Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 40 (1994)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: UNIMODULAR LATTICES WITH A COMPLETE ROOT SYSTEM
Autor: Kervaire, Michel

DOl: https://doi.org/10.5169/seals-61105

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-61105
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 40 (1994), p. 59-104

UNIMODULAR LATTICES
WITH A COMPLETE ROOT SYSTEM

by Michel KERVAIRE

1. INTRODUCTION

Let Q” be the n-dimensional euclidean space (over the field Q of rational
numbers) endowed with the standard scalar product

(x,¥) = X7_\Xiyi,

where x = (xla ---axn)a Yy = (yls --'ayn)'
A lattice L C Q" is a Z-submodule of rank »n of Q7", i.e.

L={Y!_,av:a,€l},

where v, ..., U, is some basis of Q7. We are interested in integral lattices,
i.e. lattices L satisfying (x,y) € Z for all x,y € L.
An integral lattice L is said to be unimodular if

det(S)= =1,
where S is the n X n matrix of scalar products
S:((Uiauj))a lgla‘lgns

vy, ..., U, being a Z-basis of L. The number dez(S) is called the determinant
of L and is denoted def(L). It does not depend on the choice of the Z-basis
Vi, ...,0, of L.

If L is an integral lattice, the set

R={xelL:(x,x)=2}

is a root system. (For the general notion of a root system see [B], p. 142.)

The author gratefully acknowledges partial support from the Fonds National Suisse de

la R@cherche Scientifique during the preparation of this paper. In particular the FNSRS
provided the necessary computer.
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The root system R will be said to be complete in L if the sublattice N = ZR
of L generated by the roots R is a subgroup of finite index in L.

Our purpose is to study unimodular lattices with a complete root system.

It is well known that there are finitely many isomorphism classes of
unimodular lattices L C Q~ for a given n. (See [MH], p. 18.)

The subcollection consisting of the lattices with a complete root system is
particularly interesting, e.g. in view of the connection with the theory of
error-correcting codes as we shall recall below.

We begin by setting up some necessary conditions that a root system
must satisfy in order to be a complete root system in a unimodular lattice
(Sections 3, 4 and 5).

We are particularly interested in even unimodular lattices, i. e. (x, x) is even
for every x € L. In this case, as is well known, the rank of L has to be divisible
by 8. In dimensions 8, 16 and 24, where the classification of even unimodular
lattices is available, it turns out that every such lattice has a complete root
system, with the sole exception of the 24-dimensional Leech lattice. (History
and relevant literature in e.g. [N], p. 142.)

In dimension 32, there are millions of even unimodular lattices. (See [Se],
p. 95.) Among them as we shall see, only a small subcollection have a complete
root system. In this paper, we endeavour to provide the complete list of such
lattices.

There are 132 indecomposable even unimodular 32-dimensional lattices
with a complete root system. In some cases several lattices happen to have the
same root system. Thus, only a total number of 119 root systems correspond
to these lattices. They are listed in Section 6.

The enumeration of the lattices and their root systems could only be
completed using a computer, thanks to the generous help of Shalom Eliahou
who patiently explained to me the use of mulisp programming language. Of
course any mistake in the programs is my sole responsibility. It is a pleasure
to express to him here my warmest gratitude.

[ am also deeply indebted to Boris Venkov for very valuable discussions,
in particular on the use of the notion of deficiency. (See Section 5.)

2. RELATIONSHIP WITH CODES

As is customary we shall use codes to describe lattices. We briefly recall

how this can be done.
If X C Q" is any finitely generated Z-submodule of Q”, we set

X* ={ueQX:(u,x) e Z for all x e X} .
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Note that if X, X, C Q" are mutually orthogonal finitely generated
Z-submodules of Q7, then

(XIEXZ)# :Xf EX; s

where we write the symbol B to mean orthogonal (direct) sum.

Clearly, a lattice L C Q” is integral if and only if L C L*, and L is
unimodular precisely if L = L#. Indeed, if vy, ..., 0, is a Z-basis of L, and
wy, ..., w, the dual basis of L#, where (v;, w;) = 8; ;, then v; = ¥} _ kW«
for some integral matrix T = (), and if S is the matrix of scalar products
(i, v;), then .
(vi,0;) = (i, kzl tejWi) = tij

and thus
[L#: L] =|det(T)|=|det(S)]|.

Suppose now that L is an integral lattice in Q" and that N C L is a
sublattice of finite index in L. Then, N C L C L*# C N* and the finite
abelian group T(N) = N#/N inherits a non-degenerate Q/Z-valued bilinear
form

b:T(N) X T(N)— Q/Z
defined by
b(&,m) =(x,y) modZ,

where x, y € N# project on §,n € T(IN) = N#/N respectively by the natural
map n: N#* = T(N).

The finite scalar product module (7(N), b) is called the discriminant form
of N.

Let M = n(L). Then M is self-orthogonal, i.e. M C M+, for the bilinear
form b on T(IN). Thus M is a self-orthogonal code in (T (N), b). Conversely,
given a subgroup M C T(N) such that M C M+, we recapture the integral
lattice L as L = nw~!(M). Note that L is unimodular, i.e. L = L* if and only
if M =M+*.1f Tis a finite (abelian) group with a non-degenerate bilinear
form b: TX T Q/Z, and M C T is a subgroup such that M = ML, we
say that M is a metabolizer for the scalar product module 7. A metabolizer
is the same object as a self-dual code.

Summarizing, one way of describing a unimodular lattice L C Q” consists
in giving the following data:

1) An integral lattice N C Q”;
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2) A metabolizer M C T(N), where T(N) = N#/N is the discriminant
form of N.

We will presently make use of this: If L is a unimodular lattice with a
complete root system R, then N = ZR C L is a lattice of finite index in L,
and by the above, L can be encoded by the data of the root system R
which determines N =ZR C Q*, N* and T(®R)= N#*/N with its
non-degenerate form b: T(R) X T(R) — Q/Z, together with a metabolizer
M=M"* C T(R).

Note however that if we start with a root system R C Q" and
construct L as L = n~-'(M), where M is a metabolizer in 7T(R), then
R ={aeL:(a,a) =2} will contain R but may possibly be strictly larger.

We shall say that M is an admissible metabolizer if indeed we have
R ={aelL:(a,a) =2}, where L = n~-1(M).

Thus, the problem of deciding whether there exists a unimodular lattice
L C Q" with given root system R such that QR = Q” is equivalent to the
question: Does the finite scalar product module (7 (R),b) possess an
admissible metabolizer?

If RC Q" is a root system and N = ZR C N#* is the lattice generated
by R, we define the norm

n: T(R)—Q

by n(§) = min{(x, x) : m(x) = £}, where the minimum of (x, x) is taken over
all the elements x € N# representing £ € T(R) = N#/N.

We say that & is admissible if n(§) = 0, or n(§) is an integer > 2. It is
easy to see that a metabolizer M C T(R) is admissible if and only if every
¢ € M is admissible. (Note that if R is a complete root system in L, then L
cannot contain any vector u with (u, u) = 1.)

If an even unimodular lattice L is required with a prescribed root
system R, then the metabolizer M C T'(R) will have to satisfy the additional
condition: For all non-zero £ € M, the norm n({) must be an even
integer > 4. Depending on the context, we occasionally change the meaning
of ‘““admissible’” to include this stronger condition, e.g. in Section 6,
when setting up the tables of even unimodular lattices in dimension 32.

The classification of root systems is well known. (See [B], p. 197.) We recall
the facts which are relevant to us in the next section, following mostly the
notations of [N]. The possible lattices N = ZR are thus easily described as well
as the finite scalar product modules T(R) = N#/N.
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The existence of a mere metabolizer for (7'(R), b), perhaps not admissible,
is already a strong restriction on R. We study this condition in the next
Section 3.

We give some necessary conditions for the existence of an admissible
metabolizer using coding theory in Section 4.

In Section 6, after explaining the notations used in the tables, we list the
even unimodular lattices with complete root systems in dimension 32.

3. THE WITT CLASS ASSOCIATED
WITH A ROOT SYSTEM

Recall the Witt group W(Q/Z) of finite scalar product modules: If 7T°
and 7' are two finite abelian groups with non-degenerate bilinear forms
b:TXxT—>Q/Z,b':T"X T - Q/Z, then T and T’ are said to be Witt
equivalent if there exist finite scalar product modules H, H’ each with a
metabolizer M = M+ C H M’ = M'+ C H' such that TH Hand 7' H H’
are isometric. The Witt equivalence classes of finite scalar product modules
form an abelian group W (Q/Z) under the operation induced by orthogonal
direct sum Hl.

We recall below the explicit determination of W(Q/Z).

Let R C Q" be a root system. As before, we denote by T(R) the
associated finite scalar product module. As a group, T(R) = (ZR)*/ZR,
where

ZR)* ={veQR=Q":(v,R) CZ}.

The bilinear form b: T(R) X T(R) — Q/Z is induced from the scalar
product in Q”, restricted to (ZR)*.

The Witt class of (T'(R), b) is an element of W (Q/Z) which we call the
Witt class associated with the root system R and denote by w(R) € W (Q/Z).

As we saw in Section 2, if R is the root system of a unimodular lattice
L CQ", and R is complete in L, i.e. QR = QL = Q”, then (T(R), b)
possesses a metabolizer and therefore w(R) must be 0 in W (Q/Z).

If R =R,H R, is an orthogonal decomposition of the root system R,

i.e. if R is the disjoint union R, Ll R, of two mutually orthogonal root
systems R, R,, then

W(R) = w(R)) + w(R>) .
Indeed,
(ZR)* = (ZR,)* H (ZRy)* ,
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and T(R) is the direct product of the two subgroups 7'(R,) and 7T (R,) which
are mutually orthogonal under the form b.

Now, any root system is an orthogonal sum of uniquely determined
indecomposable root systems. It is therefore sufficient to calculate the Witt
class associated with the indecomposable orthogonal summands.

As is well known, the list of indecomposable root systems (in which every
root has scalar square 2) consists of the two infinite families A;, / > 1
and D,, / > 4 and of three exceptional systems E¢, E;, Eg. In each case the
index indicates the rank, i.e. dimgQR. (See [B].)

If the decomposition of the root system R contains a; copies of the
indecomposable system R;,i =1, ..., r, we write

R=qg R HaR,H..HaR,.
By the above, we have
w(R) = ¥i_,a;w(R) e W(Q/Z),

and w(R) = 0 is a necessary condition for R to be the complete root system
of a unimodular lattice.

In order to evaluate w(R) for a given root system R, we have to determine
the Witt classes w(A;), w(D,;) and w(E,) in W(Q/Z) associated with the
indecomposable root systems. This is the purpose of this section.

We first briefly recall the calculation of W(Q/Z). (See [Sch], p. 166-170
for more details.)

THEOREM. W(Q/Z) = @ ,.p W(¥,), where P =1{2,3,5,...} s the
set of prime numbers, and where W (F,) is the Witt group of the finite
Jield F,.

W, =2/27Z ,

where the generator, denoted (1), is represented by the finite group
T =27/2Z endowed with the bilinear form b:T X T — Q/Z determined
by b(l,1) =; modZ.

For p an odd prime, we have

WEF,) =Z/2LDZL/2Z if p=1 mod4.

The group W(¥,) is generated in this case by the classes, denoted (1)
and (&), of (T,b), (T',b"), where as finite groups T =T =F,
and b, b’ are respectively determined by

b(1,1) =+ modZ, b'(1,1)=% modZ,

P

RS
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where € e Z is a non-square modpZ. (The class of b’ is of course
independent of the choice of ¢.)

WE,) =2Z/4Z if p= -1 mod 4 .

The group W (F,) is generated in this case by the class, denoted (1),
" of (T,b), where T=F, and b is the bilinear form determined by

b(1,1) =, modZ.

Proof. For every finite scalar product module (7, b), we have an obvious

orthogonal sum decomposition
(T, b) = p eP(T)(Tp, bp) s

where P(T) is the set of primes dividing the order of 7 and T, is the
p-primary subgroup of T (consisting of the elements whose order is a power
of p), and where b, is the restriction of b to the subgroup 7,.

It follows that

WQ/Z) = @perW,,

where W, is the Witt group of finite scalar product modules (7, b), where T’
is a p-group and b: T X T~ Z [fj] /Z C Q/Z is a non-degenerate bilinear
form.

The isomorphism W, = W(F,), where W(F,) is the Witt group of the
finite field ¥, is a consequence of the following lemma: If (7, ) is a finite
scalar product module and U C T is a subgroup of 7, let U+ denote the
orthogonal subgroup of U, i.e. U+ ={xe T:b(x,U) =0} .

LEMMA. With these notations, suppose that U C T is a self-orthogonal
subgroup of T, ie. UCU*. Let T =U+/U. Then the form b
induces on T' a non-degenerate bilinear form b :T' X T — Q/Z
and (T, b), (T',b") represent the same Witt class.

Proof. Consider the scalar product module
(T,D)H (T, =b)=(TO®T',bD(-b")).

The subgroup M = f(U*t), where f:UL—>T® T’ is given by
S(x) = (x,x"), with x’ the class of x € Ut modulo U, is a metabolizer.
It follows that (7, b) H (T, — b") ~ O, where ~ denotes Witt equivalence

and O on the right hand side is the trivial scalar product module.
Hence,

(T,0) H(T", =b"YH(T",b") ~(T", b") .
Since (7', —b"YH (T’, b’) ~ O, the lemma follows. [
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It is easy to see by induction on the order of T that this lemma implies
w,= W(E,).

Finally, the asserted values of W (F,) for the various primes p result from
the classification of inner product spaces over finite fields. See for instance
[MH, p. 87, Lemma 1.5]. [

In concrete examples, such as the scalar product module (7(R), b)
associated with a root system R, the above lemma enables us to find the Witt
class w(R) € W(Q/Z) by explicit calculation.

CASE R = A,.
Here,
ZA, = {Zﬁzoxie,-:x,-eZ, Zézoxiz 0} C Ql+1 ,

where eg, ey, ..., e, is the standard basis of Q/*!, such that (e;, e;) = J;;.
The root system proper A, is the set {e; — e;:i # j} of vectors in ZA,
with square length 2.
It is well known and easy to verify that the coset decomposition
of (ZA,)# modulo ZA, reads

@A) =11, _ @A, +x,),

where

r l-r [-r+1 [
T Zic0@ ~ Iyl lici-red

.Xr: ej.

Whenever the root system A, has to be specified in the notation, we
denote x, by x,(A)).

The group T(A,) = (ZA))*/ZA, is cyclic of order / + 1, generated by
the class of x; modulo ZA,.

An easy calculation shows that

(xra X,) = %r_l) >

and .in fact, this number is the minimum of the scalar square of any vector
in the class of x, modulo ZA,. Thus n(x,) = % for r=0,1,...,1,
where n(x,) is the norm of x,, as defined in Section 2.

Let p be a prime and let e be the exponent of the largest power of p
dividing / + 1. Set ¢ = p¢ and s = ([ + 1)/g, prime to p.

The p-primary subgroup 7, of T(A)) is cyclic of order g generated by the
class of x; modulo ZA,. The scalar square of this element is

_s(-s+1) §
(XssXs) ==37 = — 4 modZ.
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Thus we have to calculate the Witt class represented by a cyclic p-group
with non-degenerate bilinear form.

Let T be the cyclic group Z/gZ, where g = p¢is a power of the prime p.
Let a be an integer prime to p and let

b:Tx T—Z[;]/2Z
be the bilinear form on T determined by
b(1,1) =% modZ .
Then the Witt class of (7, b) in W (F,) is given by
(a) if e is odd,

0 if e is even,

w(T, b) = {

where (a) is the Witt class in W(F,) of the form b on F, given by
b(1,1) = 5 mod Z.

Indeed, if e is even, e = 2 f, then the subgroup generated by p/ in Z/qZ
is a metabolizer. If e = 2f — 1, let U = p/Z/qZ be the subgroup generated
by p/. Then, Ut =p¢~7Z/qZ = p/~'Z/qZ. The quotient T = U+/U
with the induced form is isomorphic, as a scalar product module, to F, with
the form given by (1,1) = 7. By the lemma above, (T,b) and (7", ")
belong to the same Witt class. The result follows.

Applying this to our example arising from the root system A, with
TA)=2Z/(l+1)Z,q = p¢ the exact power of p dividing /+ 1 and
s=({+1)/q, we get:

The p-component of the Witt class associated with A is
(—=s) ife=v,(I+1)is odd,
0 if e=v,(/+ 1) is even,

Wp(Al) = {

where e = v,(/ + 1) i1s the exponent of the exact power of p dividing / + 1.
Note that for p = 1 mod 4,
(—=s) =(s)=(1), resp. g)

in WF¥,) =2/2Z{1) @ Z/2Z{e) depending on whether s is or is not a
square mod p respectively.
For p = — 1 mod 4, then

(—=s)=(1)in W(,) =Z/4Z{1) ,
if —s is a square mod p, and

(=s8)=(—-1)= (1) in W(,) = Z/4Z(1) ,
if — s is a non-square mod p.
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CASE R = D,.
By definition
ZD,={Y!_,xie;:x;€Z, ¥ _ xi=0 mod2Z}.
It is easy to check that

(ZDI)#Z{Egzléieiiﬁieézyélziz . =& modl},

and thus

7/27 ©® Z/2Z if | is even,

TD)) = (ZD)*/ZD, =
D) = (D) /2D { Z/47 i Iis odd.

In this case, the associated finite scalar product module 7'(D;) always
represents 0 in the Witt group W(Q/Z).
The coset decomposition of (ZD;)# modulo ZD, is

(ZD))* = ZD, L1 (ZD;+ y,) LU (ZD;+ y,) U (ZD; + y3) ,
with
Y1 = % Eﬁzl €,
y2 = €,
Y3 = %(Eﬁ;i e;— ey,

and y,, y,, V3 as above are of minimal square length in their class mod ZD,.

Therefore, n(y;) = n(y3) = ﬁ and n(y,) = 1.
When we need to include the root system in the notations, we write

xi (D) for yi.
CASE R = Eg.
Recall that
ZE; = {Zlexie,-:Zx,-eZ,xi—xjeZ, Zlex,-=x7+xg =0}.
(ZEg)* = ZEg Ul (ZE¢ + 77) U (ZEg — z1) ,
where
zi =3 (e + e+ e+ es—2(es + eg))

and (z1,21) = ‘3—‘ Here again, z; has minimal square length in its class

modulo ZE¢ and hence n(z;) = (21, 21) = %
We write x;(E¢) for z; when convenient.
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The associated Witt class is

W(E6) = <1> in W(F3) i

CASE R = E;.
The definition is
ZE, ={Y% xie;:2x;€eZ,xi—x;€Z, ¥;_, x;=0}.
Here,
(ZE)* = ZE; Ul (ZE; + 24) ,
where
zi=;(er+testes+est+es+es—3(er+e))

satisfies (z1, 21) = % and is of minimal scalar square in its class mod ZE;.
Again, z, is noted x,(E4) if convenient.
The Witt class w(E;) is the generator (1) of W (¥F,) = Z/2Z.

CASE R = Egs.

Here, T(Eg) = 0. The associated Witt class is 0.

4. WEIGHT ENUMERATORS
OF FINITE SCALAR PRODUCT MODULES

Let 7 be a finite abelian group with a non-degenerate bilinear form
b:TXT—Q/Z.

Suppose that we have a decomposition of 7T as an orthogonal direct sum
of subgroups 7, ..., Ts:
T=T1 T2 TS.

Then we can define the weight x¥® e Z[x,,...,x;] of an element
ue T by tabulating its non-zero components in the decomposition
U=u, + U, + ...+ u;, u,T;, as

xw@) = x‘;"(m) . x;’(llz) - xW(”s)

N b

where

( ) 0 ifui=0,
wilu;) =
1 ifu,-th.
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If M is a subset of T, the weight enumerator of M is the polynomial

PM(xl, ...,XS) = ZueMXW(u) .

We denote by ¢q;, i = 1, ..., s the order of the subgroup 7;.
We show in this section that MacWilliams duality is still valid in this more
general setting:

THEOREM. Let M C T be a subgroup of the scalar product module
T=T, T, .. B T,. Set gq;,=Card(T)), and let M+ be
the subgroup orthogonal to M. Then, we have the formula, where
| M| = Card(M):

Pr(xy,.0,%) =
1 2 1 —x; 1 — x
_H (1 +(gi— x;)* Py N '
| M| = 1+ (g —1)x; I+ (gs— 1)xg
Note that if some of the subgroups 77, ..., Ty are mutually isomorphic

(or more generally have the same order), then we can write the decomposition
of T in the form

T = anl n2T2 anr,
where n;T; stands for the orthogonal sum
n,-T,~ = T,' T,' T,‘

of n; copies of T;.
The weight of an element

u= W +..tu )+ .o+ WU+ .ot u,)

is then defined as

Vr
ros

XV = x{t e xte o x

where v, is the number of non-zero components of #; ; + ... + u; ,, in n;7T;.
The duality theorem then takes the seemingly more general form

PM_L(xl, ...,x,) =

1 d 1—x1 1-x,
——— I @ +(gi= Dx)"- Py - ,
Card(M) i1 1+ (g1 — Dx; 1+ (q,— Dx,

This identity can be viewed as a system of linear equations for the
coefficients of the weight enumerator polynomial P;, of any putative
metabolizer M = M~+. If M exists, this system must be solvable in
non-negative integers.
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Proof of the duality theorem. One of the classical proofs of MacWilliams
duality in a vector space over a finite field goes over with only insignificant
changes. We repeat the argument for the reader’s convenience.

Let ¥:Q/Z— C* be the character given by x(a) = e?™*, Set

B(u,v) = x(b(u,0)).
We cook up the function f: T — C[x,, ..., X5] given by
fw)y =Y, Bu,v) x¥®

and evaluate Y, _,, f(u) in two different ways, using the following lemma:

LEMMA.

Card(M) ifveM+,

ZueMB(u’U):{O 1fU$MJ-

We first recall the proof of the lemma.

If veM*, then B(u,v) =1 for every u € M, thus Y e Bu,0)
= Card (M) as stated in this case.

If v ¢ M+, there is an element u; € M such that b(u;,v) # 0, and then
B(u,,v) # 1. We have

EuEMB(u9 U) = EHEMB(Z’II + U, U)
= ZueA{B(uI:U)B(ua U) = B(ul’U)ZuEMB(ua U) .
This implies the statement of the lemma for v ¢ M.

We now proceed to the proof of the duality theorem.
Firstly,

LuemSW) =X, L, rBuwv) x*® = Yoer (X, enBu,0) - xv®
= Zuez\/ﬂ- Card(M) : xw(u) = Card(M) . PMJ_(XI, '“5x5) .
Secondly,

f(U) = EUETB(us U) s x )
= ZmeTl,...,useTSB(ul’Ul) T B(uS’US) ' XXV(UI) BETER x;V(US)
S
= I1i (Zy e Bui,0) - X7y,
where u = u; + ... + u, is the decomposition of u e T = T, T,.
Using the lemma again, we have
1+ (q,-— l)x,- if u, =0,

ZUETiB(ui’U) .x;V(U) N {
1—Xi if u; 0.
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Thus,

Su) = H (1+(g:—Dx;) - H 1-x,

ieS ieS’

where S C {1, ..., s} is the set of indices i for which #; = 0, and S’ C {1, ..., s}
the set of indices i for which u; # 0.
Another way of writing f(u) is

Sfu) = f[ (1 =x)»@0 - (1 + (g;— Dxp)! =~ 7o
P=1

Plugging this formula into ), _,, f(u), we get

s - x; w(u;
LyemS (M) = Hj=1(1 +(gi — Dx;) - zueMﬂi:l (1+(q,-—1)x,~) o
s 1—-x 1 — x5
=], (0 +(q;i— l)xi)'PM(1+(ql—11)xl>“"1+(qs~1)x5) :

Comparing the two expressions for }  _,, f(u), we get the theorem.

5. THE DEFICIENCY

The main further necessary condition for a root system to be contained in
an even unimodular lattice of the same rank is provided by the notion of
deficiency (Defekt) introduced and studied in [KV].

If R is a root system of rank #n, the deficiency of R, denoted d(R),
is the difference n — m, where m is the maximal cardinality of a set
{ay, ..., a,} C R of mutually orthogonal roots

(a[,aj)=26,'j, for all 1 gl,jém

We use this notion only if all roots in R have the same scalar square 2.
If R=R,HR,, then d(R) =d(R,;) + d(R,). The values of the
deficiency for the irreducible root systems are

dA) = [3]
0 for / even,

dD,) =
) {1 for / odd ,

dE¢) =2,dE;) =dEs) =0.
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By Satz 5 of [KV], if R is the (complete) root system of an even unimodular
lattice of rank 32, then

d(R)=0,8,12,14,15 or 16 .

The proof consists in constructing from the given lattice a new lattice L,
still of rank 32 and containing the orthogonal sum of m = 32 — d(R) copies
of Z. Thus, L = Z"™ L,, where L, is again unimodular and of rank d(R).
(Hence, rank (L) < 16.)

By Martin Kneser’s classification of unimodular (positive definite) lattices
of rank < 16, the rank of L, i.e. d(R) can only take the above values.
(See [Kn], Satz 1.)

In setting up the tables we conveniently use the deficiency to discriminate
the various root systems R according to the value of d(R).

6. THE TABLES

We now proceed to list the indecomposable even unimodular lattices L of
rank 32 with a complete root system R.

The presence in R of a factor of type Eg would produce a unimodular
sublattice ZEg = L, C L, and hence a decomposition L = L, L, for some
(even) unimodular L, of rank 24. Hence, we assume throughout that R has
the form

R=A,1...Aerml...DmsmE6nE7,

with no factor of type Es.

Altogether there are N = 88523 such systems (of rank 32). The possible
dimensions for mE; H nE, are

D =10, 6, 7, 12, 13, 14, 18, 19, 20, 21, 24, 25, 26, 27, 28, 30, 31, 32}
and for d € D, there is a unique pair (m, n) such that d = 6m + 7n. Hence
N=7Y, 220 p(gB2-d-1i),

where p (i) is the number of partitions of i and ¢ () is the number of partitions
(Jis--sJ0) of j with 4 < j; < ... <J,. (Of course, we use the convention
p0) =¢q(0) = 1)

Among these, only 21209 have an acceptable deficiency, i.e. d = 0,8,12,14,15
or 16. They are distributed as follows:
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Deficiency 0 8 12 14 15 16 Total

Number 347 | 9799 | 6282 | 3027 | 1523 | 231 || 21209

Number with zero
Witt class 347 848 | 306 90 57 28 1676

Number of connected
root systems with zero
Witt class 347 | 410 | 108 34 24 11 934

We say that a root system R is not connected if R=R, I R, is a
disjoint union of mutually orthogonal root systems R;, R, such that T(R;)
and T'(R,) have relatively prime orders.

If R=R,; IR, is not connected, a metabolizer for T(R) = T(R,)
T(R,) will have the form M = M, H M,, where M, is a metabolizer
for T(R;),i = 1,2 and any lattice L with (complete) root system R will split
as L = L, L,, with L, L, unimodular and with root systems R, R,
respectively. Thus, if R is not connected, it does not qualify as a candidate
root system for an indecomposable unimodular lattice of the same rank.

Sifting the root systems for the purpose of setting up the tables, we retain
only the connected ones. Of course, a decomposable 32-dimensional lattice
which does not involve a ZEg factor can only be the orthogonal sum
of 2 copies of the indecomposable 16-dimensional lattice I';¢ in the notation
of [MH], Lemma 6.1, p. 27. However, the criterion is a handy one to include
in a computer program and it does considerably shorten the lists of candidates.
The number of remaining systems is shown as the last line in the above table.

In order to get some experimental estimate on the relative strengths of the
various conditions we are using, let me display the (otherwise irrelevant) list
of connected systems of admissible deficiencies. (See the table next page.)

Comparing the last lines of the two tables we see that the condition on the
Witt class is fairly stronger than merely requiring the order of T'(R) to be
an integral square. (Of course, if T(R) contains a metabolizer M = M+,
then | T(R) | =|M|*.) A simple example of a root system R with non-zero
Witt class but | T(R) | a square is R =2As H Ay H D, H Dg which is
connected (and has deficiency 8). There are 1302 — 934 = 368 such.
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Deficiency 0 8 12 14 15 16 Total
Connected
root systems 347 | 2154 | 1051 | 425 | 150 25 4152

Connected root
systems with
| T(R) | @ square 347 | 610 | 214 | 79 | 38 | 14 || 1302

The 934 root systems of the bottom row of the first table all possess a
metabolizer. However, a metabolizer M C T(R) will produce a unimodular
lattice L with root system exactly R only if for each non-zero s € M the norm
n(s) is an integer larger than 2:n(s) > 2. (The norm has been defined in
Section 2.) Moreover if L is to be an even lattice, n(s) must in addition be
an even integer. A metabolizer M satisfying n(s) = 0 (mod2) and n(s) > 2
for every s € M, s # 0 will be called admissible.

The norms of the elements of T(A)), T(D,), T(Es), and T (E;) have been
recalled in Section 3:

n(x,) = 5220 for x, € T(A), r=0,1,..., 7,

n(y) =n(y;) =+, n(y)=17fr TMD),
for ze T(Eg¢), 2+ 0,
forze T(Eq),z+0.

Thus, the norm of any element in the discriminant 7(R) of a root
system R can easily be calculated. Of course, in general n(s + s”) # n(s)
+ n(s’)fors,s” € T(R). However,n(s + s") = n(s) + n(s’) holds trueif s, s’
belong to the discriminants 7(R;), T(R,;) of mutually orthogonal root
sub-systems.

Only the weights of admissible elements may occur with non-vanishing
coefficient in the weight enumerator polynomial P,, of a putative
(admissible) metabolizer M.

Before embarking on using the duality theorem, it is possible, in some
favorable cases, to eliminate a root system directly by inspection:

n(z) =

Nlw WA

If M C T(R) is an admissible metabolizer, then for every prime number
p, the p-component M, of M is an admissible metabolizer for the induced
bilinear form on the p-component 7 (R), of T(R). There are cases of root
systems R and suitable choice of p for which it is apparent that no metabolizer
of T(R), is admissible. As an example, suppose that R = A, H As; H R’,
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where the order of T(R’) is prime to 3. Then, T(R); = T(A, H Ajs);
= T(A;) H T(As);s = Z/3Z @ Z/37Z generated by s; = (1,0), s, = (0, 2),
where (1, 0) stands for the projection of x; € (ZA,)* in T(A,) H T(As);
and (0, 2) stands for the projection of x, € (ZAs)#* in T(A,;) H T(As); in
the notations of Section 3. Now, n(s;) =§ and n(s;) = -:-, and for every
s € T(A, H As); one has n(s) < 2.

This argument eliminates the root systems of the form R = X H R’, with
T(R") of order prime to 3 if X is any member of the following (small but
frequently arising) black list:

X=A2E]A5, 2A2E]2A5, 2A2A5E6.

Similarly, R = mA, H nAs HH Ay H R’, with T(R’) of order prime to
3 cannot occur for any m,n = 0.

Indeed, for any putative admissible metabolizer M, one should
have M; C T(mA, H nAs); H 3T(Ag) because any s € M; with 3s # 0
would produce an element s’ = 3s = (0™”,0”, +3) €e M3, s" # 0, of norm
n(s’) = 2, which is inacceptable.

But then M = M;n T(mA, H nAs); would be a metabolizer in
T(mA, H nAs);, and therefore My = M n T(R,) a metabolizer in T(R,),
where Ry, = mA, nAs; R’. (The subgroup M; is obviously self-
orthogonal and it has the right order.) Setting m,: (ZRy)#* = T(R,), the
natural projection, the inverse image L, = 7, '(M,) would be a unimodular
sublattice and hence an orthogonal summand of L.

If no such simple argument is available, the root system is to be tested using
the duality theorem of Section 4.

For a given root system R, the coefficients in P,, of weight monomials
which are not representable by any admissible elements in 7(R) must be 0.
The duality theorem, using M = M+, is then a linear system for the
remaining coefficients of P,, which must be solvable in non-negative integers.
In many cases, this system is not even solvable in rational numbers or if it is,
some coefficients turn out to be negative or fractional. Here, all cases occur.
In most of the remaining cases where the existence of the polynomial is not
prohibited by MacWilliams duality, an admissible metabolizer and hence an
even unimodular lattice can actually be constructed.

Completeness of the lists thus relies on a lengthy elimination procedure,
let alone the heavy use of machine testing, subject to all sorts of failure. It
would certainly be desirable to supply an alternate, perhaps less computa-
tional, approach.
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The above classification program really begins with the root systems of
deficiency 8. For the root systems of deficiency O, there is another, fairly
different method, due to H. Koch and B. Venkov, which we recall in the
next paragraph.

NOTATIONS IN THE TABLES

The notation for root systems R is self-explanatory: If e.g. R = 8A,
8A;, then ZR is the orthogonal direct sum

ZR =Z7ZA, H --- H ZA, H ZA; H --- H ZA;

of 8 copies of ZA; and 8 copies of ZAj;.

In order to describe a unimodular lattice L containing ZR we display a
filling set S, i.e. a set of vectors in (ZR)* which together with ZR
generate L. The terminology is intended to be reminiscent of the similar
notion of a glueing set occuring in the paper of J. Conway and V. Pless [CP].

Let R = R, -+« B R, be the decomposition of R in irreducible
components. The vectors in the filling set S contained in

(ZR)* = (ZR)* B - - B (ZR,)*

are specified by their coordinates in the successive (ZR))#*,i=1,...,r.

Vectors in the filling set are taken with minimal norm in their class
modulo ZR. It is thus easy to read off the norm of an element in S from its
displayed expression in coordinates. If the i-th irreducible component R; of R
is A;,D;,E¢, or E;, the number k£ as the i-th coordinate of a vector
of S stands for the element noted x,(R;) in Section 3.

In order (hopefully) to improve readability, I have separated by a
semi-colon the components of a filling vector belonging to different
multiple root systems. Thus, for instance s = (1;2; 1, 0) in the filling set for
the root system A; & A5 1 2E;, the 16-nth root system with deficiency 8
occuring in the tables, stands for the vector s = x;(A;) + x,(A5)
+ x,(E;) + 0 in (ZA3)* H (ZA5)* H (ZE;)#* H (ZE;)*. Its norm is
204,

After the filling set, the reader will find the weight enumerator polynomial,
sometimes just called the ‘‘polynomial”’ of the metabolizer M = n(L),
where 7 : (ZR)* — T(R). The weights refer to the indicated decomposition
of the root system under discussion, i.e. one variable only for each multiple
factor nR;, where R, is irreducible. Thus, for instance, the term 56x* y2%1in the
polynomial for R = 8A, 8A; means that the metabolizer M contains
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56 vectors with 4 non-zero coordinates among the first 8 corresponding to
T(A{)® and 2 non-zero coordinates among the last 8 corresponding to
T(A3)®%. As an example, we find among these vectors the images in T(R)
of the vectors s4, S5, ¢, 57 of the filling set.

The root systems with a fixed deficiency are listed in alphabetical order.

1. ROOT SYSTEMS WITH DEFICIENCY 0

This case has been treated by H. Koch and B. Venkov. (See [KV], Satz 3.)
If L is an even unimodular lattice of rank 32 with a complete root system of
deficiency 0, then L contains 32 mutually orthogonal vectors of scalar
square 2, i.e. ay, ..., a3 € L such that (a;,a;) = 25;;.

Let N = Za, Za, Za;, and let N* = Za; Zos, be
the dual lattice, where a; = % a;.

Since (x,u) € Z for all xe L, u € N, we have L C N#. The quotient
N#/N is the 32-dimensional vector space F3* with the standard scalar
product (g;,€;) = % §;; (induced by the scalar product on N#), where ¢g;
stands for the image of o; under the projection w: N#* = N#/N.

The image C; = n(L) of the lattice L is then a self-dual code (of
dimension 16) in F3*. Because L is even, it follows that C; is a doubly-even
code (i.e. all code words have a weight divisible by 4).

Now, the doubly-even self-dual codes in F* have been classified by
J. Conway and V. Pless in [CP]. There are 85 of them. Crossing out from this
list the decomposable ones, we arrive at a list of 75 codes, and therefore
75 irreducible even unimodular lattices, corresponding to 62 root systems.

For the details, see [CP] and [KV].

It turns out that all the examples of non-isomorphic even unimodular
32-dimensional lattices with the same complete root system occur in the case
of deficiency O. ’

The reader who wishes to see these examples explicitly must therefore turn
to [CP].

In the following subsections 2 to 6, containing the list of lattices with
non-zero deficiency, each realizable root system uniquely determines the lattice
to which it belongs.

2. ROOT SYSTEMS WITH DEFICIENCY &

There are 29 even unimodular lattices of rank 32 having a complete root
system of deficiency 8. Each lattice is uniquely determined by its root system.
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(1) 8A; H 8A;

A filling set for the corresponding lattice consists of the following 8 vectors

=(0,0,0,0,0,0,0,0; 1,1, 1,1, 1, 1, 1, 1),
ss=(@1,1,0,0,0,0,0,0;0,0,0,0, 1, 1, 1, 1),
s, =(,1,1,0,0,0,0,0;0,0, 1, 1, 1, 1, 0, 0),
s;y=1(0,0,0,1,1,0,0,0;0,1,3,0,0, 1, 3, 0),
s¢=(1,1,1,1,0,0,0,0; 0,0, 0,0, 2, 2, 0, 0),
ss=(0,0,1,1,1,1,0,0; 0, 0,0, 0, 0, 2, 2, 0),
s¢=(0,1,1,0,0,1,1,0; 0, 0, 2, 0, 0, 2, 0, 0),
s;=(0,0,0,0,1,1,1,1;0,0,0,0,0, 0, 2, 2).

The weight enumerator polynomial is

P(x,y) =1+ x3 + 56x*y? + 14y* + 112x2y* + 112x4y*
+ 112x6p4 + 14x8y* + 896x*y5 + 672x2y° + 56x*y°®
+ 672x%y6 + 896x*y7 + 17y% + 112x2y8 + 224x4y8
+ 112x6y8 + 17x8y3,

The (rather delicate) discussion of this root system in presented in Section 7.

(2) 4A1 H 4A5 Ds
Filling set S = <s;, $2, S3, S4, S5, Sg, S7>, where

si=(,0,0,0;3,0,00;1), s,=(0,1,0,

0;0,3,0,0; 1)
S3=(Os O: 13 Os O: 093 O 1) S4_(O’ O, 0519 09 Oa 033’ 1)9
ss=(1,1,1,1; 0, 0, 0, 0; 3), s¢ = (0, 0, 0, 0; 0, 2, 2, 2; 0),
§7 = (O; Os 09 Oa 23 09 23 43 O)
Polynomial

P(x,y,z) =1 + 6x2y* + 8y3 + 24x2y3 4+ 24x2y* + 9x4y* + x4z + 4xyz
+ 4x3yz + 6x2y2z + 36xy37 + 24x2y37 + 36x3y3z
+ 8x%y3z + 9y4z + 32xy4z + 24x2y%z + 32x3y4z.

3) 2A4 H 2A3 2A7 H D1
Filling set

S = <sy, 8, 83, 4>, where

si=(,0;2,0; 0, 0; 1), s;=1(0, 1; 0, 2; 0, 0; 3),
=(0,0; 1, 1; 2, 0; 2), sq=(1,1;0,1;1, 1; 1.
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Polynomial

P(x,y,2,8) = 1 + 2y2z + 4x2y%z + 22 + 4yz®> + 8xyz* + 8xy?z?
+ 4x2y2z%2 + 2xyt + x2y2t + 2x2zt + dxyzt + 4y*zi
+ 8xy?zt + 4xz%t + 8yz*t + 10xyz%t + 12x%yz%t
+ 12y2z%t + 20xy2z2t + 9x2y2z21.

(4) 2A4 2A¢9 i D12
Filling set

S=<(1,0;5 0,1, (0,1;0,5; 1), (1, 0; 0, 55 2),
0, 0; 2, 4; 0)>.
Polynomial

Px,y,2) =1+ 4y? + 5x*y* + x2z + 4xyz + 5y%z + 16xy%7 + 4x%y?z.

(5) A]EA3EBZA7ED7E]E7

Filling set S = <s,, 55, 53>, where

s1=(1;1;1,3;0; 0, s2=(0;1;2,4;1;0),
s;=(1; 0; 0, 4; 0; 1).
Polynomial
P(x,y,z,t,u) = 1 + 22 + 2yz% + 4xpz2 + 6yzt + 272t + 4x72t
+ 4yz*t + 8xyz?t + 2xzu + 4yz2u + 2xyzlu
+ xytu + 4xyztu + 4z%tu + 2xz%tu + 8yz:tu
+ Sxyz*tu.

(6) Aq H As H A1 H Ds H Do

Filling set S = < (1;3;0;2;2), (0;3;0;0;1), (1;0;3;1;0), (0;2;4;0;0) >.
Polynomial

P(x,y,z,t,u) =1+ 2yz + zt + 2xzt + 2yzt + 4xyzt + yu + xzu
+ 2yzu + Sxyzu + xtu + xytu + 2ztu + 13yztu
+ 10xyztu.

(7) A1 H Ay7 H Dy

Filling set § = < (1; 0; 1), (0; 9; 3), (0; 6; 0)>.
Polynomial P(x,y,z) =1+ 2y + xz + 3yz + 5xyz.

®) 8A; H 2Dy
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Filling set S = <sy, 83, $3, 84, S5, S¢ >, Where

Sl - (13 1, 19 1’ 19 1: 1, I; Os O)a SZ = (Os 13 0: Oa 1, 3; 23 1; Os O)’
S3 = (0: 0’ 19 O: 15 03 1 19 1: 0)9 Sq4 = (0, 0’ 09 1, 09 1, 33 33 29 O):
ss=1(0,2,0,0,0,2,0,0;1,1), s=1(0,2,0,0,2,0,0,0; 2, 2).
Polynomial

P(x,y) =1+ 14x* + 16x° + 16x7 + 17x® + 48x*y + 288x°y
+ 48x8y + 12x%y% + 24x*y? + 240x3y?% + 12x%y?
+ 240x7y? + 48x8y2.

€) SA; HH Dy
Filling set S = <s;, S5, S5, S4,85 >, where

s;=(,0,0,0,2,1, 1, 1; 0), s, = (0, 1
S3 = (05 O, 19 13 Oa 29 15 1; 0), Sq4 = (Os 09 ’ ’ )
0,0,0,2,2;3).

Polynomial

P(x,y) =1+ 14x* + 48x° + 48x7 + 17x8 + 4x%y + 24x*y + 112x5y
+ 100x%y + 112x7y + 32x8y.

(10) TA3; H Dy

Filling set S = <s,, 5,5, §3, 54>, where

S = (19 O: 0’ 23 ’ s ’ 0)9 S = (0, 13 09 13 23 39 1; 0)9
=0,0,1,3,3,2,1;0, s=(0,0,0,1,3,1,2;1).

Polynomial

Plx,y) = 1+ 7x* + 42x° + 14x7 + 7x3y + 70x*y + 98x6y + 17x7y.

(11) 6A; H 2D-
Filling set S = <sy, 5,5, 855, 54>, where

= (ls Oa 0, Os 19 13 05 1)3 S2 = (Oa 1; Os 0: la 3; 19 O);
=(0,0,1,0, 1, 2; 1, 1), s¢=1(0,0,0,1, 2, 1; 3, 1.

Polynomial

P(x,y) =1+ 3x* + 12x5 + 24x3y + 12x%y + 48x5y + 12x6y
+ 3x?y? 4+ 24x3y2 + 48x4y? + 36x°y? + 33x6y2,
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(12) 4A; H 4D
Filling set S = <s, $2, §3, §4>, where
S = (19 1a 13 19 29 Os Os 0)3 &g = (1, la Os O, 13 ls O, O)y
s3=1(0,1,3,0;0, 1, 1, 0), s¢=1(0,0,3,1;0,0, 1, 1).

Polynomial

P(x,y) =1+ x*+ 8x% + 36x2y2 + 24x*y? + 96x3y3 + 8x4y3 + p*
+ 8xy* + 24x%y* + 8x3y* + 41x4y“.

(13) 2A; 2A7 H 2Dg
Filling set
S=<(,0;1,1;1,0), (1,1;2,0;2,0), (2,0;0,0; 1, 1), (0,2;0,0; 3,3)>.

Polynomial

P(x,y,2) =1+ 2x%y + y2 + 4xy? + 8x2yz + 16xy2%z + 24x%y?z
+ 2x7% + X2z 4+ 2yz% + 4xyz? + 8x%yz? + 4y?z?
+ 22xy2z% + 29x2y?z2.

(14) A3z H As H A11 H Dg E~
Filling set S = <sp, S1, S2, S3>, Where
so = (1; 3; 3; 0; 1), st =1(2;3;0; 1; 0),
s, =1(0;0; 6;3;1), s3=1(0;2;4;0;0).

Polynomial

Px,y,z,t,u) =1+ xz + 2yz + 2xyz + xyt + 2xzt + 3yzt + 12xyzt
+ 6xyzu + xtu + ytu + ztu + 2xztu + 4yztu
+ 9xyztu.

(15) A3 H A1 H Dia Es¢
Filling set
S=<(;3;2;0), (0; 6; 1; 0), (0; 4, 0; 1)>.

Polynomial

P(x,y,z,) =1 + xy + xz + yz + 4xyz + 2yt + 2xyt + 2yzt
+ 10xyzt.
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(16) Az B Ais H 2E~

Filling set S = <(1; 2; 1, 0), (2; 0; 1, 1) >.
Weight polynomial

Px,y,2) =1+ y+2xy + 8xyz + xz? + 2yz* + xyz2.

(17) 4A5 BH 2Dg
Filling set S = < S,, S3>, where

S, = <(3,0,0,0;1,2), (0,3,0,0;3,2), (0,0,3,0;2,1), (0,0,0,3;2,3)>,
S; = <(0,2,2,2;0,0), (2,0,2,4;0,0)>.

Polynomial

P(x,y) =1+ 8x3 4+ 2x2y + 20x3y + 32x%y + 4xy? + 4x2y?
+ 40x3y2 + 33x4y2,

(18) 4A; H D12
Filling set S = < S,, S;>, where

§$,=<@G,3,3,3;0,3,3,0,0; 1), (0, 3, 3, 0; 2) >
Sy =<0, 2, 2, 2;0), (2,0, 2, 4; 0)>.
Polynomial

Plx,y) =1+ 8x3 + 9x* + 6x2y + 24x3y + 24x%y.

(19) RY. Dy Es H EA
Filling set S = <s4, 53, §3, S4, Ss>, Where
SI_(Os 39 3; 150; O)s 52:(35 0’ 3; 2'; 0; O)s
53=103,3,3;0;0; 1), s,=(2,2,0;0;1;0),

Polynomial

P(x,y,z,8) = 1 + 2x3 4+ 3x2y + 6x3y + 6x%z + 6x2yz + 12x3yz
+ 3x% + 3xyt + 6x3yt + 6x3z¢ + 12x2yzt + 6x3yzt.

(20) 2A5 H Dqg H 2Eg
Filling set

§=<3,0;1;0,0), (0,3;3;0,0), 2,2;0;1,0), (2,4;0;0, 1)>.
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Polynomial

P(x,y,2) =1 + 2xy + x%y + 4x2z + 12x%yz + 4x7% + 4xy7?
+ 8x2yz2.
21 As H A H Dy H EA
Filling set

§=<0;3;1; 1), B;6;0;1), 2;4;0;0)>.
Polynomial

Px,y,z,t) =1 + 2xy + yz + 8xyz + 3xyt + xzt + 2yzt + 6xyzt.

(22) 2A7 H 2Ds H Dg

Filling set S = < (1, 1; 1, 0; 2), (2, 0; 1, 1; 0), (0, 0; 2, 2; 1)>.
Polynomial

Plx,y,2) =1 + x2 + 4x%2y + 6xy? + 4x2y2 + 2x7 + 20x2%yz + y?z
+ 4xy?z + 21x%y2z.
(23) ‘ 2A4 H Ds B D3
Filling set S = <, 3;1;0), (2, 0; 1, 1)>.
Polynomial P(x,y,z) = 1 + x2 + 6x%y + 6x%z + 6xyz + 12x2%yz.
(24) 2A7 H 2Dy
Filling set S = < (1, 1; 1, 0), (2, 05 1, 1)>.
Polynomial P(x,y) = 1 + x% + 12x%y + 6xy? + 12x2y2.
(25) 2A9 HH D14
Filling set S = < (5, 0; 1), (0, 5; 3), (2, 4; 0)>.
Polynomial P(x,y) = 1 + 4x? + 2xy + 13x?y.
(26) 2A9 2E~

Filling set S = < (5, 0; 1, 0), (0, 5; 0, 1), (2, 4; 0, 0) >.
Weight polynomial P(x,y) = 1 + 4x? + 2xy + 8x%y + S5x?y2.

(27) A B Dis H Eg

Filling set S = <((3; 1; 0), (4; 0; 1)>.
Polynomial P(x,y,z) =1 + 3xy + 2xz + 6xyz.
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(28) As H Ds H Dq2

Filling set S = < (2; 1; 1), (0; 2; 3)>.

Polynomial P(x,y,z) = 1 + x + 2xy + 2xz2 + yz2 + 9xyz.
(29) As H Dry

Filling set S = < (2; 1) >.
Polynomial P(x,y) =1+ x + 6xy.

3. ROOT SYSTEMS WITH DEFICIENCY 12

There are 10 root systems of rank 32 and deficiency 12 appearing as the
root system of a (unique) even unimodular lattice of rank 32.

(1) 4A; H 4A4
The filling set S = <sy, 52, S3, 4> 1S given by
Sy = (13 O: 0) Oa 1’ 1: 1; l)a Sy = (1’ 1’ 03 O, 29 2: Os 0)9
sy=(0,1,1, 0; 0, 2, 6, 0), ss=(1,1,1,1; 0, 0, 0, 4).

The weight enumerator polynomial of the corresponding metabolizer reads

P(x,y) =1+ 4x*y + 6y2 + 24x2y? + 48x2y3 + 4x*y3 + 9y* + 64xy*
+ 24x2y4 + 64x3y* + 8x4y4.
(2) 4A, 4As5 Dy
Filling set S = <sy, 5, §5> X <54, Ss, S¢, 57>, where

s1=1(0,0,0,0;3, 3,3,3;0), s,=(0,0, 0, 0; 3, 3,0, 0; 1),
S3 = (O) O, Oa O; Os 33 39 O; 2)3

s« =1, 1, 1, 1;2,0,0,0;0),
ss=(1, -1, 1, —1;0, 2,0, 0; 0),
se=(1, 1, -1, —=1;0,0, 2, 0; 0),
s;=(1, -1, =1, 1;0,0,0, 2; 0).

Weight enumerator polynomial

P(x,»,2) =1+ 8x*y + 24x2y2 + 32x3p3 + y* + 16xy* + 24x2p*
+ 32x%y* + 24x4y* + 6y2z + 24x2y27 + 24x4y2g
+ 96x2y3z + 96x3y3z + 24x4y3z + 48xyiz + 24x2y4z
+ 96x3y4z + 48x4yz.
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3) 4A, H 4E

Filling set S = <s;, $,, §3, S4>, where
s1=(01,0,0,0;1, 1, 1, 1),
s =1(0,1,0,0;1, -1, 1, —1),
s3=1(0,0,1,0;1, 1,-1,-1),
s =(0,0,0,1;1, -1, —1, 1).
Weight enumerator polynomial

P(x,y) =1+ 8x%y + 24x?y? + 32x3y3 + 8xy* + 8x4y*.

4) 2A, H 2A11 H Dg
Filling set

§$=<(0,0;3,3;1, (0,0;6,0;2), (1, 1, 4, 0; 0), (1, 2; 0, 4; 0)>.

Polynomial

P(x,y,z) =1+ 4x%y + y* + 8xy? + 4x2y? + 2yz + 4x%yz + 4y?*z
+ 24xy?z + 20x%y?z.

&) A H Ay B A14 H EA

Filling set S = < (1; 0; 5; 0), (0; 2; 3; 0), (0; 5;0; 1)>. .
Weight polynomial

P(x,y,z,t) =1+ 2xz + 4yz + 8xyz + yt + 4yzt + 10xyzt.

(6) A, H Az H E;

Filling set S = <(1; 8; 0), (0; 6; 1) >.
Weight enumerator polynomial

P(x,y,2) =1+ y+4xy + 2yz + 4xyz.

(7) 6A3 H 2A4
Filling set S = <s;, S2, S3, S4>, where
si=@2,1,1,1,1, 0; 0, 0), s;=01,2,1,3,0,1; 0, 0),
S3 = (1: 13 la 09 Os Oa 1’ 1)3 S4 = (0’ 2, 1, la 0, O; 23 O)

Weight enumerator polynomial

P(x,y) = 1+ 3x* + 12x° + 6x2y + 24x3y + 48x%y + 18xSy + y?
+ 72x3p? + 123x%y? + 132x°y2 + 72x°y2,




(8)
Filling set
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S=<(0,0;5,0;1), 0,0;0,5;3), (1,0;2,2;0), 0,1;2,8;0>.

Polynomial

P(x,y,2) =1 + 8x2y + 8xy? + 8x?y? + 2yz + 8x*yz + iz

)

+ 24xy?z + 40x%y2z.

A4 i____H A19 El D9

Filling set S = < (0; 5; 1), (1; 4; 0)>.
Polynomial P(x,y,z) =1 + 4xy + 3yz + 12xyz.

(10)

As H A7 H Es

Filling set S = < (4; 2; 0), (0; 9; 1) >.

Weight polynomial P(x,y,z) =1+ 8xy + yz + 8xyz.

4. ROOT SYSTEMS OF DEFICIENCY 14

There are 5 root systems with deficiency 14 which appear as a complete
root system in an even unimodular lattice of rank 32. There is only one lattice
for each realizable root system.

(1)
Filling set

2A, H 2A55

S=<(1,0;2,2), (1, 1; 4,

The weight enumerator polynomial is

0) >.

P(x,y) =1+ 2y + 4x%y + 5y + 16xy2 + 4x2y2,

(2)

A filling set S = <sy, $3, S3, S4, S5, S¢> is as follows

10A, H 2E,
si=(,1,1,1,1,1, 1, 1, 1,
s:=(1,1,0,1,1,2,2,2,2,
s5=0(1,2,1,2,0,1, 1, 2, 2,
sa=(,1,2,2,1,1,0,2, 1,
ss=(,1,1,1,0,0,0,0, 0,
s¢=1(0,0,1,2,2,1,0,0, 0,

1; 0, 0),
1; 0, 0),
1; 0, 0),
2; 0, 0),
0; 1, 0),
0; 0, 1).
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The weight enumerator of the corresponding metabolizer is

P(x,y) =1+ 60x% + 20x° + 60x*y + 240x7y + 24x'0y
+ 144x3y? + 180x8y2.

See the following Section 7 for the relationship of this root system with
conference matrices.

(3) 2A, H 2A3 2A11
Filling set
S=<(0,0;1,2;3,0), (0,0;2,1;0,3), (1,1;0,0;4,0), (1,2;0,0;0,4) >.

Polynomial

P(x,y,z) =1+ 4x2z + 2yz + 4x?yz + 4y?z + 8x%y2z + 4x7? + 4yz?
+ 24xyz? + 20x%yz? + 5y2%z% + 36xy2z2 + 28x%y?z>.
4) 2A5 H 2A11
Filling set
S=<(@3,0;3,3), (3,3;6,0), (2,0; 4,0), (0,2;0,4>.

Polynomial

P(x,y) =1+ 4xy + 6x%y + y2 + 16xy? + 44x2y2.

(5) A1 H A5 H Eg

Filling set S = <(3; 2; 0), (4; 0; 1) >.

Polynomial P(x,y,z) =1+ y + 6xy + 2xz + l4xyz.
5. ROOT SYSTEMS OF DEFICIENCY 15

There are 8 root systems of deficiency 15 which occur as the complete root
system of an even unimodular lattice of rank 32. Each lattice is uniquely
determined by its root system.

(1) A1 H 3Ag A3
Filling set
S=<(1;0,0,0;7), (0; 1, 2,3;0), (0; 2,6, 0;2)>.

Polynomial

P(x,y,2) =1 + 6y% + xz + 18y%z + 18xy2z + 24y3z + 30xy3z.



the given filling set is uniquely determined by the polynomial.

2)

3)

(4)
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Here again, the polynomial is the only candidate satisfying duality. In turn,

A1 Al() A21
Filling set S = < (1; 0; 11), (0; 1; 8)>.

Polynomial P(x, y,z) = 1 + xz + 10yz + 10xyz.

Al H Azq

Filling set S = < (1; 4)>.
Polynomial P(x,y) =1+ 3y + 4x).

b 1)
)
)

b

=)

=

-

b

; 0)
; 0)

-

13A, Es
Filling set S = <sg, Si, S2, S3, S4, Ss, S¢> as follows
50:(19 15 13 15 19 19 19 19 1: 19
s;=2,0,1,0,2,1, 2,1, 0,0,
S2 (Os 29 Oa 19 Oa 2, 13 25 1: Os
s5=(0,0,2,0,1,0,2, 1,2, 1,
S4 = (0’ 03 O) 23 Os 15 Os 29 19 23
S5 = (03 Oa 0, 09 29 Os 15 09 23 13
Se = (O, 03 Os 09 09 23 Oa 19 Oa 29

The weight enumerator is

P(x,y) =1+ 156x6 + 494x° + 78x!2 + 26x*y + 624x7y

+ 780x1%p + 28x13y.

1 1
0 0
0 0
0, 0, 0; 0)
1 0
2 0
1 1

; 0)

b

5
3
b
b
’
.

Note that M, = M n T(13A,), where M is the metabolizer generated
by S in T(13A, H Eg), is the cyclic code in F3[x]/(x'3 — 1) generated by

gx)=x"—x0+ x> —x*+ x> -1
=x-1D+x2-Dx3—-x2-x-1),
with roots o*,a’,ad, ol o!!, a!?, a!’®* =1, where o

X-X-1 inF27.
(5)
Filling set

§=<(0;3;0;9), (1; 4; 1; 4, (1;2; 3; 0)>.

Polynomial

AzAsE]AsEAy]

18

a root of

P(x,y,z,1) = 1 + 2xyz + yt + 4xyt + 22t + 6xzt + 14yzt + 24xyzt.
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Here, in order to prove uniqueness, one should first observe that the weight
enumerator of the metabolizer is uniquely determined by the duality theorem
of Section 4. It is then easy to see that the above filling set is the only
possible one.

(6) A, 3Ag H Eg
Filling set
S=<(0;1,1,1; 1), (1;3,0,0; 1), (1;0, 3, 0; 1)>.

Weight enumerator

P(x,y,2) =1+ 6y%+ 2y3 + 18xy? + 6xyz + 6xy2z + 18y3z
+ 24xy3z.

For the proof of uniqueness, one first observes that the above polynomial
is the only one compatible with the requirement of duality. Then, the only
6 candidates for the weight xyz are +(1;3,0,0;1), =£(1;0,3,0;1) and
+(1;0,0,3;1).

The vector (0;1,1,1;1) is then uniquely determined, up to obvious
automorphisms, by the requirement of compatibility with the other 3 vectors.

(7) A¢ H Ay B Eg
Filling set S = <(0; 7; 1), (2; 3; 0) >.
Polynomial P(x,y,2) =1+ 6xy + 2yz + 12xyz.

(8) Ass H Eg

Filling set S = <(3; 1) >.
Weight enumerator P(x,y) =1 + 2x + 6xy.

6. ROOT SYSTEMS OF DEFICIENCY 16

There are 5 root systems of deficiency 16 occuring as the root system of
even unimodular lattices of rank 32. Each of these lattices is determined by
its root system.

(1) 16 A,
The system of filling vectors can be taken as the rows of an 8 X 16 matrix

S=U,H),
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where I is the 8 x 8 identity matrix and H is the Hadamard matrix

1 1 1 1 1 1 1
-1 1 -1 1-1 1+-1
1 -1 -1 1 1-1-1
-1 -1 1 1 -1-1 1
1 1 1 -1 -1-1-1
-1 1 -1-1 1-1 1
1 -1-1-1-1 1 1
-1 -1 1 -1 1 1-1

) S G U T e S S

The weight enumerator is
P(x) =1 + 224x% + 2720x° + 3360x!? + 256x'5.

The uniqueness of the lattice with this root system follows from the
classification of self-dual codes in F;® due to J. Conway, V. Pless and
N. Sloane in [CPS].

(2) 2A; H 2Aq4

Filling set S = < (1, 0; 5, 0), (0, 1; 0, 5), (0, 0; 3, 6) >.
Weight enumerator P(x,y) = 1 + 4xy + 4y? + 16xy2 + 20x2y2.

3) 8A4

Filling set S = <s, s, 53, 54>, where s, s,, 53, S, can be taken to be
the rows of the matrix

1 0 0 0 1 1 1 1
o 1 0 0 1-1 1-1
0o 0 1 0 1 1-1-1
o 0 0 1 1-1-1 1

The weight enumerator is

P(x) =1+ 48x* + 32x° + 288x6 + 128x7 + 128x%.

For the proof of uniqueness, see the comments in the next section.
4) 4A3

Filling set S = < (1, 1, 4, 0), (1, —1, 0, 4) >.

Weight enumerator P(x) = 1 + 32x3 + 48x4.
(5) 2A16

Filling set S = < (1, 4) >.
Weight enumerator P(x) = 1 + 16x2.
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7. COMMENTS

In this section we give some details on the construction and on the proof
of uniqueness of the even unimodular lattices of rank 32 with root systems
8A, 8A;, 10A, 2Eq, 13A, H E¢, and 8A,.

The first example, 8A; 8A;, involves a rather heavy analysis,
requiring some overview of the self-orthogonal codes in 7' (8 A;) which is also
necessary in order to treat the other root systems containing 8A;.

The last three examples are hopefully more attractive.

(1 8A; HH 8A3

Here we have deficiency 8 and any metabolizer M must be of order 212,

If M is an admissible metabolizer and P = P(x, y) its weight enumerator
polynomial, the duality theorem of Section 4 provides an underdetermined
linear system for the coefficients of P. The coefficients ¢, a, B, vy of x6y8,
x8y6, x%y7 and x®y?® respectively can be taken as parameters and all other
coefficients are then linear expressions in c, a, [, v.

Let the polynomial P be

P,y) =1+ ciy*+cp° + e300 + ey’ + sy + ...,

where the dots stand for the terms which are divisible by x.
Then, the coefficients ¢y, ..., ¢s satisfy the equations

ci=-37+ o+ 2B + 3y,
c, = 68 —20 —3p — 4y,
C3 = a,

4 = B,

Cs = Y.

This shows that 1 + ¢, + ¢; + ¢3 + ¢4 + ¢s = 32. If M C T(8A, H 8A3)
is an admissible metabolizer, then 1 + c¢;y* + ¢, ¥° + ¢c3¥6 + ¢c4p7 + cs5)8

can be interpreted as the weight enumerator of N = M n T(8A;).
Thus | N| = 32.

STEP 1. We will first show that N is uniquely determined up to a (norm
preserving) automorphism of 7T(8Aj).
Let N = Nn 2T(8A3). Consider the exact sequence

0N >NS>N'"-0,
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where 7 is the restriction to N of the projection T(8A;) = T(8A3)/2T(8A3),
and N” = n(N) C T(8A3)/2T(8Aj3).

The map v : N = N’ given by y(x) = 2y, where n(y) = xis well defined,
linear and injective. Hence, | N” | <|N’| and since |N|=|N"|-|N"|, it
follows that there are 2 cases to be examined:

(1) | N’
) | N’

=16 and |N”
= 8 and |N”

=2,
=4,

In case (1), there is just one possibility for N’, namely

N =<(,2,2,2,0,0,0,0), 2,2,0,0,2,2,0,0),
2,2,0,0,0,0,2,2), (2,0,2,0,2,0,2,0)>

and there are 2 corresponding possibilities for N, depending on whether
VN =<2,2,2,2,2,2,2,2)> or y(N')=<(2,2,2,2,0,0,0,0) >.
Note that there is a single orbit of vectors of weight 4 under the group of
permutations of the 8 coordinates in 7(8A3) preserving N’.

The 2 cases are specified by N = N, or N,, where

No=<(1,1,1,1,1,1,1,1), (2,2,2,2,0,0,0,0),
(2’ 2’ O’ O, 2’ 2’ O, O)’ (25 O, 25 O’ 2’ O’ 2’ O) >’

and

NZ = <(1913 1,1,2, 0’ 03 O)a (2: 29 03 0325 29 09 O)s
(2, 29 O, 09 O, 05 29 2)3 (25 09 23 09 2; O, 2a 0)>

For N;, the weight polynomial is
Pi(0,y) =1+ 14y* + 17y8 .
For N,, the weight polynomial is
Py(0,y) =1 + 14y* + 8y5 + 8y7 + y8 .

However, in the second case, the polynomial coefficients of P,(0, y)
would imply

a=0 pP=8, vyv=1

and thus ¢, = — 18 for the coefficient of y* in P(x, y). This case is therefore
impossible and we retain only the possibility N = N; and

Py(0,y) =1+ 14y* + 17y8.

As we shall see, it will actually turn out that the above subgroup N, is the
only acceptable choice for N = M N T(8Aj).
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In case (2), i.e. |[N'|=8, | N”|=4, the possibilities for the weight
polynomial of N’ are
2.1 Py =14+ 5y4+ 2y% or
(2.2) Py =1+ 6y4+ y8, or
(2.3) Py =1+ 7y*.

Moreover, in each case, N’ is unique up to permutation of coordinates:

2.1) N'=<(2,2,2,2,2,2,0,0), (0,0,2,2,2,2,2,2), (2,0,2,0,2,0,2,0) >,
(2.2) N'=<(2,2,2,2,0,0,0,0), (0,0,0,0,2,2,2,2), (2,2,0,0,2,2,0,0) >,
2.3) N'=<(2,2,2,2,0,0,0,0), (2,2,0,0,2,2,0,0), (2,0,2,0,2,0,2,0) >.

In these cases, the image of y: N’ = N’ is a plane i.e. |y(N")|= 4
and since the admissible vectors of weight 6 in 7(8 A3) are not divisible by 2
in the set of admissible vectors, it follows that y (N’') contains only vectors
of weight 0, 4 or 8.

In case (2.1), there is just one orbit of planes with all non-zero vectors of
weight 4 under the action of the group of permutation of coordinates pre-
serving N’, namely the orbit of <(2,2,0,0,0,0,2,2), (2,2,0,2,0,2,0,2,0) >.
However, it is easy to see that none of the admissible vectors v € T(8Aj3)
such that 2v = (2,0, 2,0, 2,0, 2,0), is compatible with N’. Typically, if
v=(1,2,1,0,1,0,1,0), thenv + (2,2,2,2,2,2,0,0) = (3,0,3,2,3,2,1,0)
which has norm 5 and therefore is not admissible. Thus, in fact, case (2.1)
cannot occur.

In case (2.2), where

N =<(2,2,2,2,2,2,2,2), (2,2,2,2,0,0,0,0), (2,2,0,0,2,2,0,0) >

there are 2 orbits of planes in N” under the action of the automorphism group
of N':
— The orbit [uy, us], [uy,us]l, [uy,u + us] consisting of the planes
containing u; = (2, 2, 2, 2, 2, 2, 2, 2) which is fixed by every automorphism.
— The orbit consisting of the planes [u,, us], [u; + Uy, usl, [uy, u; + us],
[u, + u,, u; + uz] not containing u, .

Here, we have set u, = (2,2,2,2,0,0,0,0) and u; = (2,2,0,0,2,2,0,0).

Thus, we have two possible choices for the plane y(IN'’), namely [u,, u,]
or [u,, us].

If w(N"') = [u,, u,] is chosen, an enumeration of the possibilities shows
that we can then assume N to be of the form

N=<(@U,1,1,1,1,1,1,1), (1,1,1,3,0,2,0,0), (2,2,0,0,2,2,0, 0) >.
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The resulting weight polynomial for N, namely
Py=1+6y*+ 8y>+ 8y7 + 9y?
determines the coefficients a, B, vy as
a=0, p=8, =9,
and then, throwing in the monomials containing x, P,, becomes

Py(x,y) =1+ 6y*+ 8y> + 8y7 + 9y8 + 24x2y3 + cx?y*
+ (400 — 4c)x2yS + 6¢cx2yS + (472 — 4c)x2y7 + cx?y?®
+ 32x%y2 + (344 — 2¢0)x*y* + (112 + 8¢c)x*y3
+ (1232 — 12¢)x*y® + (112 + 8¢c)x*y7 + (408 + 2¢c)x*y?®
+ 24x%y3 + cx8y* + 8x8yS + 8x8y7 + 9x8y8,

where ¢ still has to be determined.

In order to calculate ¢, we examine the possible vectors of weight x2y’
in M. It is easy to see, considering the norm, that the only candidates must
have the form (1,1,0,0,0,0,0,0;2,2,2,2,2,2,2,0) up to permutation of
coordinates. But it is immediate that any such vector fails to be compatible
with the vector (0,0,0,0,0,0,0,0;2,2,2,2,2,2,2,2) € N C M because
their sum would have norm 2. Therefore, the coefficient of x2y’7 in Py,
must be 0.

This forces ¢ = 118. Unfortunately, the coefficient of x2y3 then becomes
negative. Hence, there is no admissible metabolizer with this choice of
N=Mn T@BA).

The other choice (still under case (2.2)) is w(N"') = [u,, u;]. Here, an

examination of the possible choices for N leads to either
N = < (19 15 15 13 23 Os 09 O)s (la la 2) 23 la ls 09 2)5 (Oa 09 Os Oa 23 2> 23 2) >

b

or
N=<(,1,11,2,0,0,0), (1,3,0,2,1,1,0,0), (0,0,0,0,2,2,2,2) > .
In both cases, the weight polynomial for N is
Py=1+6y*4+ 12y + 12y7 + y8

and this determines the parameters o = 0, B = 12, y = 1, contradicting the
equation ¢; = — 37 + o + 2B + 3y.
There remains the case (2.3), where

N'=<(2,2,2,2,0,0,0,0), (2,2,0,0,2,2,0, 0), 2,0,2,0,2,0,2,0)> .
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In this case, it is easy to see that there is just one orbit of planes in N’
under the action of the group of coordinate permutations preserving N'.
Hence, we may assume y(N”') = [u;, u,], where u; = (2,2,2,2,0,0,0,0)
and u, = (2,2,0,0,2,2,0,0) and there are 4 choices for N:

They are < N;,u;>, i=1,2,3,4, where u; =(2,0,2,0,2,0,2,0) and

N =<(1,1,1,1,2,0,0,0), (1,1,0,0,1,1,2,0) >,
N,=<(1,1,1,1,2,0,0,0), (1,1,0,0,1, 1,0, 2) >,
Ny =<(1,1,1,1,0,0,0,2), (1,1,2,0,1, 1,0,0) >,
N,=<(1,1,1,1,0,0,0,2), (1,1,2,0,1,1,2,2) >.

The resulting polynomials Py are 1 + 7y* + 18y° + 67 in the first case,
and 1 + 7y* + 10y3 + 14y7 in the last 3 cases.

In both instances, the values of the parameters a, B,y contradict the
equation for c;.

Summarizing this first phase of the analysis, we necessarily have

N = <(1’ 19 1: 13 13 15 la 1)5 (27 2> 2; 29 0) 09 Oa 0)9
2,2,0,0,2,2,0,0), (2,0,2,0,2,0,2,0) >,

and the vanishing of the coefficient of x2y7 (because any vector of weight
x?y7 is incompatible with (0,0,0,0,0,0,0,0;2,2,2,2,2,2,2,2) € N)
forces the weight polynomial to be as announced:

P(x,y) =1+ x84+ 56x%y? + 14y* + 112x%2y* + 112x%y* + 112x%p*
+ 14x8y4 + 896x%y> + 672x2y°® + 56x4y® + 672x6y6
+ 896x*y7 + 17y8 + 112x2y% + 224x%y® + 112x°y8 + 17x8y8.

Thus the weight enumerator of any putative admissible metabolizer is
uniquely determined after all, and more importantly N = M n T(8A;) is
uniquely determined as

N=<({,1,1,1,1,1,1,1), 2,2,2,2,0,0,0,0),
2,2,0,0,2,2,0,0), (2,0,2,0,2,0,2,0)>.

STep 2. Now, since |M|= 2! and | N|= 25 the projection of any
metabolizer M into T(8A;) must be a 7-dimensional subspace. Since the
polynomial P, contains only monomials with x to an even power, the
projection of M into T(8A;) consists exactly of the vectors of even weight.
Let e; € T(8A,) = F} be the vectors with coordinates i and i + 1 equal to 1
and all others 0(i=1,...,7). If v e T(8A3), we use the (hopefully) self-
explanatory notation e; + v € T(8A,) T(8A;). Obviously, M admits a
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system of generators consisting of vectors of the form e, + v;,, k=1, ...,7
together with N.

There is a list of 28 classes v + N modulo N of vectors v such that e; + v
is compatible with N, i.e. such that the subgroup of T(8A;) T(8A53)
generated by e; + v and N consists entirely of admissible vectors.

Each class has a representative with all non-zero coordinates equal to 1
or 3 and first non-zero coordinate equal to 1. The list reads as follows:

vo =(0,0,0,0,1,1,1,1), v, =(0,0,0,0,1,1,3,3),
v; =(0,0,1,1,1,1,0,0), vs =(0,0,1,1,3,3,0,0),
v, =(0,0,1,1,0,0,1,1), vy =(0,0,1,1,0,0, 3, 3),
U3 0,1,0,1,0,1,0, 1), vio=(0,1,0,1,0,3,0, 3),
vy =(0,1,0,1,1,0,1,0), vi; = (0,1,0,1,3,0,0, 3),
vs =(0,1,1,0,1,0,0, 1), v =(0,1,1,0,3,0,0, 3),
ve =(0,1,1,0,0,1, 1, 0), vi3 = (0,1,1,0,0, 3, 3, 0),
vis = (0,0,0,0,1,3,1,3), v, = (0,0,0,0,1,3,3,1),
vis =(0,0,1,3,1,3,0,0), v, = (0,0,1,3,3,1,0,0),
vig =(0,0,1,3,0,0, 1, 3), V3 = (0,0,1,3,0,0,3, 1),
vi7 =(0,1,0,3,0,1,0, 3), vy = (0,1,0,3,0,3,0, 1),
vig =(0,1,0,3,1,0,3,0), Vs = (0,1,0,3,3,0, 1, 0),
vio =(0,1,3,0,1,0,0, 3), v = (0,1,3,0,3,0,0, 1),
vy =(0,1,3,0,0,1,3,0), V.7 =(0,1,3,0,0, 3,1, 0).

Thus any admissible metabolizer M is generated by N C T(8A;)
C T(8A, H 8A;), where

N=<(1,1,1,1,1,1,1,1), (2,2,2,2,0,0, 0, 0),
2,2,0,0,2,2,0,0), (2,0,2,0,2,0,2,0) >,
and 7 vectors of the form
S = €, +Uk1,52:€2+Uk2,...,S7=€7+Uk7,

where vy, Uk, ..., Uy, are taken from the above list.

A septet (ky, ..., k7) such that the subgroup M = <S8y, .0y 87> + N i
an admissible metabolizer (i.e. consisting only of vectors of integral, even
norm #2) will be called an admissible septet and the corresponding
metabolizer < sy, ...,5;,> + N will be denoted M((iy, ..., i7).

In order to determine the admissible septets it is not necessary to handle

28
the ( ” ) X 7! = 5967561600 cases. One first makes a list Py of pairs (i, )
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such that
M,"j: <eée;+v;,e3 +v;> + N

is an admissible subgroup. The list P, contains 210 unordered pairs (420 if
(i,j) and (j, i) are counted for 2).

The machine can then easily sort out the (unordered) quadruples (i, j, k, /)
such that the 6 pairs (i, ), (i, k), ..., (k, [) belong to Py, a condition which is
necessary for (i,j,k,/) to appear as i =i,,j=1i3,k =1is,/ =1i; in some
admissible septet (i, iy, i3, ..., 7). A list Q of 105 quadruples comes out.

Note that if (i, i, ...,i7) is an admissible septet and (i}, i3, is,i7) 1S
any permutation of (i, i3, s, i7), there is a new triple (i;, i,, i¢) such that
(i1,15,103,...,1¢,17) is again an admissible septet and the corresponding
metabolizers M, M’ yield isomorphic lattices.

For instance, if M = <e; + v;,...,e; + 0;;> + N, then the permu-
tation m = (1 3) (2 4) on the first 8 coordinates (permuting the factors 7(A;))
and leaving T(8Aj;) fixed, carries M to

M = <e;+v;,,e;+e+es+v,,e +V,e+0,,..,e;,+0,>+N
= < e +U,-3,e2+u{2,e3+u,~1,e4+ui4,...,e7+v,-7> + N,

where v = v;, + v;, + U;;. Then, 0{2 must be a vector Uiy of the above basic
list (up to addition of a vector of N). Therefore, (i3, i5, i1, 14, Is,is,17) 1S an
admissible septet. Thus, any equivalence class of admissible metabolizer can
be represented by a septet (i;, i», i3, i4, I5, Ig, I7) Such that i} < i3 < i5 < I7.

Now, let G be the group of permutations of the last 8 coordinates in
T(8A; HH 8A3) generated by

a=01234, B=B5¢46, y=01072Y, p=(16)3%8

permuting the 8 factors T(A3) in T(8A; H 8A;).

The group G has order 1344 and it operates on the set of classes mod N
of the 28 vectors of the above basic list. It operates therefore also on the
set O of quadruples. The 105 quadruples forming Q are then divided into
3 orbits under this action, represented by the quadruples

qo = (0,7, 14,21) with Ggq, of cardinality 7,
g, = (0,7, 16,23) with Ggq; of cardinality 42,
g, = (5, 10, 20, 25) with Gg, of cardinality 56.

Next, let P; be the set of pairs (i, ) such that

M;;=<e +v,e+ ;> + N
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is an admissible subgroup of T(8A;[H 8A;), i.e. consisting entirely of
vectors v such that the norm n(v) of v is an even integer # 2. The set P,
contains 336 ordered pairs (obviously (i,j) € P, implies (J, i) € Py).
Any admissible septet (i, ...,I;) must be such that (i, 1is,Iis,i7) € Q,
and (ig,ix+,) € Py for k=1,...,6, in addition to (it,i;) € Py for
\k—1]>2.

Given a quadruple g = (i1, i3, i5s, i7) € Q, it is not hard to sort out the
set T, of triples (i,, i4, is) such that (i1, i, ..., i;) satisfies all the conditions
on the pairs (ix, 7). We need to do this in fact only for the above
3 quadruples g, g1, q,, since any admissible septet can be carried by the
action of G to a septet (iy, i, ..., I7) completing q,, g; or g, in the sense that
({15 03,195,07) = qo,q1 OF Q.

It turns out that for each of these 3 quadruples g = (iy, i3, Is, i7), there
are 16 triples in the set 7.

The resulting set of 48 septets can in fact still be reduced using the action
of G. The subgroups of G fixing qq, q; or g, are respectively of order 8, 4
and 1 and we are left with the following septets:

0,1,7,20, 14, 22, 21), 0,1,7,20, 14, 23, 21)
completing qo;

©,1,7,20, 16, 21, 23), 0, 1,7, 20, 16, 22, 23)
0,9,7,20, 16, 21, 23), 0,9,7, 20, 16, 22, 23)

completing g, ;
and with the quadruple g, = (5, 10, 20, 25) there are the 16 triples

©,14,7), . (0, 14, 17), 0, 19, 16), 0, 19, 26),
(13,14,7),  (13,14,17),  (13,19,16), (13,19, 26),
4, 11,7), 4, 11, 17), 4, 8, 16), (4, 8, 26),
23,11,7), (23,11,17), (23,8, 16), (23, 8, 26),

forming the septets (5, 0, 10, 14, 20, 7, 25), etc.
Denote by M (i, iy, 3,14, s, ig, i7) the subgroup
M@, ....i7) = <ey + Vi, ...,e; + v, > + N,
We finish exploiting the operations of the permutation group Sg acting
on T(8A; H 8A3) by permuting the first 8 coordinates.

It is easy to check that 6, = (1 2) € Sg acts on admissible metabolizers of
the form M (i,, i, 15, ...,1i7) by

GIM(il,iZa i3s neny l7) = M(il’ léa i33 sy 17) ’



100 M. KERVAIRE

where 7 is the uniquely determined element in the basic list such that
Vig = U; + Uiy modulo N.
Similarly,

or M(iy,...,17;) = M(i{, ..., i7),
where i;=1i,forl#+#k — 1, k + 1 and

Vi

i%_ g = Vi, _, + Vi, modulo N, Ui1,<+1 = V;, + Vi, modulo N,

for k=1,2,...,6;
G7M(i1, seey 17) = M(11 g soey i5, lé, 17) ’

where Vis = Vi + Uiy modulo N.

Using ©,,03,05 and o, one first observes that all M(i,, i,, ..., i7)
with the same quadruple ¢ = (i, i, is,i7) are equivalent. Hence, the
equivalence class of any admissible metabolizer is detected by its basic
quadruple which can be g, g; or g,. However, the permutation o4 carries
M@©,1,7,20,14,22,21) to M(O,1,7,20,16,22,21). Similarly, the
permutation w =(74563218) takes M(,0,10,14,20,7,25) to
M, 8,7,27, 14, 16, 21) which is equivalent to M (0, 1, 7, 20, 14, 22, 21).

It is easy to let the machine verify that M (0, 1, 7, 20, 14, 22, 21) actually
is an admissible metabolizer and to pass from it to the filling set displayed in
the table.

Thus, there is a single isomorphism class of 32-dimensional even,
unimodular lattice with root system 8A; H 8Aj;.

) | 10A, H 2E¢

The only weight enumerator polynomial P(x,y) for an admissible
metabolizer in 7T(10A, B 2E4) which is compatible with the duality
theorem 1is

P(x,y) =1+ 60x° + 20x° + 60x*y + 240x7y + 24x'%y + 144x°y?
+ 180x8y2 .

Thus in T(10A,) = F°, the intersection M, = M n T(10A,) contains
exactly 10 pairs {x, — x} of vectors of Hamming weight 9.

Two distinct such pairs {x, —x} and {x’, —x’} cannot have their
vanishing coordinate at the same place. Indeed, suppose that for
some i, we have x/=x;,=0. Set J={je{l,..., 10}|xjf= x; # 0} and
K={ke{l,.., 10}|x, = —x;,#0}. Then |J|+|K|=9, and w(x + x)
=|J|, w(x—x")=]|K|. The polynomial says that |J|# 3, |K]|=#3.
Hence the only possibility is { | J|, |[K|} = {0,9} and x" = + x.
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By numbering the 10 pairs {x®, —x®}, ..., {x19, —xU9} correctly,
we can thus assume that the i-th coordinate of x® is 0. Let us choose
{0, — 1,1} as integer representatives of the residue classes mod 3. The
vectors x(, ..., x19 can be thought of as the (reduction mod 3 of the)
rows of a 10 x 10 integral matrix C such that

ci.i=0, ¢ ;==xlfori#/.

I claim that C is a conference matrix, i.e. C*.C = C.C" = 91, where [
is the 10 X 10 unit matrix.

For i#j, let S={se{l,...,,10}|x” =xY}. Clearly i,j ¢ S. Since
w(x® + x)y =2 +|8§|, and wx® — xD) =2+ (8 —|S|), and the only
possible values are 6 or 9, we conclude that | S l = 4. It follows that the scalar
product of two distinct rows of C is zero.

Up to conjugation by a signed permutation matrix there is exactly one
10 x 10 conference matrix. Thus M, is uniquely determined.

It is easy to verify that there is then no choice left for the last two filling
vectors (up to isomorphism of the lattices).

3) 13A; B Eg

Here, not only is the weight polynomial determined by the duality theorem,
but if we single out one of the factors T(A,), the polynomial P(x;, x,,¥)
corresponding to the decomposition 12A, H A, H E¢ is still uniquely
determined and reads

P(xy,x3,y) =1 + 84x% + 152x) + 6x1°
+ (sum of monomials divisible by x, or y) .

This means that if M is an admissible metabolizer, then for any choice of
coordinate (among the first 13) there must be exactly 3 pairs of vectors of
weight 12 having precisely this coordinate zero.

[t is then straightforward to see that we may assume these 3 pairs of vectors
to be +s5,, £5,, =53, where

51:(1,1,1,1,1, 17191s131313190;0)9
52:(13 131 191313292s232:292,0;0)9
sy=1(1,1,1,2,2,2,1,1,1,2,2,2,0;0).

2,
[t now turns out that the vectors with vanishing 12-th coordinate in M can
then be assumed to be

s¢=1(1,2,1,2,1,2,2,1,2,2,2,0,1; 0)

ss=1(1,1,2,2,2,1,2,2,1,2,2,0,1; 0)
S —52—53+S4+S5:(1,2,2,2,1,1,2,1,1,1,1,0,2;0)
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and their opposites, where s, s,, 53, 54, S5 are linearly independent and form
a basis of an admissible S-dimensional subspace in T(13A,).

Indeed, among the first 11 coordinates of these 6 vectors, there must be
either 4 ones and 7 twos or 4 twos and 7 ones. Since we can change the sign
of the last (13-th coordinate) at will, we may assume that s, has the form
(14,27,0, 1), meaning 4 ones and 7 twos among the first 11 coordinates.

11
From the list of ( . ) = 330 such vectors, a sublist of 27 vectors only

are compatible with s,,5,,5;. Moreover, these represent a single class
modulo permutations of the coordinate indices {1, 2, 3}, {4, 5, 6}, {7,8,9}
which preserve the subspace generated by s, s,, s;. Having chosen

Sq = (1929 192"1’2,2, 152323290’1;0) ’

we must select among the remaining 26 vectors compatible with s;,s,, 83
together with the 27 vectors of the form (14,27,0,2;0), those which are
compatible with s;,s,, 53, s4. Of these, only 8 candidate vectors come out.
They form a single class modulo the group generated by the permutations (1 3),
(4 6), (7 9). Hence, the choice of

ss=1(1,1,2,2,2,1,2,2,1,2,2,0,1; 0)

is also essentially unique.

Observe that M n T(13A,) has to be 6-dimensional because the sum of
the coefficients of the monomials not containing y in the weight poly-
nomial of M is 729 = 3°. The search for a 6-th and last basis vector for
M n T(13A,) shows that the choice is limited to

s¢ =(1,1,2,1,2,2,2,1,2,2,0,2,1;0)

and its 6 transforms under the group of permutations of coordinates generated
by the permutations (2 3) (5§ 6) (8 9)and (1 23) (4 56) (7 89) which preserves
the subspace generated by sy, 52, 83,4, Ss.

Thus, there is essentially only one choice for M n T(13A,). The
metabolizer M itself is then easily seen to be uniquely determined.

The transformation

P(Xo, .-y X12) = (— X2, = X11, X7, — X0, X5, = X1,X5,X4, — X, — X105 X3, X6, X12)

carries M, as just described to the cyclic code of the table in Section 6.
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) 8A4

Let e, =(1,0,0,0), e; =(0,1,0,0), e; =(0,0,1,0), es = (0,0,0,1).
Any metabolizer must have a basis of the form {e; + v;,i =1, 2, 3,4} for
some vectors v; € Fg of weight 3 or 4.

Hence, we may assume that the first basis vector is either s; = e
+({1,1,1,)ort,=¢; + (0, 1,2, 2).

If we start with s,, there are essentially only 2 ways of completing s, to
an admissible metabolizer with 3 vectors forming with s; the rows of the
matrix S exhibited in the table and the matrix S’:

1 0001 111
, 01 0010 2 2
=1o00101 20 2

00011220

If we start with #; there is essentially only one way to complete to a
metabolizer:

100001 22
o1 0010 3 2
=10 0103 3 0 1

00012310

All these metabolizers are equivalent. The permutation p defined by
P(Xo, ..., X7) = (X4, X1, X2, — X3, X7, X5, X, Xo)

sends S’ to S and ¢ defined by

G(X(), ...,X7) = (x59x19x49x03x7ax2ax33x6)

sends S to S.

Thus the lattice described by the filling set S is the only one with the root
system 8Ay.
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