A - 1 in F27.

(5) A2 EB A5 EB As BB A17

Filling set

5= <(0; 3; 0; 9), (1; 4; 1; 4), (1; 2; 3; 0) >.

Polynomial

P(x,y, z,t) 1 + 2xyz + yt + 4xj>* + 2zt + 6xzt + I4yzt + 24xyzt.
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Here, in order to prove uniqueness, one should first observe that the weight
enumerator of the metabolizer is uniquely determined by the duality theorem
of Section 4. It is then easy to see that the above filling set is the only
possible one.

(6) A2 EB 3Ag EB Eß

Filling set

S <(0; 1, 1, 1; 1), (1; 3, 0, 0; 1), (1; 0, 3, 0; 1) >.

Weight enumerator

P(x,y, z) 1 + 6yz + 2y3 + 18xy2 + 6xyz + 6xy2z + 18y3z

+ 24xy3z.

For the proof of uniqueness, one first observes that the above polynomial
is the only one compatible with the requirement of duality. Then, the only
6 candidates for the weight xyz are ± (1 ; 3, 0, 0; 1), ± (1 ; 0, 3, 0; 1) and

± (1 ; 0, 0, 3 ; 1).

The vector (0 ; 1, 1, 1 ; 1) is then uniquely determined, up to obvious

automorphisms, by the requirement of compatibility with the other 3 vectors.

(7) AÖ EB A20 EE Eg

Filling set S < (0; 7; 1), (2; 3; 0) >.
Polynomial P(x,y,z) 1 + 6xy + 2yz + 12xyz.

(8) A.26 ffl E6

Filling set S < (3 ; 1) >
Weight enumerator P(x,y) 1 + 2x + 6xy.

6. Root systems of deficiency 16

There are 5 root systems of deficiency 16 occuring as the root system of
even unimodular lattices of rank 32. Each of these lattices is determined by
its root system.

(l) i6A2
The system of filling vectors can be taken as the rows of an 8 x 16 matrix

S(/, H)
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where I is the 8x8 identi

/
y matrix and H is the Hadamard matrix

\
The weight enumerator is

P(x) 1 + 224x6 + 2720x9 + 3360a12 + 256x15.

The uniqueness of the lattice with this root system follows from the

classification of self-dual codes in F36 due to J. Conway, V. Pless and

N. Sloane in [CPS].

(2) 2A2 EB 2Ai4

Filling set S<(1, 0; 5, 0), (0, 1; 0, 5), (0, 0; 3, 6) >.
Weight enumerator P(x,y) 1 + 4xy + 4y2 + 16xy2 + 20x2y2.

(3) 8A4

Filling set S < Si, s2, s3, s4>, where Si, s2, s3, ^4 can be taken to be
the rows of the matrix

1 1 1 \
1 1-1
1 -1 -1
1 -1 1/

The weight enumerator is

P(x) - 1 + 48x4 + 32a5 + 288a6 + 128a7 + 128a8.

For the proof of uniqueness, see the comments in the next section.

(4) 4A8

Filling set S <(1, 1, 4, 0), (1, -1, 0, 4) >.
Weight enumerator P(a) 1 + 32a3 + 48a4.

(5) 2A16

Filling set S< (1, 4) >
Weight enumerator P(x) 1 + I6x2.
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7. Comments

In this section we give some details on the construction and on the proof
of uniqueness of the even unimodular lattices of rank 32 with root systems

8Ax EB 8A3, 10A2 ffl 2E6, 13A2 ffl E6, and 8A4.
The first example, 8Ai ŒI 8A3, involves a rather heavy analysis,

requiring some overview of the self-orthogonal codes in r(8A3) which is also

necessary in order to treat the other root systems containing 8A3.
The last three examples are hopefully more attractive.

(l) 8Ai EB 8A3

Here we have deficiency 8 and any metabolizer M must be of order 212.

If M is an admissible metabolizer and P P(x, y) its weight enumerator
polynomial, the duality theorem of Section 4 provides an underdetermined
linear system for the coefficients of P. The coefficients c, a, ß, y of x6y8,
x8y6, x8y7 and x8y8 respectively can be taken as parameters and all other
coefficients are then linear expressions in c, a, ß, y.

Let the polynomial P be

P(xfy) 1 + cxy4 + c2y5 + c3y6 + c4y7 + c5y8 +

where the dots stand for the terms which are divisible by x.
Then, the coefficients cx, ...,c5 satisfy the equations

C\ — — 37 + a + 2ß + 3y,
c2 — 68 - 2a - 3ß - 4y,
c3 a,
c4 ß,

c5 y.

This shows that 1 + cx + c2 + c3 + c4 + c5 32. If M C r(8Ax ŒI 8A3)
is an admissible metabolizer, then 1 + cxy4 + c2y5 + c3y6 + c4y7 + c5y8

can be interpreted as the weight enumerator of N M n T(8A3).
Thus \N\= 32.

Step 1. We will first show that N is uniquely determined up to a (norm
preserving) automorphism of T(8A3).

Let N' N n 2T(8A3). Consider the exact sequence

0~*N'-+NI>N"-+0
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where 71 is the restriction to TV of the projection T(8A3) -> r(8A3)/2r(8A3),
and TV" 71(A) C r(8A3)/2r(8A3).

The map \y : TV" -* TV' given by \\f (x) 2y, where n (y) x is well defined,

linear and injective. Hence, | TV" | ^ | TV' | and since | TV | | TV' | • | TV" |, it
follows that there are 2 cases to be examined:

(1) I TV' I 16 and | TV" | 2

(2) I TV' I 8 and | TV" | 4

In case (1), there is just one possibility for TV', namely

TV' < (2, 2, 2, 2, 0, 0, 0, 0), (2, 2, 0, 0, 2, 2, 0, 0),

(2, 2, 0, 0, 0, 0, 2, 2), (2, 0, 2, 0, 2, 0, 2, 0) >

and there are 2 corresponding possibilities for TV, depending on whether

y (TV") < (2, 2, 2, 2, 2, 2, 2, 2) > or \|/(TV") < (2, 2, 2, 2, 0, 0, 0, 0) >
Note that there is a single orbit of vectors of weight 4 under the group of
permutations of the 8 coordinates in r(8A3) preserving TV'.

The 2 cases are specified by TV TV, or TV2, where

TV, < (1, 1, 1, 1, 1,1,1, 1), (2, 2, 2, 2, 0, 0, 0, 0),
(2, 2, 0, 0, 2, 2, 0, 0), (2, 0, 2, 0, 2, 0, 2, 0) >,

and

TV2 < (1, 1, 1, l, 2, 0, 0, 0), (2, 2, 0, 0, 2, 2, 0, 0),
(2, 2, 0, 0, 0, 0, 2, 2), (2, 0, 2, 0, 2, 0, 2, 0) >

For TVj, the weight polynomial is

Pi(0,y) 1 + 14y4 + 17y8

For TV2, the weight polynomial is

Pi(0,y) 1 + 14y4 + Sy5 + 8y7 + y8

However, in the second case, the polynomial coefficients of 7^(0,^)
would imply

a 0, ß 8, y 1

and thus c, — 18 for the coefficient of y4 in P(x,y). This case is therefore
impossible and we retain only the possibility TV TV, and

Pn(0,}>) 1 + 14y4 + 17y8

As we shall see, it will actually turn out that the above subgroup is the
only acceptable choice for TV M n r(8A3).
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In case (2), i.e. |TV'|=8, | TV" | 4, the possibilities for the weight
polynomial of TV' are

Moreover, in each case, TV' is unique up to permutation of coordinates:

(2.1) TV' < (2, 2, 2, 2, 2, 2, 0, 0), (0, 0, 2, 2, 2, 2,2,2), (2, 0, 2, 0,2, 0, 2, 0) >,
(2.2) TV' < (2,2, 2, 2, 0, 0, 0, 0), (0, 0, 0, 0, 2,2, 2, 2), (2,2, 0, 0,2, 2, 0, 0) >,
(2.3) TV' < (2, 2, 2, 2, 0, 0, 0, 0), (2, 2, 0, 0, 2, 2, 0, 0), (2, 0, 2, 0, 2, 0, 2, 0) >

In these cases, the image of \j/ : TV" -* TV' is a plane i.e. |\|/(TV")[ 4

and since the admissible vectors of weight 6 in r(8A3) are not divisible by 2

in the set of admissible vectors, it follows that \|/(TV") contains only vectors
of weight 0, 4 or 8.

In case (2.1), there is just one orbit of planes with all non-zero vectors of
weight 4 under the action of the group of permutation of coordinates
preserving TV', namely the orbit of < (2,2,0,0, 0,0,2,2), (2,2,0,2,0,2,0,2,0) >
However, it is easy to see that none of the admissible vectors v e T(8A3)
such that 2u (2, 0, 2, 0, 2, 0, 2, 0), is compatible with TV'. Typically, if
v (1, 2, 1, 0, 1, 0, 1, 0), then u + (2, 2, 2, 2, 2, 2, 0, 0) « (3, 0, 3, 2, 3, 2, 1, 0)

which has norm 5 and therefore is not admissible. Thus, in fact, case (2.1)
cannot occur.

In case (2.2), where

TV' < (2, 2, 2, 2, 2, 2, 2, 2), (2, 2, 2, 2, 0, 0, 0, 0), (2, 2, 0, 0, 2, 2, 0, 0) >

there are 2 orbits of planes in TV' under the action of the automorphism group
of TV':

— The orbit [uXiu2], [ux,u3\, [ux, u2 + u3] consisting of the planes

containing ux (2, 2, 2, 2, 2, 2, 2, 2) which is fixed by every automorphism.

— The orbit consisting of the planes [u2, u3], [ux + u2i u3], [u2, ux + u3\,

[ux + u2, ux + u3] not containing ux.

Here, we have set u2 (2, 2, 2, 2, 0, 0, 0, 0) and u3 (2, 2, 0, 0, 2, 2, 0, 0).

Thus, we have two possible choices for the plane y (TV"), namely [ux, u2]

or [u2,u3].
If \\f(TV") [ux,u2] is chosen, an enumeration of the possibilities shows

that we can then assume TV to be of the form

TV <(1, 1, 1, 1, 1, 1, 1, 1), (1, 1, 1,3,0,2,0,0), (2, 2, 0, 0, 2, 2, 0, 0) >

(2.1)

(2.2)

(2.3)

PN' 1 + 5y4 + 2y6, or

PN' =3 1 + 6y4 + y8, or

PN,= 1 + 7y4
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The resulting weight polynomial for TV, namely

PN 1 + 6y4 + Sy5 + Sy1 + 9y8

determines the coefficients a, ß, y as

a 0, ß 8, y 9

and then, throwing in the monomials containing x, PM becomes

PM(x, y) 1 + by4 + Sy5 + 8y1 + 9y8 + 24 x2y3 + cx2y4

+ (400 - 4c)x2y5 + 6cx2y6 + (472 - 4c)x2y7 + cx2y8

+ 32x4y2 + (344 - 2c)x4y4 + (112 -T 8c)x4y5

+ (1232 - 12c)x4y6 + (112 + 8c)x4y7 + (408 + 2c)*4.y8

+ 24x6y3 + cx8y4 + 8x8y5 + 8 x8y7 + 9 x8y8,

where c still has to be determined.

In order to calculate c, we examine the possible vectors of weight x2y1

in M. It is easy to see, considering the norm, that the only candidates must
have the form (1, 1, 0, 0, 0, 0, 0, 0; 2, 2, 2, 2, 2, 2, 2, 0) up to permutation of
coordinates. But it is immediate that any such vector fails to be compatible
with the vector (0, 0, 0, 0, 0, 0, 0, 0; 2, 2, 2, 2, 2,2,2,2) e N C M because

their sum would have norm 2. Therefore, the coefficient of x2y7 in PM
must be 0.

This forces c 118. Unfortunately, the coefficient of x2y5 then becomes

negative. Hence, there is no admissible metabolizer with this choice of
N= Mn T{8A3).

The other choice (still under case (2.2)) is \|/(7V") [u2,u3]. Here, an
examination of the possible choices for N leads to either

TV =- < (1, 1, 1, 1, 2, 0, 0, 0), (1, 1, 2, 2, 1, 1, 0, 2), (0, 0, 0, 0, 2, 2, 2, 2) >

or

N= < (1, 1, 1,1,2, 0, 0, 0), (1, 3, 0, 2, 1, 1, 0, 0), (0, 0, 0, 0, 2, 2, 2, 2) >

In both cases, the weight polynomial for N is

PN 1 + 6y4 + 12y5 + 12j^7 + j8

and this determines the parameters a 0, ß 12, y 1, contradicting the
equation cs - 37 + a + 2ß + 3y.

There remains the case (2.3), where

N' < (2, 2, 2, 2, 0, 0, 0, 0), (2, 2, 0, 0, 2, 2, 0, 0), (2, 0, 2, 0, 2, 0, 2, 0) >



96 M. KERVAIRE

In this case, it is easy to see that there is just one orbit of planes in TV'

under the action of the group of coordinate permutations preserving TV'.

Hence, we may assume \|/(TV") [uuu2], where U\ (2,2,2,2,0,0,0,0)
and u2 (2, 2, 0, 0, 2, 2, 0, 0) and there are 4 choices for TV:

They are < Nt, u3>, i 1, 2, 3, 4, where u3 - (2, 0, 2, 0, 2, 0, 2, 0) and

Ni <(1,1,1,1,2,0,0,0), (1,1,0,0, 1,1, 2,0) >,
N2= < (1, 1, 1, 1, 2, 0, 0, 0), (1, 1, 0, 0, 1, 1, 0, 2) >,
TV3 <(1, 1, 1, 1,0,0,0,2), (1, 1,2,0, 1, 1,0, 0)>,
TV4 <(1, 1, 1, 1,0,0,0,2), (1, 1,2,0, 1, 1, 2, 2) >.

The resulting polynomials PN are 1 + ly4 + 18y5 + 6y7 in the first case,

and 1 + ly4 + 10y5 + 14y7 in the last 3 cases.

In both instances, the values of the parameters a, ß, y contradict the

equation for Ci.
Summarizing this first phase of the analysis, we necessarily have

TV < (1, 1, 1, 1, 1, 1, 1, 1), (2, 2, 2, 2, 0, 0, 0, 0),

(2, 2, 0, 0, 2, 2, 0, 0), (2, 0, 2, 0, 2, 0, 2, 0) >,
and the vanishing of the coefficient of x2y1 (because any vector of weight
x2yn is incompatible with (0, 0, 0, 0, 0, 0, 0, 0; 2, 2, 2, 2, 2, 2, 2, 2) e TV)

forces the weight polynomial to be as announced:

P(x,y) 1 + x8 + 56x4y2 + 14y4 + 112x2y4 + 112x4y4 + 112x6y4

+ 14x8y4 + 896x4y5 + 612x2y6 + 56x4y6 + 612x6y6

+ 896x4y7 + 17y8 + 112x2y8 + 224x4y8 + 112x6ys + \lx8y8.

Thus the weight enumerator of any putative admissible metabolizer is

uniquely determined after all, and more importantly N=Mn r(8A3) is

uniquely determined as

TV < (1, 1, 1, 1, 1, 1, 1, 1), (2, 2, 2, 2, 0, 0, 0, 0),

(2, 2, 0, 0, 2, 2, 0, 0), (2, 0, 2, 0, 2, 0, 2, 0) >

Step 2. Now, since |M| 212 and |TV|=25 the projection of any
metabolizer M into T(8AX) must be a 7-dimensional subspace. Since the

polynomial PM contains only monomials with x to an even power, the

projection of M into TXSAj) consists exactly of the vectors of even weight.
Let et e T(8Ai) F\ be the vectors with coordinates i and i + 1 equal to 1

and all others 0(i 1,...,7). If u e T(8A3), we use the (hopefully) self-

explanatory notation et + u e T(8At) EB T(8A3). Obviously, M admits a
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system of generators consisting of vectors of the form ek + uik, k 1, 7

together with N.
There is a list of 28 classes u + N modulo N of vectors u such that et + o

is compatible with N, i.e. such that the subgroup of 7X8 Ai) EB 7(8A3)
generated by et + v and N consists entirely of admissible vectors.

Each class has a representative with all non-zero coordinates equal to 1

or 3 and first non-zero coordinate equal to 1. The list reads as follows:

Vo (0, 0, 0,0, 1, 1, 1, 1), Oi (0,0,0,0, 1, 1,3,3),
Vi (0,0, 1, 1, 1, 1,0,0), 08 (0,0,1,1,3,3,0,0),
i>2 (0,0,1,1,0,0,1,1), O9 (0, 0, 1, 1,0, 0,3,3),
»3 (0, 1,0, 1,0, 1,0, 1), 010 (0, 1,0, 1,0,3,0,3),
U4 (0, 1,0, 1, 1,0, 1,0), *>11 (0, 1,0, 1,3,0,0,3),
»5 - (0,1,1,0,1,0,0, 1), 012 (0, 1, 1,0,3,0,0,3),
06 (0, 1, 1,0,0, 1, 1,0), 013 (0, 1, 1,0,0,3,3,0),

014 (0, 0, 0,0, 1,3, 1,3), *>21 (0,0,0, 0, 1,3,3, 1),

015 « (0,0,1,3,1,3,0, 0), 022 (0,0, 1,3,3, 1,0,0),
V16 (0,0, 1,3,0,0, 1,3), 023 (0,0, 1,3,0,0,3, 1),

017 (0, 1,0,3,0, 1,0, 3), 024 (0, 1,0,3,0,3,0, 1),

V18 (0, 1,0,3, 1,0,3,0), 025 m (0, 1,0,3,3,0, 1,0),
019 « (0,1,3,0,1,0, 0, 3), 026 (0, 1,3,0,3,0, 0, 1),

020 (0,1,3,0,0,1,3,0), 021 (0, 1,3,0,0,3, 1,0).

Thus any admissible metabolizer M is generated by iV C 7(8A3)
C 7(8Aj ffl 8A3), where

N <(1,1,1,1,1,1,1,1), (2, 2, 2, 2, 0, 0, 0, 0),
(2, 2, 0, 0, 2, 2, 0, 0), (2, 0, 2, 0, 2, 0, 2, 0) >,

and 7 vectors of the form

Si ex + uki ,s2 e2 + uk2,..., s-, e7 + vkl

where ukl, ukl, ukl are taken from the above list.
A septet such that the subgroup M= <sl5...,s7> + TV is

an admissible metabolizer (i.e. consisting only of vectors of integral, even
norm ^ 2) will be called an admissible septet and the corresponding
metabolizer s7 > + N will be denoted M(ix, /7).

In order to determine the admissible septets it is not necessary to handle

the I

7
I x 7! 5967561600 cases. One first makes a list P0 of pairs (i,j)
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such that

Mij <Cé?I + Vf, 6 3 + Vj^> + N

is an admissible subgroup. The list P0 contains 210 unordered pairs (420 if
(i,j) and (j, i) are counted for 2).

The machine can then easily sort out the (unordered) quadruples (/,/, k, /)
such that the 6 pairs (i9j)9 (/, £), (&, /) belong to P0, a condition which is

necessary for (ij, k, /) to appear as i i i, j i3, k i5,1 i7 in some
admissible septet (iu i2, /3, /7). A list Q of 105 quadruples comes out.

Note that if (/'j, z2, /7) is an admissible septet and (i[, i'3, i'5i i'7) is

any permutation of (z'i, z3, z5, /7), there is a new triple (z'2, /J, i'6) such that

(if, i'2,i'3, i'6, i'7) is again an admissible septet and the corresponding
metabolizers M, M' yield isomorphic lattices.

For instance, if M < e\ + ui], e7 + vll> + N, then the permutation

7i (1 3) (2 4) on the first 8 coordinates (permuting the factors T^Ai))
and leaving T(8A3) fixed, carries M to

M' — < e3 + Dfl, e\ + e2 + e3 + vi2, e\ + vi3, e4 + ui4, e7 + vil > + N
< e\ + Vj3, e2 + u'2, e3 + vil, e4 + viA, e7 + vi7 > + N

where u-2 vi} + ui2 + vi3. Then, u'2 must be a vector Vf2 of the above basic

list (up to addition of a vector of N). Therefore, (i3 9i'1%i\9 i4, /5, /6, h) is an
admissible septet. Thus, any equivalence class of admissible metabolizer can
be represented by a septet (ii, i2, i3, i4, is, ie, h) such that /1 < i3 < i5 < i7.

Now, let G be the group of permutations of the last 8 coordinates in
TX8A1 EH 8A3) generated by

a (1 2) (3 4), ß (3 5) (4 6), y (1 7) (2 8), p (1 6) (3 8)

permuting the 8 factors T(A3) in T(8Ax ŒI 8A3).
The group G has order 1344 and it operates on the set of classes mod N

of the 28 vectors of the above basic list. It operates therefore also on the

set Q of quadruples. The 105 quadruples forming Q are then divided into
3 orbits under this action, represented by the quadruples

qQ (0, 7, 14, 21) with Gq0 of cardinality 7,

qx (0, 7, 16, 23) with Gqi of cardinality 42,

q2 (5, 10, 20, 25) with Gq2 of cardinality 56.

Next, let Pi be the set of pairs (i9j) such that

M'i j — <C 61 + Ui, 2 + Vj > + N
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is an admissible subgroup of 7(8Ai EE 8A3), i.e. consisting entirely of
vectors v such that the norm n (v) of v is an even integer 2. The set P\
contains 336 ordered pairs (obviously (i,j) e Pi implies (j,i)ePi).
Any admissible septet (/i, i7) must be such that (/1, z3, i5, /7) e ô>

and (ik,ik+{)ePi for k= 1,...,6, in addition to (ik9ii)eP0 for
\k - l\^ 2.

Given a quadruple q (ii, /3 »
**5

» *'7) e ô> it is not hard to sort out the

set Tq of triples (z2, û, /ô) such that (/1, i2, /7) satisfies all the conditions

on the pairs (ik,ii). We need to do this in fact only for the above
3 quadruples qo,q\,q2, since anY admissible septet can be carried by the

action of G to a septet (/1 ,i2t /7) completing Q\ or q2 in the sense that

(iuhJsJi) qo,q\ or <?2.

It turns out that for each of these 3 quadruples q (/1, /3, i5, /7), there

are 16 triples in the set Tq.
The resulting set of 48 septets can in fact still be reduced using the action

of G. The subgroups of G fixing qo,q\ or q2 are respectively of order 8, 4

and 1 and we are left with the following septets:

(0, 1, 7, 20, 14, 22, 21), (0, 1, 7, 20, 14, 23, 21)

completing q0 ;

(0, 1, 7, 20, 16, 21, 23), (0, 1, 7, 20, 16, 22, 23)

(0, 9, 7, 20, 16, 21, 23), (0, 9, 7, 20, 16, 22, 23)

completing qx\

and with the quadruple q2 (5, 10, 20, 25) there are the 16 triples

(0,14,7), (0,14,17), (0,19,16), (0,19,26),
(13, 14, 7), (13, 14, 17), (13, 19, 16), (13, 19, 26),
(4,11,7), (4,11,17), (4,8,16), (4,8,26),
(23, 11, 7), (23, 11, 17), (23, 8, 16), (23, 8, 26),

forming the septets (5, 0, 10, 14, 20, 7, 25), etc.
Denote by M(il, i2, i3, i4, /5, /6, i7) the subgroup

M(ii, z7) <e\ + ü/j e7 + u/? > + N.
We finish exploiting the operations of the permutation group S8 acting

on 7(8Ai EE 8A3) by permuting the first 8 coordinates.
It is easy to check that Oi (1 2) e S8 acts on admissible metabolizers of

the form i2, i3, /7) by

o1M(/1,/2,/3, ...,/v) M(ix, i2,i3, ...,/7)
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where is the uniquely determined element in the basic list such that

Vi>2 vi{ + Vi2 modulo N.
Similarly,

ok M(ii, i7) M(i[,
where i\ it for / ^ k - 1, k + 1 and

i)i'k_l Vik _ + ^ modulo TV, ^ + oik+l modulo N
for k 1,2, 6;

o7M(ix, /7) M(/j,i5,i'6J7)
where vie + vil modulo N.

Using Oi,o3,o5 and o7 one first observes that all M(ix, /2,..., /7)

with the same quadruple q (z'i, /3, /5, z7) are equivalent. Hence, the

equivalence class of any admissible metabolizer is detected by its basic

quadruple which can be or q2. However, the permutation o6 carries

M(0, 1, 7, 20, 14, 22, 21) to M(0, 1, 7, 20, 16, 22, 21). Similarly, the

permutation 71 (7 456321 8) takes M (5, 0, 10, 14, 20, 7, 25) to
M(0, 8, 7, 27, 14, 16, 21) which is equivalent to M(0, 1, 7, 20, 14, 22, 21).

It is easy to let the machine verify that M(0, 1, 7, 20, 14, 22, 21) actually
is an admissible metabolizer and to pass from it to the filling set displayed in
the table.

Thus, there is a single isomorphism class of 32-dimensional even,
unimodular lattice with root system 8Ax EE 8A3.

(2) IOA2 ES 2EÔ

The only weight enumerator polynomial P{x,y) for an admissible
metabolizer in T(10A2 EE 2E6) which is compatible with the duality
theorem is

P(x,y) 1 + 60x6 + 20x9 + 60x4y + 240x7y + 24x10y + 144x5y2

+ 180x8^2

Thus in r(10A2) F3°, the intersection M0 M n T(10A2) contains

exactly 10 pairs {x, — x} of vectors of Hamming weight 9.

Two distinct such pairs {x, — x} and {x', - x'} cannot have their
vanishing coordinate at the same place. Indeed, suppose that for
some /, we have x\ - xt 0. Set J {j e {1,..., 10} | xj Xj 0} and

K {k e {1,..., 10} I x\ •=» - xk ^ 0}. Then \j\ + \K\= 9, and w(x + xr)
|/|, w(x-x') \K\. The polynomial says that |/|^3, \K\&3.

Hence the only possibility is {| J |, \K |} {0, 9} and v' ±x.
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By numbering the 10 pairs {x(1), - x(1)}, {x(10), - x(10)} correctly,

we can thus assume that the i-th coordinate of x(0 is 0. Let us choose

{0,-1,1} as integer representatives of the residue classes mod 3. The

vectors x(1), x(10) can be thought of as the (reduction mod 3 of the)

rows of a 10 x 10 integral matrix C such that

^j 0, cij ± 1 for i±j.
I claim that C is a conference matrix, i.e. Cl. C C. C 9/, where /

is the 10 x 10 unit matrix.
For i =£ j, let S {s e {1, 10} | x(sl) x^}. Clearly i,j $ S. Since

w(x(/) + xU)) 2 + I S I, and w(xu) - xU)) 2 + (8 - J S |), and the only
possible values are 6 or 9, we conclude that | S | 4. It follows that the scalar

product of two distinct rows of C is zero.

Up to conjugation by a signed permutation matrix there is exactly one
10 x 10 conference matrix. Thus M0 is uniquely determined.

It is easy to verify that there is then no choice left for the last two filling
vectors (up to isomorphism of the lattices).

(3) 13A2 EH Eg

Here, not only is the weight polynomial determined by the duality theorem,
but if we single out one of the factors T{A2), the polynomial P(xi,x2,y)
corresponding to the decomposition 12A2 EE A2 EB E6 is still uniquely
determined and reads

P(x\,x2,y) 1 + 84*i + 152^1 + 6x\2
+ (sum of monomials divisible by x2 or y)

This means that if Mis an admissible metabolizer, then for any choice of
coordinate (among the first 13) there must be exactly 3 pairs of vectors of
weight 12 having precisely this coordinate zero.

It is then straightforward to see that we may assume these 3 pairs of vectors
to be ± Si, ± s-2, ± S3, where

Si (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,0; 0),
s2 - (1, 1, 1, 1, 1, 1,2, 2,2,2,2, 2, 0; 0),
^3 (1, 1, 1,2,2,2, 1, 1, 1, 2, 2, 2, 0; 0).

It now turns out that the vectors with vanishing 12-th coordinate in M can
then be assumed to be

64 « (1,2, 1,2, 1,2, 2, 1,2, 2, 2, 0, 1 ; 0)
s5 (1, 1,2, 2, 2, 1,2,2, 1,2,2,0, 1;0)

Si - s2 - s3 + <>4 + (1, 2, 2, 2, 1, 1, 2, 1, 1, 1,1,0, 2; 0)
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and their opposites, where Si,s2,s3,s4, s5 are linearly independent and form
a basis of an admissible 5-dimensional subspace in r(13A2).

Indeed, among the first 11 coordinates of these 6 vectors, there must be

either 4 ones and 7 twos or 4 twos and 7 ones. Since we can change the sign
of the last (13-th coordinate) at will, we may assume that s4 has the form
(14,27,0, 1), meaning 4 ones and 7 twos among the first 11 coordinates.

/H\From the list of I I 330 such vectors, a sublist of 27 vectors only

are compatible with 51, 5*3. Moreover, these represent a single class

modulo permutations of the coordinate indices {1,2,3}, {4,5,6}, {7,8,9}
which preserve the subspace generated by s{,s2,s3. Having chosen

*4 0,2, 1,2, 1,2, 2,1,2, 2, 2, 0, 1 ; 0)

we must select among the remaining 26 vectors compatible with si,s2fs3
together with the 27 vectors of the form (l4, 27, 0, 2; 0), those which are

compatible with Si, s2, s3, s4. Of these, only 8 candidate vectors come out.
They form a single class modulo the group generated by the permutations (1 3),

(4 6), (7 9). Hence, the choice of

s5 - (1, 1,2,2,2, 1,2,2, 1,2,2,0, 1 ; 0)

is also essentially unique.
Observe that Mn T(13A2) has to be 6-dimensional because the sum of

the coefficients of the monomials not containing y in the weight
polynomial of M is 729 36. The search for a 6-th and last basis vector for
M n T(13A2) shows that the choice is limited to

5"6 (1, 1,2, 1,2,2,2, 1,2, 2, 0, 2, 1 ; 0)

and its 6 transforms under the group of permutations of coordinates generated

by the permutations (2 3) (5 6) (8 9) and (1 2 3) (4 5 6) (7 8 9) which preserves

the subspace generated by *i s2, ^3, ^4, s5 •

Thus, there is essentially only one choice for M n T(13A2). The

metabolizer M itself is then easily seen to be uniquely determined.

The transformation

P C^0 •••,-^12) 1 Xq .Vg X\ X5 X4 Xg X\o X3 Xß X\2)

carries M0 as just described to the cyclic code of the table in Section 6.
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(4) 8A4

Let ei (1,0,0,0), e2 (0, 1, 0, 0), e3 (0, 0, 1, 0), e4 (0, 0, 0, 1).

Any metabolizer must have a basis of the form {e? + U/, i 1, 2, 3, 4} for
some vectors Uj e F5 of weight 3 or 4.

Hence, we may assume that the first basis vector is either S\ e\

+ (1, 1, 1, 1) or t, + (0, 1,2,2).
If we start with sy, there are essentially only 2 ways of completing S\ to

an admissible metabolizer with 3 vectors forming with sy the rows of the

matrix S exhibited in the table and the matrix S' :

(1

0 0 0 1 1 1 1\
0 1 0 0 1 0 2 2

0010120200011220/
If we start with t1 there is essentially only one way to complete to a

metabolizer :

/I 0 0 0 0 1 2

0 1 0 0 1 0 3 2
' " 0 0 1 0 3 3 0 1

"

\0 0 0 1 2 3 1 0/
All these metabolizers are equivalent. The permutation p defined by

P (Ao » • • • » ^7) ~ (.X4T'l 1 -t*2 >

sends S'to Sand a defined by

o(A0, ...,X7) (X5 Xi, X4 X0

sends S" to S.

Thus the lattice described by the filling set S is the only one with the root
system 8A4.
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