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AN EXPOSITION
OF POINCARE’S POLYHEDRON THEOREM

by David B.A. EPSTEIN and Carlo PETRONIO ')

1. INTRODUCTION

Poincaré’s Theorem is an important, widely used and well-known result.
There are a number of expositions in the literature (see [Mas71, Sei75, Mor78,
Apa86, Mas88]). However, as far as we know, there is no source which
contains a completely satisfying proof which applies to all dimensions and all
constant curvature geometries. There is a tendency for unnecessary hypotheses
to be included, which are sometimes implied by the other hypotheses and
sometimes unnecessarily restrict the range of validity of the theorem.

A feature of this paper is the emphasis on the algorithmic aspects of
Poincaré’s Theorem. This point of view was first stressed by [Ril83]. Riley’s
work is restricted to dimensions two and three, where various points become
easier to analyze. We want procedures which will tell us whether a given finite
set of finite-sided convex polyhedra and face-pairings do or do not give rise
to an orbifold, or, equivalently to a tessellation of X”. Such procedures have
been exploited to remarkable effect — readers are referred to the paper by
Bob Riley just cited, and to other contributions by him.

Riley’s computer programs start with a list of group generators, given
numerically, and attempt to find a fundamental domain for the group. The
procedure goes through a check on a putative fundamental domain, along the
lines explained in this paper. An essential further feature of his programs, and
of similar programs by others, is that it incorporates another procedure for
improving the guess on the shape of the fundamental domain, if the original
guess fails. This second feature is not addressed in this paper.

This paper elaborates notes of lectures given by Epstein in 1992 at Warwick
University. We will assume that the reader is familiar with the elementary
definitions of euclidean, spherical and hyperbolic spaces and their geodesic
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subspaces. We denote these spaces by E”, S* and H”. When we want to
denote one of these three spaces, without specifying which, we will call
it X”. Note that E' and H' are isometric to each other and locally isometric
to S,

DEFINITION 1.1 (X-subspace). An X-subspace of X" is a copy of X/, for
some [ with 0 < i < n, embedded geodesically. In the case when X is spherical,
every O-dimensional X-subspace is a copy of S? in S”, embedded as a pair of
antipodal points.

When reading this paper, it will be helpful for the reader to understand
the concept of a manifold or orbifold modelled on one of these spaces. The
reader is referred to [Thu, Thu80] for these definitions. [BP92] is also a useful
source of background matter.

Suppose G is a discrete group of isometries of X”. Then one can fix a
point p € X” such that no element of G fixes p, and define the Dirichlet
domain of G with centre p. This is the set of x € X" such that, for all
ge G,d(x,p) <d(x,gp). The Dirichlet domain is a convex polyhedron
(see Definition 2.1). It has a finite number of faces in many important cases
(for example if the quotient of X” by G-is compact), but in general may have
an infinite number of faces, even if G is cyclic as in Example 1.3. It is a
fundamental domain for the action of G on X”.

EXAMPLE 1.2. Consider the free abelian group on two generators acting
on the plane by translation by (m, n), where m and n are integers. The Dirichlet
domain centred on any point is a unit square. If the free abelian group acts
by translation but does not have a pair of generators acting by orthogonal
translations, then the Dirichlet domain has six sides.

EXAMPLE 1.3 (infinitely many faces). Take the isometry of E3 which is
translation along the z-axis followed by an irrational rotation about the
z-axis. Let G be the cyclic infinite group generated by this isometry. The
Dirichlet domain centred on any point not on the z-axis has an infinite number
of faces.

Each element g € G gives rise to a hyperplane A, of X", consisting of
points which are equidistant from p and g(p). Let F, be the intersection of
the Dirichlet domain with A,. If F, has dimension n — 1, it is a face of the
Dirichlet domain, and each face of dimension n — 1 is equal to F, for
some g. If F, is a face, so is Fy-1. The element g sends F,-1 to F, and is
called a face-pairing of the Dirichlet domain.
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Now suppose one is presented with a convex polyhedron and, for each face,
an isometry pairing it with another face. Poincaré’s Theorem is concerned with
the question “Can this be the fundamental domain and face-pairings for the
action of a discrete group of isometries?” It turns out that this question can
be answered with conditions which are surprisingly simple to check, and the
answer is the content of Poincaré’s Theorem. If the polyhedron has a finite
number of faces, the conditions for Poincaré’s Theorem can be checked
algorithmically. |

Here is another point of view on Poincaré’s Theorem. A manifold or
orbifold modelled on X" can be cut along (# — 1)-dimensional geodesic
subspaces to obtain a single convex polyhedron (the fundamental domain), as
in the case of the Dirichlet domain. However, it may sometimes be convenient
not to use a single polyhedron. We could for example take an arbitrary
fundamental domain which is not necessarily convex (and does not necessarily
have geodesic faces). This fundamental domain can be approximated by a
union of convex pieces. The more convoluted the fundamental domain, the
greater the number of convex pieces we might need for a reasonable
approximation. As has been pointed out in [Bow93], in dimensions greater
than four a geometrically finite discrete hyperbolic group may have a
fundamental domain which needs to be built up from a finite number of finite-
sided convex pieces — one such does not suffice.

In [Bow93] one finds an example of a four-dimensional hyperbolic
manifold which has a fundamental domain with a finite number of faces, all
geodesic, but such that no Dirichlet region has finitely many faces. Probably
Bowditch’s example has the property that every convex fundamental domain,
even if not a Dirichlet domain, has to have an infinite number of faces. Since
it 1s nice to use convex building blocks — for example, they can easily be
specified using a finite set of real numbers — we would probably want to
decompose the fundamental domain in such a case into a finite number of
convex polyhedra.

Now suppose we are given a set of convex polyhedra with face-pairings.
The role of Poincaré’s Theorem is to determine whether this situation can arise
from a manifold or orbifold by cﬁtting along geodesic codimension-one
subspaces. In each case there is also the problem of determining the associated
(fundamental) group from the combinatorial data presented.

Poincare’s Theorem can be used to construct many interesting examples
of groups acting on hyperbolic or euclidean space or on the sphere, and many
interesting manifolds and orbifolds modelled on one of these spaces.
Readers are referred to [Thu, Thu80] for such examples.
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There are several reasons why it is better to use several convex building
blocks than only one. Firstly, as we have already pointed out, this is necessary
if we are to deal with all geometrically finite groups. Secondly many of the
most interesting examples are constructed using more than one piece, for
example the two ideal regular hyperbolic tetrahedra used to give a complete
hyperbolic structure to the figure-eight complement (see [Thu, Thu80]).
Thirdly the hypotheses come up naturally in the proof; if one starts with a
single convex piece, the natural inductive proof inexorably leads one to
consider glueing together several convex pieces in lower dimensions. Fourthly,
it may be convenient to use a non-convex fundamental domain, rather than
a convex fundamental domain. The non-convex fundamental domains that
arise in practice can be cut into_a finite number of convex pieces, making our
hypotheses applicable.

One way in which our treatment differs from all previous treatments, is
that we do not assume we start with an embedded fundamental domain.
Instead the fundamental domain is expressed as the union of convex cells, each
of which can be separately embedded, without knowing to begin with that their
union can be embedded. For example, suppose we are given three planar
wedges of angle 5n/6, 6n/7 and 7n/8 with face-pairings glueing them
together. The union of these pieces cannot form a fundamental domain,
because their union after giueing cannot be embedded. The point here is
whether this non-embeddability or embeddability needs to be checked
beforehand. Our proof shows that the usual checks for Poincaré’s Theorem,
in the case where there is only one convex piece, in any case imply the
embeddability of the potential fundamental domain, so no special separate
check is necessary. In this case the extra necessary checking is easy, but in a
more complicated situation, the algorithm presented here could lead to
significant saving of time and complication.

2. CONVEX POLYHEDRA

Let X” be hyperbolic, euclidean or spherical n-dimensional space. A
hyperplane (that is, a codimension-one X-subspace) divides X” into two
components; we will call the closure of either of them a half-space in X”.
Any X-subspace is the intersection of hyperplanes, and vice versa.

DEFINITION 2.1 (convex polyhedron). A connected subset P of X” is
called a convex polyhedron if it is the intersection of a family 27 of half-spaces
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with the property that each point of P has a neighbourhood meeting at most
a finite number of boundaries of elements of 7. A convex polyhedron in X”
is said to be thick in X7 if it has non-empty interior.

REMARK 2.2 (antipodal points). In H” and E” any two points are joined
by a unique geodesic segment, so the same property holds in any intersection
of half-spaces. In particular intersections of half-spaces are connected. In S”,
we have to make do with a slightly weaker form of this, in which any two
points x and y, such that d(x, y) < w, are joined by a unique shortest geodesic
segment, in any intersection of half-spaces. In S” a pair of antipodal points
can be obtained as the intersection of n + 1 half-spaces. Furthermore one can
easily check that if an intersection P of half-spaces in S” does not enjoy the
property that any two points of P are joined by a geodesic arc within P,
then P must be a pair of antipodal points. A single point in-S” is of course
an intersection of half-spaces. So the only intersection of a locally finite family
of half-spaces which is not a convex polyhedron is a pair of antipodal points
in the sphere.

LEMMA 2.3 (interior).  An intersection P of half-spaces in X7
either has non-empty interior in X" or is contained in a hyperplane.
Moreover, if the interior of P is not empty, it is dense in P.

Proof of 2.3. We may suppose that P # ¢j. Let & be the set of non-
empty X-subspaces S of X” such that P n S has non-empty S-interior
(V, say) and such that V' is dense in P n S. Clearly & has a 0-dimensional
member, so it is not empty. Let S be a maximal element of &

We claim that P C S. Otherwise, let x € P\S and let S’ be a minimal
X-subspace containing both x and S. Let ¥ C Pn S be the S-interior
of P n S. By definition V is not empty.

In the spherical case the antipodal point to x is not in ¥ C S, since x ¢ S.
So for any point in V, there exists a unique shortest geodesic path joining
1t to x.

The whole “cone” based on V with vertex x is contained in P ~ S’ and
this easily implies that x and P n S are in the closure of the S’-interior of
P n §’. This argument can be repeated for all x € (P N S)I\S. Hence S’ € &,
which gives a contradiction.

Our claim is proved and the conclusion follows. [ ]

We define the dimension of an intersection P of half-spaces in X" (in
particular of a convex polyhedron) as the smallest integer i such that P is
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contained in an i-dimensional X-subspace of X”. Lemma 2.3 shows that P is
then thick in this subspace and the subspace is uniquely determined. A non-
empty intersection of a convex polyhedron in X” with an X-subspace S of X”
is either a convex polyhedron in S or possibly a pair of antipodal points in
the spherical case.

Let P be a convex polyhedron in X”. We define the relative boundary 0P
of P to be the topological boundary of Pin S where S is the unique X-subspace
of X” in which P is thick. The relative interior of P, denoted Rellnt(P), is
defined to be P\QP. Both “interior” and ‘“boundary” of P coincide with the
topological interior and boundary respectively if and only if P is thick.

Let P be a convex polyhedron. A subset O of OP is said to be a
codimension-one face of P if P is thick in X", Q = P n S for some hyper-
plane S of X”, and Q is thick in S. (An exception has to be made when P is
a semicircle and 9P is a pair of antipodal points. In that case, we insist
that Q is equal to one of the boundary points.) If i > 2, the codimension-i faces
of P are defined inductively as codimension-one faces of codimension-(i — 1)
faces of P. If P is thick in X%, a codimension-i face of P is a convex
polyhedron of dimension n — i. Each codimension-i face of a convex
polyhedron is contained in a face of codimension i — 1.

LEMMA 2.4 (boundary). Let P be a thick convex polyhedron in X"
which is the intersection of a locally finite family 27 of half-spaces. Then
oP= U PnOoH.

He 2%

Proof of 2.4. Let x € 3P and let U be an open neighbourhood of x.
Let {H,, ..., H;} be the set of elements of 2 whose boundary meets U.
If U is small then k is finite, and we may assume that x € 0H, for 1 < i < k.
We must have k > 1, for, if kK = 0, x would be in the interior of P in X".

Conversely, if x € P n dH for some H € 77, then x is in the topological
boundary of P in X". [

PROPOSITION 2.5 (essential faces). Let P and 277 be asin Lemma 2.4.
Set

%z{Hoe%:P;& M H}.

He #\{H,)

Then:

(a) P is the intersection of the elements of .,
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(b) the elements of .# are characterized as the elements H, of 2 such
that P N O0H, is thick in 0H,,

(c) the set .« of half-spaces depends only on P and not on "

Note that neither Proposition 2.5 nor Lemma 2.4 need be true when the family
of half-spaces is not locally finite. For example, the closed unit ball in R” is
the intersection of a countable family of half-spaces, none of whose boundaries
meets the closed unit ball.

Proof of 2.5. Any element of 27 \ .# can be omitted from 27 without
affecting P. It follows that any finite number of elements of 7"\ .# can be
omitted without affecting P. Let P’ be the intersection of the elements of .#.
Then P C P’. If P’ is not connected, then P’ must consist of two antipodal
points and P must be a single point. But this contradicts the definition of .#,
and so P’ is connected. By the local finiteness property, every point of P has
a neighbourhood U such that P n U = P’ n U. This shows that P is an open
subset of P’. Since P’ is connected and P is a non-empty closed subset
of X", P=P’.

Assume that Hy e .#. Let P, be the intersection of the elements of
2#"\{H,} and choose x € Py\ P. Consider an open set U internal to P, and
let C be the cone over U with vertex x. As shown in Figure 1, C n 0H, is
contained in P and has non-empty interior in 8H,, which implies that
P N 0H, is thick in 0H,.

Conversely, if x is in the dH-interior of P n dH,, the only half-space
containing P and having x on its boundary is H,. Therefore, if H, is omitted,

FIGURE 1.

. . Thick intersections.
_ If a half-space is fesser}tlal for the definition of a polyhedron then its intersection
with the polyhedron is thick. In the diagram the boundary 8H, of H, is denoted by S.
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x becomes an interior point of the intersection of half-spaces. So Hy, € .Z.
The same argument proves that the elements of .# can be characterized
independently of 2#” as the half-spaces H containing P and such that P n 0 H
is thick in 8H. [

The elements of the set .# described in Proposition 2.5 are called the
essential half-spaces of P. According to Proposition 2.5, the essential half-
spaces are exactly those whose boundaries contain codimension-one faces of
P. Lemma 2.4 implies the following result.

COROLLARY 2.6 (union of faces). The boundary of a thick convex
polyhedron in X" is the union of its codimension-one faces.

LEMMA 2.7 (codimension-two faces). If P is a convex polyhedron in
X" and C is a codimension-two face of P there exist exactly two
codimension-one faces of P containing C.

Proof of 2.7. Without loss of generality we can assume P is thick
in X”7. Let S be the codimension-two subspace containing C. We may
suppose that P is defined by its essential half-spaces. It follows from our
definition of a face that there exist at least two essential half-spaces H; and
H, whose boundary contains S. So C is contained in the codimension-one
faces P n 0H, and P n 0H,. Conversely if a codimension-one face P n 0H
contains C then 0H contains S. But it is easily checked (see Figure 2) that
. there cannot be three essential half-spaces whose boundaries have a
codimension-two subspace in common. [

FIGURE 2.

Inessential half-spaces.
If three hyperplanes meet in a codimension-two subspace one
of the corresponding half-spaces is not essential.
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Let n > 2. A dihedral region with corner S is defined to be the intersection
of two half-spaces, whose boundaries intersect in a subspace S of codimension
two. The dihedral angle of the dihedral region is defined to be the angle
between the boundaries. This is measured by taking a two-dimensional
subspace orthogonal to S and seeing what angle is marked out on it by the
boundaries. If we think of one half-space as first and the other as second, and
if we orient the orthogonal plane, then the dihedral angle 6 is signed and
0 <|8|< n. The definition can be extended to the case where the boundaries
of the half-spaces coincide. If the half-spaces themselves coincide, the angle
is defined (ambiguously) to be =+ w, and if the half-spaces have the same
boundary, but are otherwise disjoint, the angle is defined to be zero.

DEFINITION 2.8 (convex cell). A convex cell is a slight generalization of
a convex polyhedron in X7; it is a convex polyhedron whose proper faces
may have been subdivided. Formally, a convex cell is a convex polyhedron P
in X”, together with a locally finite collection of convex polyhedra {P;}; <,
satisfying the following conditions:

(a) The relative interiors of P and of the P;, (i e I), form a disjoint covering
of P.

(b) For each i € I, P; together with {P;|j € I, P; C dP;} is a convex cell.
(This definition is not circular since the dimension of P; is smaller than
that of P.)

The P; are called the faces of the convex cell. By abuse of notation, we will
often denote the convex cell by P, without mentioning the P;. The most
obvious example of a convex cell is a convex polyhedron, together with all its
proper faces. A convex cell is said to be thick in X” if the underlying
polyhedron is thick in X”.

We now present some lemmas which will be useful in the sequel.

LEMMA 2.9 (positive distance 1). Two disjoint affine subspaces of E"
have positive distance from each other.

Proof of 2.9. Consider the orthogonal projection to an orthogonal
complement of one of the subspaces, and note that distances are not increased.
It follows that we can assume that one of the subspaces is a point, in which
case the conclusion is obvious. [

LEMMA 2.10 (positive distance 2). Let S, T be affine subspaces of E”
cind let SNT=V+D. Weassumethat S+ V. Let ¢>0 and define
Se={seS:d(s,V)>¢e}. Then d(S.,T)> 0.
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Proof of 2.10. Assume first that the intersection V is a point. We may
take V' = {0} with respect to the usual coordinates of R” = E”. As s varies
in S\{0} and ¢ varies in T, the distance between s /|| s | and ¢ is bounded away
from zero by compactness of the unit sphere in S. This proves the result
when V is a point.

Now consider the general case. Let 7 be the projection on some orthogonal
complement of V. Then

d(T,S,) = d(nT,nS.) > 0
as we see from the case where V is a point.  []

PROPOSITION 2.11 (positive distance 3). Let A and B be disjoint
convex cells in the sphere or in euclidean space, each having only a finite
number of faces. Then they are a positive distance apart.

Proof of 2.11. This fact is obvious in the sphere, by compactness.

We prove the assertion by induction on the sum of the dimensions of A
and B, which we denote by m. The case m = 0 is obvious, so we assume that
m > 0 and that the assertion is true for all integers less than m. Assume by
contradiction that there exist sequences {a;} C A and {b;} C B such that
d(a;, b;) = 0.

First of all we can assume that there is a & > 0, such that, for all i,
d(a;0A) = &; otherwise, using the fact that there are only finitely many
faces, we can find a subsequence (which we denote by {a;} as well) and a
proper face F of A such that d(a;, F)— 0; if we choose a; € F such that
d(a;,a;) = 0, we have d(a;, b;) = 0. The induction hypothesis applies to the
faces F and B, proving that they meet, and this is a contradiction. Similarly,
we can assume that the distance between the b;’s and 9B is bounded away
from 0; we can assume the same bound & works for both.

Now, let S and 7 be the minimal subspaces containing A and B respectively.
We claim that S ¢ T and 7 < S. Suppose for example that S C 7, and
choose i so that d(a;, b;) < 6. Then a; € T n Bs(b;) C B, which is false.
So we assume that S # 7. Lemma 2.9 implies that V=S T # &, and
Lemma 2.10 implies that d(a;, V) = 0. Then we can find {v;} C V such
that d(v;, a;) = 0, and hence d(v;, b;) = 0. Since A is thick in S, as soon as
d(;,a;) < & we have v; € A, and similarly if d(v;, b;) < & we have v; € B.
This is a contradiction. [

LEMMA 2.12 (constant multiple). Let P be a convex polyhedron
in X7 with only a finite number of faces. Let E be a face of P and
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let S be the subspace of X" containing E in which E is thick. Then
there exists a constant k > 0 such that, for x € P, d(x,S) 2 k-d(x, E).
(We make an exception of the case where S is a pair of antipodal points —
the result may then be false.)

Proof of 2.12. We will obtain a contradiction by assuming that there
exists a sequence (x;) in P\E for which d(x;,S)/d(x;, E)— 0. In the
spherical case d(x;, E) < m, so d(x;,S) — 0. Using compactness, it follows
that d(x;, E) also converges to zero. Therefore we may restrict our attention
to an approximately euclidean local picture. So we assume from now on that
we are in the hyperbolic or euclidean case.

Given x € P\E, let y be the nearest point in S and let z be the nearest point
in E. Let E, be the face of E containing z in its relative interior. The
geodesic xz is orthogonal to E, and xy is orthogonal to S. Moreover the
segment yz meets E only at z.

FIGURE 3.

Distance to face and subspace.
This picture illustrates the proof of Lemma 2.12. E'is a face which is thick in the subspace S.
The point z is the nearest point in E to x, and the smallest face containing z is Ej.
The point y is the nearest point in § to x.

In our proof by contradiction, we obtain a sequence x; € P\ E and corres-
ponding sequences y; and z;, defined as above, such that d(x;, y;)/d(x;, z;)
converges to zero. This means that the angle between the segment x;z; and S
converges to zero. Since there are only a finite number of faces, we may assume
that z; lies in the relative interior of the same E, for each i. For each i,
without changing the angle « x;z;y;, we may now, without loss of generality,
move Xx; nearer to z; along the ray x;z;, keeping z; fixed and moving y;
correspondingly; z; remains the nearest point of E. This moves y; along the
ray y;z;. The ratio d(x;, y;)/d(x;, z;) is unaltered by the movement in the
euclidean case, and is decreased in the hyperbolic case. We may therefore
assume that, for each essential half-space H of P such that 0H does not
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contain E, and for each i, d(x;,y;) < d(x;,z;) <d(z;,0H)/2. Therefore
d(z;,y;) < d(z;,0H).

It follows that for each essential half-space H of P, such that y; ¢ H,
0H must contain E,. Other half-spaces now become irrelevant, and we may
assume that the boundary of each essential half-space of P contains E,. The
local geometry is therefore unchanged as z; moves in Rellnt(E,), and we may
assume without loss of generality that z; = z € Rellnt(E,) is independent
of i.

Since only the angles are important, we may now move x; along the
ray zx;, and assume that d(x;, z) = r is independent of i. Then z remains the
nearest point of E to x; and d(x;, y;) tends to zero. We see that x; converges
(after taking a subsequence) to a point x € S. It follows that x € P n S and
therefore x € E. But this contradicts the fact that z is the nearest point of £
to x;. This contradiction proves the result. []

LEMMA 2.13 (positive distance 4). Let P,Q be convex polyhedra
with a finite number of faces in X" and let E=Pn Q be a non-
empty face of both- P and Q. We assume that E + P. Let &6 >0
and denote by Ngs(E) the Oo-neighbourhood of E. Then, provided
S is small enough so that P is not contained in Ns(E), we have
d(P\Ns(E), Q) > 0.

Proof of 2.13. The result is clearly true in the spherical case, so we
assume that X7 is hyperbolic or euclidean space. Let S be the subspace
containing £ in which £ is thick. By Lemma 2.12 there exists §” > 0 such
that P\Ns(E) C P\Ns-(S). Let P’ be the intersection of the essential half-
spaces of P whose boundary contains £ and define Q” similarly. It is easy to
check that P" n Q' =S by considering a neighbourhood of a point of
Rellnt(E). Now P C P" and Q C Q’, so it is sufficient to check that

d(P'\N; (S),0") >0 .

But now, everything is invariant under isometries which preserve S and act
trivially in the direction normal to S, so we can work in an orthogonal
complement to S.

Hence we only have to check that the result holds when P is replaced
by P’, Q is replaced by Q" and P" n Q" = E = S is a point. We argue by
contradiction. Let x; € P'\Ns-(E) and y; € Q', be sequences such that
d(x;, y;) converges to zero. We may clearly assume that d(y;, E) > &’/2 for
each i. The rays Ex; and Ey; (extended indefinitely) therefore converge to the
same ray, which must lie in both P’ and Q’. This contradicts the fact that

PPnQ =E U
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DEFINITION 2.14 (link). Let (P, {P;};<s) be a thick convex cell in X7,
and let E be one of the faces of P — that is, E is equal to one of the
P;,(jel). Let JC I be the set of indices j such that P, contains E.
Let p € Rellnt(E). Let S, be a sphere in X with centre p, whose radius is
chosen small enough so that it only meets faces of P which contain £. By a
change of scale, S, can be identified with S7~!. The /ink of p in P is defined
to be a convex cell in S7~1, given by S, n P, with the face structure given
by S, n P;. There is one exceptional situation we need to discuss, when E is
one-dimensional. In that case, S, N E consists of two points, and this gives
rise to two zero-dimensional faces in the link, not one. Note that if £ is a point,
then, for each j € J, P, n S, is a convex polyhedron in S, — the exceptional
case of two antipodal points cannot arise since E is in the relative boundary
of P;.

Notice that it does not matter where we choose p € Rellnt(E), as there is
an isometry between the links given by two different choices. This means that
up to isometry the link depends only on E and not on p.

3. CONDITIONS FOR POINCARE’S THEOREM

We describe in this section various conditions which come up when we are
given a set of convex cells and instructions for glueing them together: our basic
objective (see Remark 3.6) is to make orbifolds or manifolds from these
building blocks. Alternatively, we can express our basic objective as
constructing a tessellation of hyperbolic or euclidean space or the sphere.

Let n > 2. Let ¥ be a countable or finite set of thick convex cells in X”.

REMARK 3.1.

(a) In fact we are only interested in the members of ¢ up to isometry, and
all our considerations must take this into account. This means that any
P € 7 may be replaced by y(P), where y € Isom(X"), and this must
not affect any of our considerations in an essential way.

(b) Strictly speaking, the set &’ is an indexed set — that is, we allow
repetition. One could avoid this, using Remark 3.1(a), by moving each
repeated convex cell a little to a different place, but that seems artificial.

We denote by .7 (&) the set of all pairs (F, P) as P varies over £ and F varies
over the codimension-one faces of P. Notice that two faces of different convex
cells could be geometrically coincident, but nonetheless they must be viewed
as distinct according to Remark 3.1(a).
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CONDITION 3.2 (Pairing). Suppose we are given maps R:.7 (&)
= 7 (#) and A: .7 (#) — Isom(X") with the following properties:
(@) R: 7(¥)— ¥(#) is an involution, that is R © R is the identity.
(b) Let (F,P)e #(#) and let R(F,P)= (F',P’). Then A(F,P)
e Isom(X") maps F onto F’" and maps the interior of P to the other side
of F’ from the interior of P’.

(c) A(F,P) gives an isomorphism between the face structure of F and the
face structure of F’ .

(d) For each (F,P) e (), A(R(F,P)) = A(F,P)".

In that case, we say that (R, A) is a face-pairing for 7, and say the condition
Pairing(#, R, A) is satisfied. (R, A) is also known as glueing data.

REMARK 3.3 (order two). In case R(F, P) = (F, P) Condition 3.2(d)
implies that A (F, P) is a mapping of order two. Note that in this special
situation A (F, P) is not necessarily the reflection in the face F, though that
is a common application of this theory.

EXAMPLE 3.4 (triangle example). Consider an equilateral triangle P
in E2, and let 7= {P}. In this case a face-pairing is an isometry sending an
edge to itself or another edge. For each pair of edges there are four such
isometries of E2, but two of the four are excluded by Condition 3.2(b). This
enables one to easily list all possible sets of face-pairings. (In fact there are
twenty distinct sets of face-pairings.)

CONDITION 3.5 (connected). Connected(Z, R) is the condition that,
given any two convex cells P and P’ in 7, there exists a finite sequence of
elements {(F;, F}, P;)}i-1 ..« with P; € # and F; and F| codimension-one
faces of P;, such that P, = P, P, = P’ and R(F], P;) = (Fi., P;y,) for
i > 1. This condition means that any two elements of 27 are joined by a
sequence of face-pairings.

REMARK 3.6 (basic objective). If Pairing(#, R, A), we can glue up &
and obtain an identification space Q = Q(Z, R, A). If we remove the
(n — 2)-skeleton, we obtain a manifold M modelled on X” which falls into
pieces if we remove the (n — 1)-skeleton; each piece is the interior of some
P e #2. The universal cover of M is also divided into cells, each of which is
isometric to (the interior of) some element P € Z°. If Connected(<, R), then
M is connected, and its universal cover is mapped into X” by the developing
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map. Different cells in the universal cover will in general correspond to the
same P, because M is not simply connected. The developing map is uniquely
defined, once the map is fixed on one component of the inverse image of one
element of 2. Roughly speaking, our basic objective is to find conditions such
that the closures in X” of the images of the cells of the universal cover
tessellate X7,

More precisely, we start with countably many copies of the elements
of # and lay them out in X” one by one. Each new copy has to be glued to
a free face of what is already laid out, using the appropriate (conjugate of the)
face-pairing. If at any stage overlapping of interiors occurs, or if the
boundaries intersect, but not in a common face, or if a face of the new copy
coincides with some existing free face, but not according to one of the given
face-pairings, then the process fails. The process succeeds if we end with a
locally finite tessellation of the whole of X”. The process might continue
indefinitely without failure at any finite stage, for example covering a proper
subspace of X7, and it will have failed if at the end it does not give a locally
finite tessellation of all of X”.

We now describe some more conditions which arise in considering Poincaré’s
Theorem. Suppose Pairing(, R, A). Let (F,;,P;) € #(#) and let C; be
a codimension-one face of F,. Let F| be the other codimension-one face
of P, containing C; (see Lemma 2.7). Let R(Fi{, P,) = (F,, P,) and
let g, = AWF],P;). Note that C, = g,(C;) is a codimension-one face
of F,, so it i1s a codimension-two face of P,, and hence there exists
only one other codimension-one face of P, containing C,. We call this
face Fj. Set g, = A(F;, P,) and continue in the same way, obtaining
a sequence {o;= (P;,C;,F;,F/,8)}i=1.2 ... We have g, =AF],P))
and g;_; © ... © g.(C)) = C;. The sequence is determined once one has
chosen P, F, and C;.

CoNDITION 3.7 (FirstCyclic). FirstCyclic(, R, A) is the condition that,
for each (F,,P)) € () and for each codimension-one face C, of F,,
there is some r > 1 such that 6,,, = ¢;. The minimal r > 1 with this
property is called the first cycle length of (C,, F,, P;).

REMARK 3.8.

(a) The condition o, = ¢, is obviously equivalent to the conditions
Poyy=P,Cy=Cjand F,,, = Fi.

(b) Instead of starting with P,, F, and C,, we could instead start with P;,
F; and C;, or with P;, F; and C,;. Instead of getting the ~-tuple
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(64,...,0,), we would get a cyclic permutation of it, or a cyclic
permutation of (o,,...,0;), where o= (P;,C;, F, Fi,g,-"_ll) for
1 < i < r and the indices are interpreted mod r.

(c) FirstCyclic(#, R, A) clearly has to be satisfied if our basic objective is to
be achieved (see Remark 3.6). Note however that complications arise if
we do not insist on local finiteness in the definition of a tessellation, when
formulating our basic objective. For example, in E?, we could glue
together a countable number of wedges, such that the sum of the wedge
angles is 2m. Such a construction would not give the whole of E?, but
would leave a single ray uncovered: is this a tessellation? The meaning
of the word ‘““tessellation’ does not suffer from such ambiguities when
one insists on local finiteness of the face structure.

CONDITION 3.9 (finite). Finite(#?) is the condition that 27 is finite and
that each element of 2/ has only a finite number of faces. This is one of the
usual conditions imposed for Poincaré’s Theorem, but it is clearly not essential
for our basic objective (see Remark 3.6). However, this condition is essential
if one wishes to check all the conditions by a finite mechanical procedure.

Clearly, if Finite(#’) then FirstCyclic(#, R, A).

CONDITION 3.10 (SecondCyclic). SecondCyclic(Z, R, A) is the condition
that for each (F;, P,) € .7 (#/) and for each codimension-one face C; of F,
there exists » > 1 such that 6,,.; = o, and the restriction of g, © ... © g; to
C, is the identity. The minimal » > 1 with this property is called the second
cycle length of (C,,F,, P;). Even if FirstCyclic(#, R, A), the second cycle
length may be infinite (see Example 3.32 or Example 3.17).

The reader is referred to Examples 3.15, 3.16, 3.17 and 3.18, which may
provide a better understanding of the cycle conditions.

REMARK 3.11.

(a) According to Remark 3.1(a), we need to check that our condition is not
changed by the replacement of one of the convex cells P € & by y(P)
for some vy € Isom(X”). In fact, suppose (F',P’)e .7 (%) and
R(F',P")=(F",P"”). Then A(F’, P’) must be replaced by:

e yo AF’',P)Yoy~lif P'"=Pand P" = P;
e A(F',PYowy~1if P"=P and P” # P;
ey o AWF’',P")if P+ P and P” = P;

e A(F',P") if P' + P and P"” # P.
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It follows that the mapping g=g,©...©g; to which SecondCyclic(#, R, 4)
refers is either unchanged or is replaced by y © g © y~! under the
replacement of P by y(P), so the condition is well-defined.

(b) Just as in the case of first cycles, the second cycle length will be the same
for each (F;, P;) and (F/, P;) which occurs in the cycle. The mapping g
of Remark 3.11(a) has to be replaced by g ! when (F;, P;) is replaced
by (F, P)). As we have seen in Remark 3.11(a), g is only defined in an
intrinsic way up to conjugation, because each of the convex cells is only
defined up to isometry. If we start with (F;, P;) instead of (Fi, P)),
then g once again changes by a conjugation.

(c) FirstCyclic(#, R, A) and SecondCyclic(<, R, A) clearly have to be
satisfied if our basic objective is to be achieved (see Remark 3.6).

LEMMA 3.12 (cycles and rotations). We use the notation introduced
above and assume that r > 1 is the second cycle length of (C.,F,, P;).
Let 0; be the the dihedral angle of P; along C; for i=1,...,r.
Then the isometry g=g,°...0g, of X" s a rotation through an
angle X0; around the codimension-two subspace of X" containing C.

Proof of 3.12. We denote by S the codimension-two subspace con-
taining C,. Note that g is necessarily the identity on S, since C; has
non-empty S-interior and g | C; is the identity by hypothesis. We only need to
prove that g preserves the orientation.

Consider in X” the convex cells Py, g; ' (Py), ..., (g] ' 0...0g ) (P,,1);
they have a common codimension-two face

Ci=g ' (C)=...=(g;'o ...og )(C.)).

Moreover, according to Condition 3.2(b), (g;'©c...o g ') (P;) and
(g;7'c...0og )y (P;,) lie on opposite sides of the common codimension-
one face (g;'©..og ' )(F)=(g; ' ©...og ") (Fi,)). Fix an orien-
tation for two-dimensional subspaces normal to S. If we assume that the angle
from F to F| is positive, then the angle from F| = gf‘(Fz) to g(l(F;) is
also positive. By induction the angle from (gl‘1 O ...0 g,") (F,y1) to
(g;'©...og ") (F.,,) is positive. But F,,, = F, and F/ , = F|, and
hence g, ' © ... © g, preserves the orientation, as required. [

CONDITION 3.13 (ThirdCyclic). ThirdCyclic(#, R, A) is the condition
that for all (F,, P;) € ./ (+*) and for all codimension-one faces C, of Fj,

if r > 1 is the second cycle length, the mapping g described in Lemma 3.12
Is a rotation through an angle of the form 2n/m for some non-zero m € Z.
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REMARK 3.14. It follows from Remark 3.11(a) that this condition and
the absolute value of m are both independent of i(1 <i < r) and of whether
one starts with (F;,P;) or (F;, P;). The condition is necessary if our basic
objective (see Remark 3.6) is to be achieved. However, we have to proceed
carefully, as the following example shows. We take a wedge in E?, with
angle 27 /3. If the face-pairings are reflections, then the sum of angles which
occurs in Condition 3.13 is 47 /3, which is not of the required form. Note that
the images of the wedge do tile E2. However, this tessellation is not
consistent with the face-pairings (see Figure 4).

Q@

S S
S ?

FIGURE 4.

Reflection in the sides of a wedge.
The different images seem to tessellate.
But if we take the face-pairings into account we find an inconsistency.

Q

FIGURE 5.

Dihedral region.
This shows a dihedral region in E3, which is the only member of &
in Examples 3.15, 3.16, 3.17 and 3.18.
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EXAMPLE 3.15 (cyclic example 1). In E3 let P be the dihedral region with
angle ¢ shown in Figure 5, and let = {P}. Let the codimension-one faces
of P be Q and S, intersecting in the codimension-two face C. We set
R(Q, P) = (Q, P) and R(S, P) = (S, P) and we define A(Q, P) (respectively
A(S, P)) to be the reflection in the plane containing Q (respectively S).
Pairing(#, R, A) follows. Moreover, as illustrated in Figure 6, both first
and second cycle lengths are equal to two. Then (by Lemma 3.12),
ThirdCyclic(#, R, A) is equivalent to the condition ¢ = n/m for some
non-zero m € 2.

S

O\ S

FIGURE 6.

Reflection face-pairings.
This illustrates Example 3.15. The first two cyclic conditions hold with » = 2.

EXAMPLE 3.16 (cyclic example 2). Let # be as in Example 3.15,
set R(Q, P) = (S, P) and define A(Q, P) as the rotation through an angle ¢
around C; Pairing(#, R, A) is of course satisfied and FirstCyclic(Z, R, A),
SecondCyclic(#, R, A) both hold with » = 1 (see Figure 7). Hence, using

OVg
FIGURE 7.

o Rotation face-pairing.
This illustrates Example 3.16. The first two cyclic conditions hold with r = 1.
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Lemma 3.12, we see that ThirdCyclic(Z, R, A) is equivalent to the condition
that ¢ = 2n/m for some non-zero m € Z.

EXAMPLE 3.17 (cyclic example 3). Let 2 and R be as in Example 3.16
and define A(Q,P) as the composition of the rotation through an
angle ¢ around C with a non-zero translation parallel to C. Then
Pairing(Z, R, A) is satisfied, FirstCyclic(%, R, A) is satisfied with r = 1
but SecondCyclic(Z, R, A) is not satisfied.

EXAMPLE 3.18 (cyclic example 4). Let 22 and R be as in Example 3.16
and define A(Q, P) as the composition of the rotation through an angle ¢
around C with the reflection in a plane orthogonal to C; Pairing(Z, R, A) is
satisfied. As shown in Figure 8, FirstCyclic(¥, R, A) is satisfied with r = 1
(and hence for all r > 1), while SecondCyclic(Z, R, A) is satisfied with r = 2.
As in Example 3.15, ThirdCyclic(Z, R, A) is equivalent to the condition that
¢ = n/m for some non-zero m € Z.

Q'S
FIGURE 8.

Rotation plus flip face-pairing.
This illustrates Example 3.18.
The first cyclic condition holds with r = 1 and the second one with r = 2.

CONDITION 3.19 (Cyclic). Cyclic(#, R, A) is the conjunction of
FirstCyclic(Z, R, A), SecondCyclic(Z, R, A) and ThirdCyclic(#, R, A).

We now introduce two more conditions, each of which involves the metric
structure of the elements of .

CONDITION 3.20 (FirstMetric). FirstMetric(/?) is the condition that there
should exist a number € > 0 such that for all elements P of ¥ and for all faces
E,, E,of P,if E, n E, = & then d(E,, E,) > € (where d denotes the usual
distance between subsets of a metric space).
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EXAMPLE 3.21 (not FirstMetric). FirstMetric(%?) is not necessary for our
basic objective to be achieved (see Remark 3.6). For example, take any
tessellation of the euclidean plane by triangles. We can insert small triangles
around the vertices, making the size of the inserted triangles tend to zero as
one goes to infinity, as in Figure 9.

/\ A

Va

A A\ A A
v \/ v
/\ A -
\/ \/ . -
/\ /\ =
\/ \/ v
A
FIGURE 9.
Tessellation of E2. This illustrates Example 3.21.

>

| ]

CONDITION 3.22 (SecondMetric). SecondMetric(Z) is the condition that,
given any 8 > 0, there should exist n(d) > 0 with the following property.
Suppose Pe # and E and F are faces of P such that ENnF+ O

and E ¢ F. If x is a point of E at distance at least & from O0FE, then
d(x, F) > u(3).

CONDITION 3.23 (Metric). Metric(#?) is the conjunction of FirstMetric ()

and SecondMetric(%?).

Condition 3.22 (SecondMetric) may appear to be strictly stronger than
Condition 3.20 (FirstMetric), but it is not. For example, in H3, take P to be
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the intersection of four half-spaces, whose boundaries meet at a point z at
infinity. We arrange for the intersection of P with a horosphere centred at p
to be a square. Then SecondMetric(¥?) is satisfied but not FirstMetric(Z).

REMARK 3.24 (Finite implies Metric). If Finite(#’) holds then First-
Metric(#?) is equivalent to the condition that any pair of disjoint faces of the
elements of Z2 have positive distance from each other. This is true in euclidean
and spherical geometry but not necessarily true in hyperbolic geometry. For
example, in the hyperbolic plane we take & = {P}, where P is the region
between two disjoint geodesics. If the geodesics meet at infinity then
FirstMetric(Z) is false. From Proposition 2.11 we see that Finite(Z’) implies
FirstMetric(#?), unless X” = H”. From Lemma 2.13 we see that Finite(Z)
implies SecondMetric(%) for all three geometries. Hence Finite(Z) implies
Metric(Z?) unless X" = H”,

SecondMetric(Z) should be thought of as showing that the angle between
faces is bounded below.

EXAMPLE 3.25. To make an example where FirstMetric(Z’) is satisfied,
but not SecondMetric(Z’), we take a sequence of disjoint isoceles triangles 7T
in E2, tending to infinity. 7; is chosen so that the apex angle tends to zero
and the base of 7, always has length one, which means that the two equal
sides have length tending to infinity. We can then complete this to a
triangulation of E? in which FirstMetric(#’) is satisfied. SecondMetric(#’)
clearly fails.

Given a set S in H” we den_ote by S the closure of S as a subset of H",
and we refer to the points of S N OH” as the points at infinity of S.

LEMMA 3.26. Let P be a convex cell in H" with finitely many faces.
Two disjoint faces of P can have at most one common point at infinity, and
they are a positive distance apart if and only if they have no common point
at infinity.

Proof of 3.26. Let A and B be the two disjoint faces. If they have two
common points at infinity, the geodesic joining them lies in both faces,
contradicting the hypothesis that they are disjoint in H”. If A and B have a
common point at infinity, then they are clearly zero distance apart. If,
conversely, they are zero distance apart, then there are sequences {a;} in A
and {b;} in B, such that d(a;, b;) converges to zero. We may assume that the
two sequences converge to the same point p at infinity. Then p € A N B as
required. [
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EXAMPLE 3.27. Consider the polygon P C H? given in the upper
half-plane model by [1, 2] X (0, o). The two faces of P have a common point
at infinity, and they are zero distance apart. Multiplication by two induces a
face-pairing which satisfies Pairing(#, R, A) and Cyclic(Z, R, A). However
the images of P under the powers of the pairing cover only the right half of
the half-plane.

DEFINITION 3.28 (codimension-i graph). For i > 1 we define % /(#) to
be the set of all pairs (E, P) where P € # and E is a codimension-/ face
of P. So ¥ Y(#) = 7(#). Given a face-pairing (R, A) we define a graph
[i(#, R, A) which has a vertex for each element (E, P) of Z(#) and an
edge e(E, F, P) for each triple with £ C F C P, E a codimension-/ face
of P and F a codimension-one face of P. The edge e(E, F, P) joins (£, P)
to(E’,P')if R(F,P) = (F',P")and E' = A(F, P) (E); we regard e(E, F, P)
as being the same edge as e(E’, F’, P’). Each component of I''(Z, R, A)
consists of one or two vertices and one edge. FirstCyclic(Z, R, A) is equivalent
to the condition that each component of I'?(Z#, R, A) is finite.

CONDITION 3.29 (LocallyFinite). We now describe a condition which is
clearly necessary for our basic objective (see Remark 3.6). In many situations,
this condition does not need to be explicitly verified, since it follows from
various subsets of the other conditions. LocallyFinite(, R, A) is the condition
that each component of I'/(#, R, A) is a finite graph. Clearly Finite(#’)
implies LocallyFinite(#, R, A).

If n = 2, LocallyFinite(#, R, A) is equivalent to FirstCyclic(#, R, A).

EXAMPLE 3.30 (not LocallyFinite). Pairing(#, R, A), Connected(Z, R)
and Cyclic(#, R, A) do not imply LocallyFinite(#Z, R, A). An example may be
constructed as follows. For each integer n > 0, take the two-sphere of radius
1/n in R? lying above the plane z = 0 and tangent to it at 0. These spheres
cut R? into a countable number of pieces. We can approximate each piece by
a finite union of convex polyhedra, so that everything fits together in the same
qualitative fashion as the spheres we have described. (We first approximate the
spherical surfaces, and then cut up the regions.) In particular the origin appears
as a point in each of the approximations. The result is not locally finite at the
origin, though the other hypotheses are satisfied. Note that, with the obvious
path metric induced by gluing the pieces together, the resulting space is a

complete metric space; so completeness does not help, in this type of situation,
in deducing local finiteness
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REMARK 3.31 (stronger local finiteness). There is an alternative version
of the local finiteness condition, used for example in [Mas71]: recall from
Remark 3.6 that Q(#, R, A) is the quotient space of L_JPE »P, the disjoint
union of the convex cells in 2. We might assume that the inverse image under
the quotient map of any point in Q(Z, R, A) is finite. This obviously implies
LocallyFinite(#, R, A). It will turn out that LocallyFinite(Z, R, A) together
with Cyclic(Z, R, A) implies this stronger condition (see Theorem 4.14).

EXAMPLE 3.32 (irrational). Here is an example when the weaker
condition of local finiteness is true, but not the stronger condition. Of course,
Cyclic(#, R, A) is not true in this case. We take two codimension-one spherical
subspaces of S3. These meet along a common S!. Let P be one of the four
complementary three-dimensional regions, and let 2= {P}. Then P has two
faces, each of which is a hemisphere. Suppose we glue one of these hemispheres
to the other, inducing an irrational rotation on the common circle boundary.
Then we have LocallyFinite(#, R, A) and Finite(#”), but the strong version
of local finiteness just stated is false.

Another similar example in H* is given as follows. Take the intersection
of two half-spaces, such that the boundaries of these half-spaces intersect in
a hyperbolic plane. There are two codimension-one faces F; and F,, each of
which is half of a three-dimensional hyperbolic space, and one codimension-
two subspace S, which is a hyperbolic plane. We take as a face-pairing a
rotation keeping the codimension-two face S pointwise fixed and taking F; to
F,, followed by an isometry T of H*. T sends S to itself and is elliptic,
rotating S through an irrational angle. If we take H* to be embedded as one
sheet of the hyperboloid (v,v) = — 1in a five-dimensional vector space with
indefinite inner product of type (4,1), then 7 is the identity on S*t.
Cyclic(Z, R, A) is false, LocallyFinite(Z, R, A) and Finite(Z#) are true, but
the quotient space Q is not hausdorff.

4. DEVELOPING MAPS

As in the previous section, let Z2 be a set of thick convex cells in X7, and
let (R, A) satisfy Pairing(Z, R, A). We define a graph I' (Z/, R) in the following
way. The vertices of the graph are the elements of 2. We have an edge, which
we call either e(F,P) or e(F’,P’), joining P and P’ if and only if
R(F,P) = (F',P’). So there is one edge for each face-pairing. Clearly,
Connected(Z, R) if and only if T'(#, R) is connected.
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Now let 7 be a maximal tree in I'(%, R). Consider the equivalence
relation ~ on the disjoint union ||, _ ,P of the elements of &, generated
by x ~ AF,P)(x) if (F,P)e Z(#),e(F,P) C T and x € F. We define
the space Y (%, R, A, T) and the quotient map ny: l__|p€ P> Y(Z#R,A,T)
by identifying each equivalence class to a point. We have Connected(Z, R) if
and only if Y(&, R, A, T) is (arcwise) connected. Since in 7 no edge
is a loop, all elements of # are naturally embedded in Y(#, R, A, T) — that
is, the restriction to any component of the domain of the projection
l_JPG +P—=>Y(# R, A, T) is injective. It is straightforward to see that
Y(Z, R, A, T) is contractible if it is connected — a deformation retraction to
a point can be constructed inductively, cell by cell, working along the edges
of T.

For the rest of this section we will assume that Pairing(<, R, A),
Connected(Z, R) and Cyclic(Z, R, A) are satisfied.

The following lemma is easy to prove.

LEMMA 4.1 (developing Y). For any choice of P, € & there exists a
unique mapping Dy:Y(Z#,R, A, T) — X", which we call the developing
map associated to (%, R, A, T), with the following properties:

* Dylp, is the identity;

e foreach Pe 2, Dy
we denote by yp),

o if (F,P)e ¥(#) and e(F,P)CT joins P to P', then

Vpr AF, P) = yp.

A different choice of the initial convex cell P, or a different choice of the
way it is embedded in X" leads to the mapping v © Dy for some
v € Isom(X").

Changing the positions of the convex cells P e & (see Remark 3.1 (a)),
we may take each \yp to be the identity and then A(F,P) is the identity
Jor each edge e(F,P) in T.

From now on, we will assume that yp is the identity for each P e Z.

p IS the restriction of an isometry of X" (which

DEFINITION 4.2. We define an abstract group G(#,R,A,T) as the
group generated by the set of symbols:

{G(F,P)i(F, P) e ?(@)}

subject to the following relations:
® U.(F,p):id if E(F,P) Cc 7.

i L S N SN S
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e if (F,P)e 7(¥), e(F,P) ¢ T and R(F,P) = (F’, P’) then we have
the relation g pyQ (s, p-y = id. In particular, if R(F, P) = (F, P) then
o(r, py has order two.

e for each P, € Z and for each codimension-two face C; of P,, in the
notation of Conditions 3.7 and 3.13, we have the relation

(O(rz, Py " Oy, pp)™ =1d .

REMARK 4.3. According to Remark 3.14, given P, e & and a
codimension-two face C; of P;, we obtain an equivalent relation starting
from either of the codimension-one faces of P, containing C,, or from any
of the faces F; or F;.

LEMMA 4.4 (holonomy). We assume Pairing(¥’, R, A), Connected(%’, R)
and Cyclic(?, R, A). For any choice of developing map Dy associated to
(Z, R, A), there exists a unique homomorphism h:G(Z#,R,A,T)
— Isom(X") with the following property: if (F,P)e ¥(Z¥) then
h(o py) = AWF,P). A different choice of Dy leads to the homo-
morphism g yh(g)y ! for some vy € Isom(X").

Proof of 4.4. Given Dy, the position in X” of each Pe & is
determined. For each (F, P) € .7 (¥?), the face-pairing A(F, P) is then also
determined. We define (o r py) = A(F, P). According to Pairing(Z, R, A)
and to Lemma 4.1 the relations defining G starting from the generators o p)
hold for the corresponding A(F, P)’s in Isom(X”), and then A4 can be
extended to a homomorphism of the whole of G(Z, R, A, T')). Uniqueness is
obvious. The last assertion is readily deduced from Lemma 4.1. [

DEFINITION 4.5. We abbreviate as follows: Y =Y(# R, A, T)
and G = G(Z, R, A, T). We give G the discrete topology, and consider
the space G X Y with the product topology. We consider on G X Y
the equivalence relation ~ generated by: (go(r p), X) ~ (g, A(F, P) (x))
whenever g € G, (F,P)e (%) and xe FC P &Y. We will denote by
Z =7Z(Z7,R, A, T) the quotient space of G X Y- by this equivalence relation,
and by nz: G X Y — Z the quotient map.

REMARK 4.6 (Y not subset Z). It is false in general that the restriction
to {id} X Y of the projection G X Y — Z is injective — see Example 4.12.

G acts on Z in an obvious way, and G acts on X” via the homo-
morphism 4.
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LEMMA 4.7 (developing Z). For any choice of Py in 7, there exists
a unique G-equivariant mapping Dz:Z — X" such that the element of Z
represented by (g,y) € G x Y is mapped to h(g) (Dy(»)), where Dy
and h are given respectively by Lemma 4.1 and Lemma 4.4. A different
choice of the initial convex cell and its position in X" leads to the
mapping y © D, for some y € Isom(X").

Proof of 4.7. We only have to check that if (g, ) ~ (g’,»") in G X Y
then 4(g) (Dy(»)) = h(g’) (Dy(y")), and this is readily deduced from the
definition of ~ and from the definitions of Dy and A. [l

COROLLARY 4.8 (P embeds in Z). For each Pe # and ge G the
mapping
Pax—nz(g x)e”Z
Is injective.

REMARK 4.9 (Z independent of 7). The definition of Z given above
depends on T. However, this dependence is not real. To see this we define
< to be a groupoid (a small category in which every morphism has a two-sided
inverse). We take # to be the set of objects of ¥. We take a(r py to
be a morphism from P to P’, where R(F,P)= (F',P’). In general,
the morphisms are formed from compositions of these, subject to the
same relations as those used in the definition of G above, except that we
now take 7= . We give the set M of morphisms of ¥ the discrete topology,
and we take the obvious topology on || pc »P. To define Z, we fix Py, € 7,
and let M(P,) be the set of morphisms with range P,. We then take all
pairs (g, x) € M(P,) X l_lpe,/,P, where xe P,Pe  and g:P— P,.
We identify (gos p),x) with (g, A(F, P)x), provided x e FC P and
g: P’ — Py, where R(F, P) = (F', P’). We define Z to be the identification
space just defined. If we change P,, the resulting Z is unchanged. An
isomorphism between the two versions of Z is given by choosing a word in
the a(x, py’s relating the choices. The isomorphism is therefore determined up
to the action of an element of M.

The only reason for using the definition given previously, in terms of a
group, rather than that given now, is that the concept of a group is more
familiar than the concept of a groupoid. The construction of the group G from
the groupoid ¢ is the standard construction of a group from a connected
groupoid. We are therefore justified in writing Z(#, R, A) instead of
Z(#,R,A, T), if the occasion demands.
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REMARK 4.10 (cell structure of Z). For each g € M(P,) and each face E
of P, we obtain the subset g(E) = n,({g} X E) of Z. To see that g(£) is an
isomorphic copy of E, we apply the developing map D;. So g(E) is a convex
cell of the same dimension as E. Since the identifications respect the face
structure (see Condition 3.2(c)), we see that Z is the disjoint union of the
relative interiors of these convex cells of various dimensions. Of course, g and
E are not determined by the cell; g(F) is just one representation. The left action
of G preserves the cell structure of Z. If x and y are interior points of the same
top-dimensional cell of Z and if gx = y for some g € G, then x = y and g is
the identity element.

It is easy to see that Connected(Z, R) is equivalent to Z being (arcwise)
connected.

DEFINITION 4.11 (boundary and interior of Y). We write Y = Y(Z,R, A, T).
The boundary of Y, denoted 0Y, is the union of the faces F such that
(F,P)e 7(#) and e(F,P) ¢ T. The interior of Y is the complement
of the boundary.

FIGURE 10.

Face pairings.
A set of polyhedra in Euclidean two-space, and a description of their face-pairings.

EXAMPLE 4.12 (fundamental domain not embedded). Let & be the set
of polyhedra in E? shown in Figure 10, and let the face-pairing (R, A) be
defined by the arrows in the picture, in such a way that the orientation of the
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edges is preserved. All the conditions described in Section 3 hold for (Z, R, A).
It is evident from Figures 10 and 11 the developing map Dy:Y— E?is not
injective.

FIGURE 11.

The space Y. .
We illustrate the space Y arising from Figure 10.

THEOREM 4.13 (modelled on X”). Let n>2, let & bea set of thick
convex cells in X" and let (R,A) be a face-pairing such that:

(a) Pairing(%, R, A);
(b) Connected(?, R);
(¢) Cyclic(#,R, A),

(d) LocallyFinite(?, R, A) (recall from Condition 3.29 that this condition
is automatically true if n = 2).

Let T be a maximal tree in T(# R), set Y=Y R,AT),
G=G(#R,A, TY and Z=Z7Z(# R,A,T), and let Dy:Y—> X",
h:G— Isom(X"), D;:Z — X" be the developing maps as in Lemma 4.1,
Lemma 4.4 and Lemma 4.7. Then Z is endowed with an X"-structure with
respect to which Dz:Z — X" is a local isometry. Also the convex cell
structure of Z (see Remark 4.10) is locally finite. Furthermore the action
of the group G on Z s proper discontinuous. Let p be a point in the
interior of a top-dimensional cell P of Z. Then the stabilizer of p is
trivial, and the orbit of p contains no other point of P.

This result will be proved by induction on n, assuming the following result
in dimensions less than n. In Section 5, we will complete the induction

by showing how Theorem 4.13 in dimension n implies Theorem 4.14 in
dimension n.
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THEOREM 4.14 (Poincaré’s Theorem Version 1). Let n>2, let &
be a set of thick convex cells in X" and let (R, A) be a face-pairing such
that:

(@) Pairing(Z, R, A);
(b) Connected(?, R),
(¢) Cyclic(#,R, A);
(d) Metric(2).
Let T be a maximal tree in T'(Z, R), set

Y=Y(ZRAT), G=GZR,AT), Z=2Z(7R,A,T)

and let Dy:Y—> X", h:G— Isom(X"), Dz:Z— X" be mappings
as in 4.1, 4.4 and 4.7. Then the following conclusions hold:

(e) LocallyFinite(#, R, A) is true in its strong form (see Remark 3.31);

(f) Z is endowed with an X"-structure with respect to which Dz :Z — X"
is a (bijective) isometry;

(&) h:G— Isom(X™) s injective and its image is a discrete subgroup
of Isom(X");

(h) Dy:Y — X" isinjective on the interior of Y (see Definition 4.11), so
that Dy(Y) or its interior can be considered as a fundamental domain
for the action of h(G) on X", depending on the precise definition
of that concept;

(j) the convex cell structure of Z (see Remark 4.10) is locally finite.

The hypotheses (and hence the conclusions) hold in particular if we add
to conditions Pairing(%, R, A), Connected(#’, R) and Cyclic(?, R, A)
either of the following additional conditions:
(X) X"=E" or S" and Finite(?),
(1) X" =Hn", Finite(??) and FirstMetric(?);

Proof of 4.13. We will assume that Theorem 4.14 has been proved in
dimensions less than n.

For n = 2, Theorem 4.13 is a consequence of Condition 3.19. To see this,
note that each point in n,'(z) lies in some C; (1 <j<r) of one particular
cycle, where the notation comes from Condition 3.10. Let m > 0 be as in
Condition 3.13. A priori, we do not know that there are m distinct copies
in Z of each of the r dihedral regions at the various C; C P;, though we do
know that there are no more than these mr regions around z € Z, because of
the way Z is constructed. The existence of D, shows that there are also no
fewer than mr regions. This completes the proof for n = 2.
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We now prove Theorem 4.13 for n > 2, assuming Theorem 4.14
in dimensions less than n. Let mz(g,x) =2z and let x e Rellnt(£),
where E is a face of Pe & of codimension i. Since we are assuming
LocallyFinite(Z, R, A), we have a finite graph I'r which is the component
of Ti(#, R, A) containing (E, P) as a vertex (see Definition 3.28). Each
vertex of 'z is a pair of the form (E’, P’), where E’ is a codimension-i face
of P’ € Z. The link (see Definition 2.14) of E' in P’ is a convex cell in S~ 1,
which is well-defined up to isometry.

Let Z: be the finite collection of links arising from the finite set of
vertices of I's. These are convex polyhedra in S”~!, defined up to isometry.
For each vertex (E’, P') of I'g, we choose a point u” € Rellnt(E’). We make
no attempt to choose these points consistently — indeed, in general consistency
of choice is not possible. The position of a link in S”-! is determined by
fixing an isomorphism between R” and the tangent space at u’. The given
face-pairing (R, A) induces a face-pairing (Rg, Az) on Zr as follows.
Suppose E’ is a face of F', R(F',P’) = (F",P"), and AF’, P") 1s the
corresponding face-pairing. Let E” = A(F’, P")(E"). Let u’ € Rellnt(E’) and
u'" € Rellnt(E'") be the points we have chosen. We define the face-pairing
Ag(E',F’', P") by applying A(F’, P’) to the tangent space at u’, and then
parallel translating from A(F', P")(u") to u”. This definition of the face-
pairing is clearly independent (in the appropriate sense) of the choice of the
points " and u". It is easy to check the truth of Pairing(%s, Rg, Ag).

Connected(#g, Rg) follows from the connectedness of TIg.
Cyclic(Zg, Rg, Ag) follows immediately from Cyclic(Z, R, A). Metric(Zg)
follows from Remark 3.24, applied to Zr. We apply Theorem 4.14 in dimen-
sion n — 1 to deduce that the developing map Z(%g, Rg, Ag) = S"~!is an
isometry. The induction also tells us that the cell structure of Z(%s, Rg, Ag)
is finite.

We choose z € Rellnt(£), and identify £ with id(E), in the notation of
Remark 4.10. Each cell of Z(#g, Rg, Ag) corresponds to a triple of the form
(h, E', P") where h is a member of the finite groupoid (#r, R, Apg). The
face-pairings identify z with the point n;(z"), where z’ € Rellnt(E’) depends
on (h, E', P"). Since the setup is finite, we can choose & > 0 simultaneously
for all (4, E’, P’) so that the only faces of P’ met by the 8-neighbourhood
centred at z’ are those that contain E’.

There is a map of Z(%s, R, Ag) into the d-neighbourhood of z in
Z(#, R, A), since each of the groupoid relations relevant in the definition of
the first space will also apply to the second. Any identification of a point of
RelInt(E) with another point, when Z(Z, R, A) is formed, can only be formed
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as a result of face-pairings which are also in (Rg, Ag). Thus the strong form
of local finiteness (see 3.31) is satisfied by (%, R, A).

The composition of D;:Z(%#, R, A) — X" with the obvious map from
Z(Z?5,Rg, Ag) to Z(Z, R, A) can be identified with the developing map
Z(Zg,Rg,Ar) > S"~! by a change of scale in the range. By induction,
this developing map is an isometry. Therefore the obvious map of
Z(Zg,Rg,Ag) to Z(%, R, A) is injective and the image of Z(#r, Ry, AE) is
mapped injectively by D,. It follows easily that a neighbourhood of z in
Z(#,R,A) is the cone on S”-!, which is mapped isometrically to X~
by D,. [

The main part of the induction step for Theorem 4.14 will be proved in
Section 5. At this point, we prove only a small part of this result.

LEMMA 4.15 (locally finite). LocallyFinite(%’, R, A) follows from the
hypotheses of Theorem 4.14 and the inductive hypothesis that Theorem 4.14
is true in dimensions less than n.

Proof of 4.14. In the proof of Theorem 4.13 we used Locally-
Finite(Z, R, A) in order to show that the link of z is embedded in Z(Z, R, A)
and that the local picture is as we expect. Here we are trying to prove
LocallyFinite(#, R, A), so the argument needs to be modified. Note that
Metric(#), which we are now assuming, implies SecondMetric(%?), which in
turn implies Metric(Zg).

The version of Theorem 4.14 for S”-! is already known inductively, and
so we know that Z(%g, Rg, Ag) = S"~1. We deduce that the tessellation of
Z (7%, Rg, Ar) is finite. This means that we have proved the strong form of
LocallyFinite(%, R, A) (see 3.31). [

5. DEFINING A METRIC

If Pairing(%, R, A) and Connected(Z, R), we obtain the connected
quotient space Q = Q(Z, R, A) defined in Remark 3.6. We can define a
“metric”” on Q in the obvious way: Given two points z; and z, in Q, we join
them with a special kind of path in Q. The path is divided into a finite number
of subpaths, and each subpath is the image of a rectifiable path in some P € #.
The distance between z; and z, is defined as the infimum over all such paths
of the sum of the lengths of the subpaths. We get the same infimum if we
restrict to subpaths starting and ending in the interior of a codimension-one
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face; furthermore we may insist that each subpath is a geodesic. (Of course,
an exception may have to be made for z; and z, themselves.) The proof of
this is left to the reader — it uses the fact that if two points | |, . »P are
identified, there is a finite sequence of face-pairings connecting them. The
axioms for a metric space are easy to verify, except for the condition that
d(z,,z;) = 0 implies that z, = z,. Unfortunately, this condition is not
always true even if Cyclic(Z, R, A), as the following example shows.

EXAMPLE 5.1 (only a pseudometric). This example is a variant of
Example 3.30. The example will arise from a decomposition of a certain open
subset U of R? into regions. We define U = {(x, y,2) | — 2 < x < z} (which
implies in particular that z > 0). The boundary of U is the union of two
half-planes of slope # 1, each containing the y-axis x = z = 0.

We now explain how to cut U into smaller regions. First we use a countable
family of planes, each containing the y-axis, with slopes 1 + 1/m and
— 1 — 1/m, where m can be any positive integer. We also use the set of spheres
in R3, lying above and tangent to the plane z = 0 at 0, with radii equal either
to n or to 1/n, for some positive integer n. This cuts upper half-space into
an infinite number of pieces, parametrized by m and n. A single piece is
bounded by (parts of) two half-planes, each with boundary the y-axis, and -
parts of two spheres, each tangent to the plane z = 0 at 0. The piece is closed,
and contains 0.

As in the case of Example 3.30, the pieces described are not convex.
However, the spherical surfaces can be approximated by finite unions
of planar polygons, and then each region can be broken up into a finite
union of convex polyhedra. So we have a qualitative description of a
family 27 of convex polyhedra in E3, together with face-pairings. We have
Pairing(#, R, A), Connected(#’, R) and Cyclic(#, R, A). However, the
point 0 gives rise to two distinct points in Q(#, R, A), and these points
are zero distance apart. In fact Q(Z, R, A) is not even hausdorff. Also
Z(#,R,A) = Q(#, R, A) in this particular case.

A very similar example could have been described in dimension two, but
then it would not have been possible to satisfy Cyclic(Z, R, A).

LEMMA 5.2 (metrizable). Suppose Pairing(#, R, A), Connected(%, R),
Cyclic(#, R, A) and LocallyFinite(#, R, A). Then Q = Q(Z, R, A) isa
metric space, with the metric defined as at the beginning of this section. Also
Z=Z(#R,A) has a metric defined in a similar way, and Z with this
metric is locally isometric to X". The topologies defined by these metrics
are the appropriate quotient topologies.
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Proof of 5.2. We have already seen in Theorem 4.13 that Z is modelled
on X” under the given hypotheses and that the polyhedral cell structure of Z
is locally finite. It follows immediately that the metric structure on Z given
by piecewise rectifiable paths induces the correct topology on Z. We have also
seen in 4.13 that G acts properly discontinuously on Z. It follows that
QO = Z/G is hausdorff with the quotient topology. Also every point in Q has
a neighbourhood which is homeomorphic to the quotient of a disk in Z by
a finite group of isometries. The radius function is invariant under the finite
group, and therefore gives a map which does not increase distances from a
neighbourhood of a point in Q to [0, 8]. (This is proved by seeing that the
radius function does not increase distances on the intersection of any P € &
with the inverse image of our neighbourhood.) From this it is easy to
see that the metric on Q is indeed a metric, and that it induces the right
topology. [

Lemma 4.15 implies the following result.

COROLLARY 5.3. The conclusions of Lemma 5.2 hold if we have
Pairing(#, R, A), Connected(%’, R), Cyclic(#,R, A) and Metric(%).

We are now able to prove Theorem 4.14. We are allowed to assume the
truth of Theorem 4.13 in all dimensions up to and including dimension .

Proof of 4.14. We will prove that there is an € > 0 such that any point
of Z has a neighbourhood in Z which is isometric to a ball in X” of
radius €. We denote by Z' the i-skeleton of Z, namely the union of the
polyhedral cells of Z of dimension at most i. We prove, by induction on i for
0 < i < n, that there is an g; > 0, such that each point z € Z satisfying
d(z,Z;) < ¢; has a neighbourhood in Z which is isometric to an g;-ball
in X”.

Suppose 0 < j < n and that the induction statement is known for i < j. We
take €; < ¢g;_1/2. Then if d(z,Z'- ') < g;_,/2 the desired result is true
for z. So we suppose that d(z,Z'~!) > ¢€;_,/2. We have already seen in
Theorem 4.13 that z has a small neighbourhood in Z which is isometric
to a ball in X” with centre z. It is clear from the cone structure on the
neighbourhood in z that we can take the ball to have radius r, where r is the
distance from z to the union of the faces not containing z.

To proceed, recall that Remark 3.24 together with the hypothesis 4.14(k)
gives us the condition Metric(#’) in the euclidean or spherical case. Also
Remark 3.24 together with the hypothesis 4.14(1) imply Metric(#’) in the
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hyperbolic case. Looking through the statement of Theorem 4.14, we see that
we may therefore assume Metric(Z?). It is clear that Metric(%?) gives a lower
bound for r in terms of g;_;.

Having found & as promised, it is standard that the developing
map Dz:Z — X" is an isometry. For completeness, we give the proof. We
first note that the image of Dy is an open subset of X", since Dz is a local
isometry (by Theorem 4.13). Using ¢ it is clear that the image is also closed,
and is therefore the whole of X”. The inverse image in Z of the open &-ball
B centred at any point of X” is a disjoint union of open subsets of Z, each
mapped isometrically onto B. It follows that Dy is a covering map. Since X"
is simply connected and Z is connected, Dz is a homeomorphism and
therefore an isometry. [

LEMMA 5.4 (completeness of Q and Z). Under the same hypotheses as
in Lemma 5.2, Q is complete if and only if Z is complete.

Proof of 5.4. Suppose Q is complete. To deduce that Z is complete,
consider a Cauchy sequence (x,) in Z. Then (nz,(x,)) is a Cauchy sequence
in Q, and therefore has a limit p. We take a small neighbourhood N of p, in
particular a neighbourhood meeting only a finite number of polyhedral cells.
The inverse image of N under mg is a union of components, each of which
is isometric to a round ball in X”. The stabilizer in G of any such component
is a finite group. The quotient of the component by this finite group gives N,
and the inverse image of p in the component is a single point. By making N
smaller, we may assume that there is an € > 0 such that any two of these
components are at least € apart. From this we see that (x,) must eventually
stay in one of these components. It follows that (x,) converges to a point
in Z.

Now suppose that Z is complete. To deduce that Q is complete, consider
a Cauchy sequence (y;) in Q. By moving each y; a little, we may assume that
it lies in the interior of a top-dimensional cell. By taking a subsequence, we
may assume that d(y;, y;+1) < 2~ for each i. We may join y; to y,,; by a
path in Q of length less than 2~*, which avoids the (n — 2)-skeleton of Q.
This gives us a rectifiable path in Q from y,, going through each of the
points y;. We now choose a point z; € Z in the inverse image of y,. Since the
path avoids the (n — 2)-skeleton, there is a unique lift to Z of the path, starting
at z,. Since Z is complete, the path converges to a limit, which we call z,.

Since the projection map 7z, is continuous, it follows that (y;) converges to
the limit nz5(z0). [
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THEOREM 5.5 (Poincaré’s Theorem Version 2). Suppose the hypotheses
Pairing(#, R, A),  Connected(#, R), Cyclic(?,R,A) and Locally-
Finite(#, R, A) are satisfied. If Z is complete, then it is isometric
to X7,

Proof of 5.5. Since Z is complete, all geodesics can be extended
indefinitely. It follows that the developing map D;:Z — X" is a covering
map. Since Z is connected, the developing map is an isometry. []

6. COMPLETENESS

In this section we discuss questions of completeness in more detail, in
relation to the case of a finite number of finite-sided hyperbolic polyhedra.
We have already seen in Theorem 4.14 that completeness follows from
Finite(#?) in the euclidean and spherical cases, so no special discussion is
necessary in those cases. We also discuss the question of verifying the
hypotheses of Poincaré’s Theorem algorithmically, giving attention mainly to
completeness in the hyperbolic case. We give a detailed account of other
aspects of an algorithmic approach in Section 7. Such an algorithm only makes
sense if a single real number is regarded as a single datum, as opposed to the
Turing machine model where a real number is known only as a bitstring, and
can therefore never be specified precisely. (In practice, Poincaré’s Theorem is
often used in connection with a group of matrices over an algebraic number
field. In this case, the conventional Turing machine model can be used.) We
need a mathematical model which allows addition, multiplication and division
of two real numbers with perfect accuracy and in unit time. Such a model is
discussed in [BSS89].

THEOREM 6.1. There is an algorithm (in the sense of [BSS89]) which has
a finite set 77 of convex polyhedra, each with a finite number of faces, and
a set of face-pairings as its input, and as its output the answer to the question
“Does this data define a tesselation of X"?” More precisely, “Does this
data allow us to define Z and is Z isometric to X"?”

The proof of the theorem just stated is discussed in more detail in
Section 7; here we cover the main points only.

The various aspects of an algorithmic approach are fairly straightforward,
with the exception of an algorithmic check that Z is complete. In order to check
our conditions algorithmically, we are of course restricted to a finite set of
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data, and, as we have already said, a single real number is regarded as a single
datum. We assume that we are given a finite set Z of convex polyhedra in
X ", each with a finite number of faces. We are also given a finite number of
face-pairings. We can check Connected(Z, R) and Cyclic(#, R, A), and
then Z can be constructed. By 4.14(k) we know that Z is complete except in
the hyperbolic case, where further checking is necessary. From now on we
assume we are in the hyperbolic case. We will find necessary and sufficient
conditions for completeness, which are algorithmically checkable.

If P is a convex polyhedron in H”, let P be the closure of P in the closure
of hyperbolic space. If p is an ideal boundary point of P, let H, be a
horosphere centred at p, chosen so that the corresponding horoball is disjoint
from each face of P which does not contain p in its closure. In the upper half-
space model, with p the point at infinity, H, is a horizontal plane. Each face
whose closure contains p lies in a vertical half-plane, and every other face is
contained in a hemisphere which is orthogonal to the boundary plane Rg_l
of the upper half-space. We assume that none of the codimension-one faces
of P lies in a hemisphere which meets H,. We may regard P n H, as an
(n — 1)-dimensional euclidean convex polyhedron, in view of the fact that H,
is isometric to R7~1,

We define the impression, denoted I(A4), of an (n — 1)-dimensional
euclidean convex polyhedron A as the subset of S”-2 consisting of all
directions with the property that a point moving along a line in that direction
stays at a bounded distance from A. The distance between two directions
is the angle between them. This definition is due to Brian Bowditch
(see Appendix). Note that a euclidean similarity between euclidean convex
polyhedra gives rise to an isometry of the associated impressions. The
impression of a convex polyhedron either consists of two antipodal points, or
is a connected convex polyhedron in §7-2. The impression of a compact
convex polyhedron is empty.

Returning to the case of a pair (P, p), where P is a hyperbolic convex
polyhedron and p is a point in the ideal boundary of P, we see that we can
identify the impression of H, N P with the set of tangent directions v at p to
S7-1 for which there is a curve in S"- !~ P starting at p with non-zero
derivative in the direction of v. We talk of the impression of P at p. If the
impression has non-empty interior, we say that P is far at p. Otherwise we say
that P is _thin at p. If P is thin at p, it must have two faces F, and F, whose
closures F; and F, meet in p only. In the Appendix, in this situation we refer
to (P, p) as being non-pyramidal.
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Consider for example the region P in the upper half-space model of H”
lying between two parallel vertical codimension-one subspaces and let p be the
point at infinity. Then the impression of P at p is an equatorial S”~3in S" 2,
and P is thin at p.

As P varies over # and p varies over the ideal boundary of P, there are
only a finite number of isometry types of impression of P at p. This is because
the impression does not change as p varies in X\ Y, where X is a connected
component of the ideal boundary of a face F, and Y is the set of ideal boundary
points of the proper faces of F. In particular, there is an integer N > 0, such
that, for each ideal point p of any P € 27, the volume of the impression
of P at p is either zero or is greater than vol(S”~2)/N.

Suppose Z is a finite collection of hyperbolic convex polyhedra, each with
a finite number of faces. Suppose we are given a set of face-pairings which
satisfy Pairing(#, R, A), Connected(Z, R) and Cyclic(Z, R, A). Let Z and Q
be as in Definition 4.5 and Remark 3.6. Let Q be the quotient space of the
disjoint union of the P’s by (the extension to the ideal points of) the given
face-pairings.

Given a pair (P, p), we develop Z into upper half-space, with p being sent
to the point at infinity. The developing map D, is determined up to
composition with a euclidean similarity of R”~!, acting as a hyperbolic
isometry keeping the point at infinity fixed. We will restrict our attention to
the development of pairs (P’, p’) such that p’ is sent to the point at infinity.
More precisely, having defined the developing map on a certain collection of
n-cells of Z, we look only at those codimension-one faces of these n-cells which
are mapped to vertical faces extending upwards to infinity, and extend the
developing map across these faces.

Another way of thinking about the situation is to define a graph I', as
follows. The vertices of I', are pairs of the form (P, p) where P € &7 and p
is an ideal point of P. For each face-pairing A (F, P), such that p is an ideal
point of F,I',, contains an edge from (P, p) to (P’,p’), where R(F, P)
= (F',P')Yand p’ = A(F, P) (p). An edge from (P, p) to (P’, p’) arising from
A(F, P) is identified with the edge from (P’,p’) to (P, p) arising from
A(F’, P"). In general the number of vertices of I',, is uncountable. However,
we are only interested in the components of this graph and each component
has at most a countable number of vertices. We denote by I'p , the
component of I',, containing the vertex (P, p).

In Example 3.32 we give an example where I'p , is countable, but
not all the current hypotheses are satisfied. The appendix to this paper
by Brian Bowditch shows that in fact I'p , is always finite under the
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current hypotheses, but the body of the paper will not assume this result
(Theorem 10.1 (Bowditch)). Example 3.32 shows that I'p , can be infinite
if Cyclic(Z, R, A) is not satisfied. A famous example where I'p , has eight
vertices (due to Gieseking, Riley and Thurston) is formed from two regular
ideal hyperbolic tetrahedra by appropriate face-pairings to give a complete
hyperbolic structure on the complement of a figure-eight knot. All eight
vertices of the two tetrahedra are identified to a single ideal boundary point.
In this case the restricted developing image (see Definition 6.2) entails
four different versions of (77, p) and four different versions of (7%, p),
where T, and T, are the two ideal tetrahedra and p varies over the four
ideal vertices.

Let p be an ideal boundary point of an n-cell P of Z and let I'p , be the
associated graph. We define the subspace Z, to be the smallest subspace
of Z which is a union of cells, one of which is equal to P, and such that any
vertical codimension-one face F of an n-cell of Z, is also the face of another
n-cell of Z, on the other side of F. (Note that any vertical face of an n-cell
in Z, must extend upwards to infinity by convexity.) The face-pairings that
come up are all associated to the edges of I'p, ,.

DEFINITION 6.2 (restricted developing map). Let D,:Z, — H" be the
restriction of D,. We call D, the restricted developing map associated to p.

Each n-dimensional cell of Z, is mapped to a convex polyhedron in upper
half-space with at least one vertical codimension-one face which extends
upwards to infinity. (To be completely precise, there is also the case where p
is in the ideal boundary of P, but not in the ideal boundary of any proper
face of P. In that case, I'p, , consists of a single vertex, Z, consists of one cell
only; the impression of this cell at p is the whole of S7-2, and there are no
vertical codimension-one faces.)

We are not assuming, in the body of the paper, that I'p , is finite. In these
circumstances, it is not to begin with clear, even in the case that Z is complete,
that we can choose a single horosphere which is disjoint from all non-vertical
faces in the restricted developing image. However, if we confine our attention
to the image of only a finite number of cells of Z in the restricted developing
image, we can take the horosphere high enough to achieve the desired
disjointness property for the finite number of cells.

Since the horosphere centred at p is not unique, its intersection with P gives
a euclidean convex polyhedron which is only determined up to similarity.
This enables us to define a similarity (n — 1)-manifold S, associated to Z,.
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(Although we are not assuming that there is a horosphere disjoint from all the
non-vertical faces, the similarity structure may be constructed locally.) Let G,
be the group generated by the face-pairings arising from vertical faces of Z,,
modulo the relations coming from codimension-two vertical faces. The image
of G, in the isometry group of the upper half-space model of H” consists of
isometries which fix the point at infinity. Its image is a group of similarity
transformations which preserve the cell structure of S,.

We say that Z, has a consistent horosphere if we can choose a horizontal
horosphere which lies above all non-vertical faces in the developing image
of Z,, and which is mapped to itself by each face-pairing corresponding to
a vertical codimension-one face in the developing image of Z,. This is
equivalent to saying that there are well-defined horospheres in the quotient Q,
such that the intersection of a horosphere with a cell P’ of Q has exactly one
component for each pair (P’, p’) such that p’ and p are identified in Q If
there is a consistent horosphere at p, then the image of G, consists entirely
of euclidean isometries of R”~! and S, can be identified with this consistent
horosphere.

Let I'p , be the graph defined earlier in this section. This graph results
from taking a vertex for each pair (P’, p”) corresponding to a cell of Z, and
an edge for each face-pairing corresponding to a vertical codimension-one
face. (In general there will be many cells of Z,, possibly an infinite number,
corresponding to a single pair (P’, p”).)

THEOREM 6.3 (checking completeness). Suppose we have a set Z of
hyperbolic convex cells satisfying Pairing(#, R, A), Connected(Z, R),
Cyclic(#, R, A) and Finite(?). Then the following conditions are
equivalent.

(@) Z is complete.

(b) For each P e & and each boundary point p of P, Z, has a
consistent horosphere.
(c) For each P e 2 and each boundary point p of P, one of the
following two mutually exclusive situations prevails:
() Tp , is finite, has some fat vertex and the group G, s finite.
(ii) Foreach pair (P',p"), suchthat p' and p have the sameimage
in Q, P’ is thin at p’. The group G, does not contain any
hyperbolic or loxodromic elements.
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(d) Q is hausdorff and each point of Q has a neighbourhood whose
intersection with Q is complete.

It is possible to check Condition 6.3(c) algorithmically.

Proof of 6.3. Equivalence of (b) and (c) is easy and we assume it (a proof
of this fact is actually implicit in the argument we give below).

First suppose that Z is complete. Equivalently, the developing map
D;:Z7Z — X" is an isometry.

There are only a finite number of faces of the various P € Z. It follows
that there are only a finite number of peaks among the ideal points of P. This
implies that the set of thin vertices of I'p, , is finite.

Recall the definition of the integer N > 0: for each ideal point p of
any P € 2, the volume of the impression of P at p is either zero or is greater
than vol(S”-2)/N. Suppose that Z is complete and that Z, has a cell
corresponding to a pair (P’, p") where P’ is fat at p’.

1"

L &3
L A

..... mJ mn SN ALLE

FIGURE 12.

Failing to construct a consistent horosphere.
This illustrates part of the proof of Theorem 6.3.

There can be at most N such cells in Z,, for otherwise the images of two
different n-cells of Z have developing images whose interiors intersect. But this
would contradict the completeness of Z. It follows that Z, must be finite,
and so G, must be finite. We deduce that there is a consistent horosphere.
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Now suppose every cell of Z, is a pair (P’, p”) such that P’ is thin at p’'.
Then I'p, , is a finite graph. In order to check that there is a consistent
horosphere, we need only check that we can construct a consistent horosphere
along each simple circuit in I'p, , (that is, a circuit in which no vertex is
repeated). We construct a horosphere following some circuit, and we check
whether it matches up when we return. The holonomy map corresponding to
the circuit is then an isometry of the upper half-space model of H” which
fixes the point at infinity. We want to show that if Z is complete, then this
holonomy must preserve setwise each horosphere centred at infinity. If not,
we may assume (by reversing the direction of the circuit if necessary) that the
holonomy is a euclidean similarity 7 with A as change of scale, 0 < A < 1.

We take a horizontal path o in upper half-space, following the circuit
in I'p ,. This path goes from a point x in the interior of some n-cell C of Z,
to a point y in the interior of T'C, such that 7Tx is directly below y at a
height A times that of y. We continue o with the path o’ formed as follows.
We take the horizontal path 7o and translate it (translation in the euclidean
meaning) upwards until the ends match at y. The euclidean length of o’ is the
same as the euclidean length of T'a, but the hyperbolic length is A times the
hyperbolic length of Ta, which is also A times the hyperbolic length of a.
Continuing in this way, we get a path 4 = aa’a’ ... whose length is finite.
This is a Cauchy path in Z which must have a limit in Z, since Z is complete.
Since the cell structure of Z is locally finite, this means that A passes through
only a finite number of codimension-one faces of Z. But by the construction

of A, this is not the case.

This proves by contradiction that we can construct a consistent horosphere
for Z,. (Note that we may assume that o lies above all the non-vertical
codimension-one planes containing codimension-one faces in the finite set of
cells that it passes through. Therefore the same is true for Ta. Since a’ lies
at a higher level than Ta, the same is true for a’. Inductively A4 lies above
all such planes bounding non-vertical faces of cells that it meets.)

Now we assume Condition 6.3(b) and show that Q is hausdorff and that
each point of O has a neighbourhood whose intersection with Q is complete.
Under the conditions stated, G, acts as a group of isometries of R”~!. From
Poincaré’s Theorem applied to R”~ 1, we see that the portion of Z, above the
consistent horosphere tessellates the part of upper half-space above the
corresponding horizontal plane. Moreover, G, acts on this tessellation
effectively, as a discrete group of parabolic or elliptic transformations.
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We know that any discrete group G, of euclidean transformations acting
on a euclidean space E gives rise to a non-empty affine subspace W on which
G, is either fixed or acts by translations. W is foliated by affine subspaces V’
which are minimal Gy-invariant affine subspaces of E. (See [Bow93].)

The next step is to form a standard cusp region — originally defined in
[Bow93] — for G, acting on the upper half-space model of H” as we now
explain. We fix a minimal G,-invariant affine subspace V' of R;™ ' the
boundary of upper half-space. (If G, is finite, then V is a point.) Then a
standard cusp region in our situation will be the set of points x in upper half-
space whose euclidean distance from V is at least r, and r is chosen suitably
large. In our case, we fix a representative n-cell in Z, for each relevant pair
(P’, p"), and then ensure that our standard cusp region is small enough (r is
large enough) so that it is disjoint from each non-vertical codimension-one
plane containing a codimension-one face of the n-cell. Since there are only a
finite number of such pairs (P’, p’), this is easy to do. Any other cell which
is in the developing image of Z, is the image of one of our representatives
under some element of G,. Since the standard cusp region is G,-invariant,
the desired condition of disjointness from non-vertical faces holds for all cells
of Z,. The closure of the standard cusp region in closed hyperbolic space
projects to a neighbourhood of the image of p in Q This neighbourhood is
isomorphic to the quotient of the closure of the standard cusp region by G,.
It is easy to see that it has the desired completeness properties.

This proves the desired completeness property for all points of Q\Q. The
completeness property for points of Q itself follows from the fact that Z is
a manifold and Q is an orbifold covered by Z.

To see that Q is hausdorff, note that for each point of O\Q, we have a
sequence of (quotients of) standard cusp regions, whose intersection is a unique
point of Q

Now suppose 6.3(d) is satisfied. Since P is compact for each P € 2, Q is
a compact hausdorff space. Therefore we have a finite covering of Q by sets
whose intersection with Q is complete. It follows that Q is complete.
Lemma 5.4 now shows that Z is complete.

This proves the equivalence of the conditions in Theorem 6.3. We still need
to show that we can check for completeness algorithmically starting with the
input data (R, A). Note first that we can count the number of peaks in T P.ps
and we know that we cannot have more than N fat vertices in the complete
case. This gives an upper bound b, to the possible size of I'p ,.

As p varies within the set of ideal points associated to the interior of a face
of some Pe #, I'p ,, Z, and D, will be essentially unchanged. This means
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that we can reduce our search to a finite number of vertices (P, p) of I'.. We
focus attention on one of these cases. We start to explore I'p ,. If we find
more than b, vertices, we know Z is not complete. Otherwise we find a
generating set of circuits in I'p , and check for each of these that a consistent
horosphere can be constructed. [

7. ALGORITHMIC ASPECTS

We will now look more closely at the algorithmic aspects of Poincaré’s
Theorem. We wish to produce a mechanical procedure which takes as input
a finite number of finite-sided convex polyhedra in E” or S” or H”, together
with a finite set of face-pairings, and which outputs “Yes” or “No’’ to the
question of whether these polyhedra and face-pairings give a tessellation of the
appropriate space. In the case that the answer is “Yes”, it also outputs a
presentation for the group of symmetries of this tessellation with the given
finite union of finite polyhedra as a fundamental domain.

What kind of mathematical model of a computing machine is necessary in
order to carry out the procedure described in the preceding pages? It is not
appropriate to use a Turing machine model. A Turing machine is not capable
of taking as input a list of real numbers and coming out with the answer *““Yes™
or “No”. We need to be able to handle real numbers not as sequences of bits
but as entities. We need to be able to compare two real numbers for equality
or inequality in a one-step operation, and likewise for addition and
multiplication and division of real numbers.

Such a mathematical model has been described in [BSS89]. Their model
is devoted to the study of polynomial and rational maps, and it is assumed
that computation of a polynomial can be carried out in a single step. In most
computations in hyperbolic or spherical geometry, trigonometric and
hyberbolic trigonometric functions are likely to arise, and so it seems at first
sight that a model of computation able to carry out only polynomial operations
would not be relevant. However, in the case of Poincaré’s Theorem it happens
that the computation can be expressed in polynomial terms. Since the BSS
scheme has been thought out and developed far enough to be a reasonable tool,
we use it.

However, for more general computations in geometry, it seems that it
would be more satisfactory to have a computational model with a library of
functions, satisfying certain axioms. It might, for example, be assumed that
any of the functions in the library could be computed with complete accuracy
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in a single step. We put this forward in the hope of encouraging someone to
develop such an approach.

Let us go through the steps of the computation to see what kind of
operations are necessary. We need to start by making a decision as to how to
represent the input data. We first need to decide how to represent E”, S” and
H". It is convenient in each case to embed the space in R”*!. In order to be
able to change basis easily, we will describe the situation in a general manner.

Suppose we are given a positive definite symmetric (n 4+ 1) X (n + 1) real
matrix M defining a positive definite inner product on R**!. We define S”
to be the set of vectors v of unit length with respect to this inner product. We
will frequently represent a point in S” by a non-zero vector which does not
have unit length; conceptually this can be normalized, but computationally we
will not normalize. The reason for avoiding normalization is that BSS
machines are capable of polynomial operations, but not of taking square roots.

We take E” to be an affine subspace of R”*! which does not contain the
origin. We can think of the subspace as specified by a non-zero linear map
A:R"*! >R as follows: E” = {v:A(v) = 1}. As in the case of S”, we
assume that R”+! has a positive definite inner product, given by a matrix
M. We will often represent a point in E” by an element v € R”*+!, such that
A(v) > 0, without supposing A(v) = 1. Multiplying by a positive scalar, we
find a vector in E”.

If we are given a real (n + 1) X (n + 1) symmetric matrix My with n
positive eigenvalues and one negative eigenvalue, we obtain a non-degenerate
indefinite inner product on R”+! of type (n, 1). We define H” to be one sheet
of the hyperboloid {v € R**!:(v,v) = — 1}. We specify such a sheet by
fixing a linear map A:R"*! — R, such that the sheet lies in the half-space
A > 0. A vector v such that {(v,v) < 0 and A(v) > 0 represents a well-defined
point of H”, obtained by multipling by a suitable positive scalar. However
this scalar cannot be computed by our BSS machine, since the computation
involves taking a square root.

If X" is any of the three spaces, we specify a codimension-one
X-subspace by means of a single linear equation, and a general X-subspace
by means of a finite number of linear equations (with no constant term). The
condition on the subspace in the hyperbolic case is that the coefficient vectors
of the linear equations define a positive definite subspace with respect
to My . In the euclidean case the condition is that the coefficient vector of A,
the linear map defining E”, is not linearly dependent on the set of coefficient
vectors of the linear inequalities. In the spherical case there are no conditions.
Such a subspace is therefore determined by a finite list of real numbers.
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Face-pairings are represented by matrices. A half-space is determined by a
linear inequality (with no constant term).

Each finite collection of linear equalities and inequalities (satisfying
appropriate conditions to give a codimension-one subspace or a codimension-
zero half-space) defines either the nullset or some i-dimensional convex
polyhedron in X”. If there are exactly n — i linearly independent equalities
and if each of the half-spaces is essential, the defining collection of equalities
and inequalities is minimal. If i = », there is a unique minimal set of defining
half-spaces (see Proposition 2.5). If i < n, the number of inequalities in a
minimal collection is equal to the number of codimension-one faces, but
neither the equalities nor the inequalities are uniquely determined. Any
collection of equalities and inequalities defining the i-dimensional polyhedron
can be transformed into a minimal collection by changing some of the
inequalities to equalities and then omitting some of the equalities and
inequalities. (For example the two conditions p > 0 and p < 0 are equivalent
to the one condition p = 0.)

THEOREM 7.1 (BSS polyhedron computation). There is a BSS program
which carries out the following computation. We input E", H”" or S”,
represented by a real non-singular symmetric (n+ 1) X (n+1) matrix
Mg, My or Mg, anda linear map A\ :R"*!1— R. We also input a finite
set of linear equalities and inequalities defining codimension-one subspaces
and codimension-zero half-spaces in E”, H" or S" respectively. The
output from the program is the dimension i of the convex polyhedron
defined by the intersection of these subspaces and half-spaces, the combi-
natorial structure of its faces, for each face a minimal subset of the defining
equalities and inequalities (with some of the defining inequalites converted
to equalities). The program also outputs for each face F an element
xp € R"*1 representing a point in the relative interior of the face.

Proofof7.1. If n=0o0rn =1, the result is clearly true. Inductively we
assume the result is known for dimensions less than n.

If the collection of equalities and inequalities input includes one or more
equality, then the result follows by induction on #. To see this, we transform
by a matrix which changes one of the equalities to x,,; = 0. This changes the
matrix of the inner product and the coordinates of A. In the hyperbolic case
we next check that (0,...,0,1) is a positive vector (otherwise the plane
Xx,+1 = 01s not a plane in hyperbolic space). In the euclidean case, we check
that A does not have the form cx,,, = 0 in the new coordinates. (If these
checks fail, then the input data was inconsistent). We then apply the BSS
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program which has been inductively constructed. So we may asume that our
input consists of inequalities only.

We now assume that we have j inequalities, and that we have constructed
a program which gives the required output for any collection of j — 1
inequalities satisfying the induction assumptions. Let P C X" be the
convex polyhedron defined by the first j — 1 inequalities. Let f = 0 be the
j-th inequality. We first construct a point Xy representing a point y, € X",
such that f(xy) = f(ys) = 0.

One of the following situations must hold, and we want to construct a BSS
program to find which.

CONDITION 7.2 (situation for (P, f)).
(@) P C {f =0}. In the other cases, we assume that P is not a subset of
{f =0}.
(b P C{f>0}.
(¢) P C {f >0} and the codimension-one subspace f = 0 meets P.
(d) P meets f >0 and f <O.
(e) P C {f <0} and the codimension-one subspace f = 0 meets P.
() P C{f<0}.

Assuming we know which case we are in, the inductive proof deals with all
cases except Condition 7.2(d), when we need also to compute the new face
structure and to find a representative for a point in the relative interior of each
new face.

We proceed as follows, assuming that we are in case Condition 7.2(d).
If P has no faces, then P = X”. The new polyhedron has two cells, namely
f = 0and f = 0. Itis easy to find representatives for points in these two faces.
(Solving linear equations can be done by row operations.)

If P does have faces, we first tackle the same problem for each proper face.
Let F be a face and let S be the smallest X-subspace containing F. If the plane
S = 0 meets S, then either f = 0 contains S, which we can check by a linear
independence computation (row operations), or f =0 meets S in a
codimension-one subspace of S. In both cases we can treat the problem by
induction on n. If the plane f = 0 does not meet S, then take the point
xr € Int(F) given by our induction, and evaluate f(xz). The value is either
negative, in which case we must be in case 7.2(f) for the pair (F, f), or it is
positive, in which case we must be in case 7.2(b) for (F, f).
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The construction of the point in the relative interior of {f > 0} n P in
case 7.2(d) is as follows. By induction we find a point in the relative interior
of {f = 0} n P. This means that all the equalities required for the definition
of P are satisfied for this point, and all the inequalities required are satisfied
as strict inequalities. We can therefore move the point a little so that the
equalities and the strict inequalities continue to hold. In addition we move it
in a direction away from {f = 0} so as to increase f.

Now let us see how to recognize which case we have for (P, f). Using our
minimal set of equalities and inequalities for P, a linear independence check
(row operations) tells us whether or not we are in case 7.2(a).

We are in case 7.2(b) for (P, f), if firstly for each proper face F of P, (F, f)
is in case 7.2(b), which shows that f = 0 does not meet OP, and secondly we
check that that x, ¢ P. Case 7.2(f) is treated in the same way.

We are in case 7.2(c) if the following three conditions are satisfied: firstly
for each proper face F of P we have case 7.2(a) or case 7.2(b) or case 7.2(c)
for (F, f), secondly we are in case 7.2(a) for some face F, and thirdly
f(xp) > 0 for the point xp already constructed in the relative interior of P.
Similarly for the case 7.2(e), except that the signs are changed.

To see if we are in case 7.2(d), we change coordinates so that f =0
becomes the plane x,,; = 0, and then look at the intersection P’ of this
plane with P. We take a point in the relative interior of P’ and check whether
it is in the relative interior of P. [ ‘

To complete the discussion of the algorithmic approach, suppose we are
given a finite set & of finite-sided polyhedra and maps R : .% (¥) — .7 (%)
and A: 7(2)— Isom(X"), where .7 (Z) is the set of codimension-one
faces of the polyhedra in 2. There is obviously no problem in checking
Pairing(Z, R, A), Finite(Z?) and Connected(Z, R). To check Cyclic(Z, R, A),
we need to be more explicit about the form in which the face-pairings are given.
We will assume each face-pairing is given by an (n + 1) X (n + 1) matrix of
real numbers which preserves the appropriate structure. Then we can check
Cyclic(Z, R, A) by multiplying such matrices together. The fact that a certain
product is the identity on a codimension-two face can be checked by a linear
independence calculation, applied to the coefficient vectors of the planes
defining the X-subspace spanned by the face. The fact that the angle of
rotation has the form 27/m can be checked by seeing whether the m-th power
of a certain group element is the identity. We can see approximately which
values of m to use by means of floating point arithmetic.

Finally we indicate circumstances under which it seems that a Turing
machine could do all the relevant checks. Suppose we are given a finite set of
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matrices each of which is an isometry of X", and such that each entry is an
algebraic number. We can hold the algebraic numbers in the computer by
holding the coefficients of its irreducible polynomial, together with a floating
point approximation to the number. Suppose we are also given a finite set of
finite-sided polyhedra, given approximately using floating point numbers,
together with face-pairings each of which is equal to one of our given matrices.
We can then check the condition Cyclic(#, R, A) precisely, using integer
arithmetic, by checking on a certain product of face-pairings. (We can use
floating point arithmetic to see which words in the face-pairings need to have
checks performed.)

8. SPECIAL CASES

One case of Poincaré’s Theorem which is often used is the case where there
is a single element of 2 and all face-pairings are reflections. In that case
completeness is a consequence of Lemma 5.4, provided the other axioms are
satisfied. This enables a number of important examples to be constructed.

As a minor point, we note that it enables us to construct infinitely generated
fuchsian groups with an arbitrary subset of the positive integers being the set
of exponents of maximal cyclic subgroups. These and other applications of
Poincaré’s Theorem are well-known.

Poincaré’s Theorem works in an especially simple way in dimension two.
In this dimension, a face-pairing is called an edge-pairing. The following result
is essentially due to de Rham [dR71].

THEOREM 8.1 (dimension two). Suppose we have a finite set 2 of
finite-sided polygons in H? and an edge-pairing (R, A) of the boundary
edges satisfying Pairing(#, R, A), Connected(?, R) and Cyclic(Z?, R, A).
Then the quotient Q of || pe #»P by the edge-pairing is a two-
dimensional hyperbolic orbifold which is obtained from a complete orbifold
with geodesic boundary by removing the compact boundary components. The
hyperbolic structure on Q s induced in an obvious way from the hyperbolic
structure on the hyperbolic polygons used to define it. The group G
generated by the edge-pairings in the manner described in Definition 4.2 is
discrete. If all the polygons are compact, then Q is a compact orbifold
without boundary. (But it may have mirrors.)

REMARK 8.2. The main feature of this result is that for the two-
dimensional case it describes the quotient Q even when this is not complete.

(For the conditions under which Q is complete the reader is referred to
Lemma 5.4 and Theorem 6.3.)
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REMARK 8.3. As an orbifold, the boundary of Q is empty, since each
edge is paired to some other. If an edge is paired to itself by a reflection,
QO has a corresponding mirror. This is a (possibly non-compact) boundary
component of the underlying manifold, but not an orbifold boundary
component. The completion of Q may well have orbifold boundary
components which are not in Q itself: each of these is a circle.

Proof of 8.1. We first look at each ideal point p which is the end of two
distinct boundary components of some P e 2 (in this situation we will
say p is a peak of P). We remove from P a small horodisk neighbourhood
centred at p. If we glue the remaining pieces together using the edge-pairings,
then the boundary horocycles do not necessarily match up and we obtain a
hyperbolic orbifold T whose boundary is a union of topological circles and
arcs, each of which is a finite union of horocyclic and geodesic arcs.

We now need to glue back the pieces we have cut out. We first glue together
the horodisk pieces corresponding to a single boundary component of 7T,
obtaining an orbifold B;, and understand what B; looks like. This can be
done by using the horocyclic foliation of B;.

Each piece constituting B; is triangular, where two of the sides are
geodesic rays which are asymptotic and one side is a horocyclic arc. When we
glue these pieces together, several things can happen.

(a) The pieces glue in a cyclic fashion and the associated holonomy is
parabolic. Then B, is complete. Gluing B; into place gives rise to a
cusp in Q.

(b) The pieces glue in a cyclic fashion and the associated holonomy is
hyperbolic. Then the developing image into the upper half-plane is as
shown in Figure 13. In this case B; is a cylinder, which at one end is
incomplete, with the completion adding a compact geodesic, and at the
other end is bounded by alternate horocyclic and geodesic arcs. (Actually,
a suitable choice of the pieces at the beginning allows to reduce to the
case of one geodesic arc and one horocyclic arc.) Gluing B; into place
gives an incomplete end for Q. The completion adds to Q a compact
geodesic boundary component.

(c) The pieces do not glue together in a cyclic fashion. This means that in
both directions one eventually reaches a geodesic ray which is glued either
to itself (by a reflection) or to a geodesic ray whose point at infinity is
not a peak.

As a set, B; is identified to a triangle in H? with one vertex at
infinity, two sides which are asymptotic geodesic half-lines and the third
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. e

FIGURE 13.
Hyperbolic holonomy. . .
This picture shows the developing image associated with B; in the situation descrﬂ?ed in (b)
in the proof of 8.1. The dotted lines show an alternative fundamental domain which shows
the structure of B; as a cylinder more clearly.

side which consists of alternate horocyclic and geodesic arcs (a suitable

choice of the pieces at the beginning actually allows to obtain only one

horocyclic arc and no geodesic arcs). As a hyperbolic orbifold, B; is

either isomorphic to the triangle or obtained from the triangle by

assuming that one or both the geodesic half-lines are mirrors. In

particular, B; is complete. The situation is shown in Figure 14.

FIGURE 14.

Mirrors.
One or both the vertical thick edges may represent mirrors,
as described in (c) in the proof of 8.1.
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A consistent horocycle always exists in this case, so gluing B; into
place gives us a metric in Q which is complete near B;. We can also
describe what Q looks like near B;. If we call wedge a region in H?2
bounded by two geodesic half-lines with common origin, then a subset
of Q which contains B; is obtained as follows: for every half-infinite
geodesic side s of B; which is not a mirror, glue a suitably thin wedge to
B; by identifying s with one of the sides of the wedge.

This description of the possible situations implies the conclusion of the
proof. [

9. LITERATURE REVIEW

It seems to the authors that a minimal requirement for a satisfactory
treatment of Poincaré’s Theorem is that it should apply directly to the case
of a finite-sided Dirichlet domain resulting from the action of a discontinuous
group of isometries on one of the three constant curvature geometries S”, E”
and H”. Furthermore the hypotheses should be easy to verify, and extraneous
hypotheses should not be included. We review the literature with these criteria
in mind.

The first versions of Poincaré’s Theorem were published in [Poi82],
covering the two-dimensional version, and [Poi83], covering the three-
dimensional version. These are reprinted in Volume Two of [Poi52]. It is clear
that Poincaré understood very well what was going on. However, the papers
are not easy to read. In particular, the reader of the three-dimensional case
is referred to the treatment of the two-dimensional case for proofs; this is fully
acceptable for a trail-blazing paper, but not satisfactory in the long term.

There are a number of reasonable published versions of Poincaré’s
Theorem in dimension two. Of these, we would single out the version by
de Rham [dR71] as being particularly careful and easy to read. Most published
versions of Poincaré’s Theorem applying to all dimensions are unsatisfactory
for one reason or another. The most satisfactory version is [Sei75], due to
Seifert. The proofs are careful and rigorous, but rather long. Poincaré’s
Theorem is proved in all dimensions and for all three constant curvature
geometries. The treatment is not constructive in several aspects, specially when
it comes to completeness. There is some discussion of conditions which are
equivalent to completeness in the hyperbolic case, which are closer to being
constructive. However this discussion is limited to the finite volume case.
Seifert’s treatment also contains unnecessary restrictions, which, for example,
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would prevent his version being directly applicable to the Dirichlet domain
applied to a rotation through n about a fixed point in dimension two. (One
would first have to subdivide the boundary of the Dirichlet domain, since
Seifert assumes that the map to the quotient space is injective on each face
of the given polyhedron.)

The treatment in [Mas88] is difficult to understand. For example in H.9
on page 75, it is claimed that a metric is defined in a certain way, and this
fact is said to be “easy to see”, but it seems to us an essential and non-trivial
point, which is not so easy to see, particularly when the group generated by
the face-pairings is not discrete. Maskit’s proof does not use induction on
dimension, which seems to us essential for a simple and clear treatment. We
refer in particular to the assertions that certain maps are homeomorphisms on
page 77. The Proposition in IV.1.6 on page 79 of this book is incorrect — a
counter-example is given in Example 9.1 — because there are no infinite cycles
or infinite edges according to the definitions in the book. As in the case of
Seifert’s paper, the constructive aspect is ignored, and the question of
completeness is handled in an entirely non-constructive way. Maskit’s local
finiteness condition is more demanding than ours, and Seifert’s is more
demanding than Maskit’s.

In [Ril83], there is a statement of Poincaré’s Theorem with no proof, and
[Sei75] is cited. Unfortunately, Riley fails to take into account Seifert’s
restriction to the finite volume case. This leads him to a statement of
Poincaré’s Theorem, which implies that if two parallel vertical planes in upper
half-space are matched by a hyperbolic isometry, then the infinite cyclic group
thus generated is discrete.

Maskit’s paper [Mas71] contains a nice discussion of completeness, though
again it is not a constructive approach. He limits his discussion to hyl’)erbolic
space in dimensions two and three. We are not confident that the arguments
in the paper are complete. For example, there seems to be an assumption that
the quotient of a metric space, such that the inverse image of any point is finite,
is again metric. This is false, as is shown by identifying x with — xin [— 1, 1],
provided 0 < x < 1. A slight variation of this gives a counter-example in which
the inverse image of a point is always equal to two points.

EXAMPLE 9.1 (incomplete example). Take a quadrilateral in the
euclidean plane with no two sides parallel, and multiply with (0, o). Embed
this in the upper half-space model of H3, with the quadrilateral embedded in
a horizontal horosphere, and the factor (0, o) corresponding to vertical
straight lines. This gives us a convex hyperbolic polyhedron P with four faces.
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The quadrilateral gives rise to two commuting orientation-preserving euclidean
similarities which identify opposite sides. These similarities can be regarded as
hyperbolic isometries which are face-pairings for P. They do not generate a
discrete group of isometries of H?3. Maskit’s paper [Mas71] and his book
[Mas88] both contain statements implying that this group of isometries is
discrete.

There is a discussion of Poincaré’s Theorem in Beardon’s paper [Bea83].
Beardon concentrates on H?, with a single compact convex polygon.
Questions of completeness are not treated.

Morokuma’s paper [Mor78] is another paper which is difficult to read. If
the definitions in this paper are taken literally, then the statement of the main
theorem implies that a closed ball of finite radius is equal to the whole of
hyperbolic space. This is because a closed ball is the intersection of a collection
of half-spaces, each containing the ball in its interior, and as a consequence
a closed ball is a polyhedron with no faces. The paper contains a great deal
of notation, which, to our way of thinking, obscures the ideas. On occasion
the author seems to assume the main point of what needs to be proved. For
example, on page 163 of his article, the statement “t~!p’ € F, ., namely
F, ., = F"” would not be true if Morokuma’s group I" were not discrete. But
at this point he is trying to prove discreteness.

Apanasov’s paper [Apa86] is yet another paper which is difficult to read.
Apanasov allows non-convex polyhedra. To see the consequences of
Apanasov’s definitions, consider the Poincaré disk model for H?. According
to his definitions, the union of the closed first and third quadrants is a
polyhedron with two one-dimensional faces, namely the x- and y-axes. There
are no codimension-two faces. The intersection of two faces of a polyhedron
does not need to be a face. It is not clear to us what is meant by Condi-
tion IV on page 474 of the English translation of Apanasov’s paper. As a
general comment on this paper, it seems as though much of what one should
prove in Poincaré’s Theorem are presented as hypotheses, rather than as
conclusions.

An earlier paper by Aleksandrov, [Ale54], also makes many parts of
Poincaré’s Theorem into hypotheses rather than conclusions.

A proof of Poincaré’s theorem in the special case of a single polyhedron
with each face-pairing equal to the reflection in that face is given in [dIH91];
this proof has the same inductive structure as the proof given in our paper.
The only condition to check is that the angles at codimension 2 faces have the
form n/m for some integer m. This version of Poincaré’s theorem is readily
deduced from Theorem 5.5 using 5.4; in fact LocallyFinite is obvious in this
case and the quotient space is complete as it is identified with the polyhedron
itself.
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10. APPENDIX

This appendix contains results due to Brian Bowditch, published here with
his permission.

We recall that a finite-sided closed convex cell of H”*! is said to be
pyramidal at an ideal point p if any two faces whose closures contain p meet
in H”+!. The intersection of such a convex cell with a horosphere centred
at p is a euclidean finite-sided closed convex cell of dimension # (provided the
horosphere only meets faces which have p as an ideal point). One way to se¢
this is to use the upper half-space model with p equal to the point at infinity.
Conversely, given a convex finite-sided n-dimensional euclidean cell, we can
think of this cell as lying in a horosphere which is a horizontal subspace in
the upper half-space model. This gives rise to an (n + 1)-dimensional
hyperbolic convex cell, by taking the intersection of vertical half-spaces
determined by the half-spaces defining the euclidean convex cell. We use the
names ‘“‘pyramidal” and ‘“non-pyramidal’ for convex euclidean cells if the
corresponding hyperbolic cells are pyramidal or non-pyramidal respectively.
A euclidean convex cell is non-pyramidal if and only if it has disjoint faces.
If a euclidean cell is pyramidal, then there is a face which is the intersection
of all other faces, that is there is a unique minimal face. A pyramidal euclidean
n-cell is the product of an i-dimensional cell with the cone on a spherical
(n — i — 1)-dimensional cell. (The cone point is placed at the centre of the
(n — i — 1)-dimensional sphere.)

Let M be a connected euclidean similarity #-dimensional manifold which
is the union of a locally finite set of closed subsets {X;}. Each X; has an
induced similarity structure which is isomorphic to that of a closed finite-sided
euclidean convex polyhedron. There are only a finite number of distinct
similarity classes of X;. The intersection of any face of any X; with any face
of any X, is a common face of each. This implies that M has the structure
of a locally finite polyhedral cell complex. Let G be a group of similarities
of M which preserve the cell structure. Suppose that the number of orbits of
non-pyramidal polyhedra is finite.

THEOREM 10.1 (Bowditch). Under the above assumptions, the number of
orbits of cells is finite. Moreover, the number of orbits is bounded in terms
of the number of orbits of non-pyramidal cells and the geometry (up to
similarity) of the X;.

Bowditch has suggested that if there is one or more pyramidal polyhedral
cell, then one should be able to prove that G is a finite group. It would follow
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that G consists of euclidean isometries and that M contains only a finite
number of cells. This conjecture remains open.

Proof of 10.1. Let X be the union of the non-pyramidal cells in M, and
let Y be the union of cells which meet X. Note that X C Y.

Now suppose there is a top-dimensional cell which is not in Y and let o
be its unique minimal face. Then o is similar to R for some i. If a is any cell
meeting 6, then 6 C a since ¢ is minimal. Clearly a is not in X. Therefore
o is the unique minimal face of a. We have seen above that a is the product
of ¢ and the cone on a convex subset S*~i-1, It follows that the union of the
cells meeting ¢ is the product of ¢ with the cone on S*-7-1. It follows that
the cell structure of M is finite, G is a finite group and X = <. The other
possibility is that Y = M.

Let K C X be a finite union of cells such that GK = X. The cell structure
of M is locally finite, with a bound for the number of cells in any small
neighbourhood being given by the geometry of the X;. The number of cells
of M which meet K is bounded by the number of cells of K and the maximum
possible number of cells meeting a fixed small neighbourhood of any fixed
point of K. This gives an upper bound for the number of orbits of cells of
M under the action of Gincase Y = M. If X = Y = O, then the number of
cells of M is bounded by the geometry of the X;. [

We apply Theorem 10.1 to find out a litte more about the spaces that
arise in Poincaré’s Theorem. Suppose the hypotheses Pairing(Z, R, A),
Connected(Z, R), Finite(#?) and Cyclic(Z, R, A) are satisfied for a set of
convex cells (see Definition 2.8) in H”. To each convex cell we adjoin the
ideal points, so as to obtain a compact space. The face-pairings are defined
on the closures of the faces. Let Q be the quotient of the disjoint union of
the extended cells by the face-pairings, endowed with the quotient topology.

THEOREM 10.2. Q is a compact hausdorff space.

Proof of 10.2. Let X be the disjoint union of the closures of the convex
cells. So X is compact and hausdorff. We first show that the inverse image
of a point under the quotient map X — Q is a finite set. This is clear from
Theorem 4.13 for any point which is not an ideal point. For an ideal
point p, we can construct a similarity manifold to which Theorem 10.1 applies,
by developing a horosphere centred at p into R”~!. More details, which will
help the interested reader with the construction of the similarity manifold, are
given in the discussion of Definition 6.2.
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A pyramidal cell in R”~! corresponds to a convex cell in H” together with
an ideal point p in its boundary, such that any two faces with closures
containing p meet inside H”. A non-pyramidal cell corresponds to a convex
cell in H” and an ideal point p contained in the closures of two non-
intersecting faces of the convex cell. The hypothesis needed in order to apply
Theorem 10.1, that there are only a finite number of orbits of non-pyramidal
cells, comes from the fact that there are only a finite number of pairs of faces
and therefore only a finite number of pairs of non-intersecting faces which
meet at infinity. )

It follows that the inverse image in X of any point of Q is finite.
Moreover the number of points in the inverse image is bounded by_a fixed
integer N. Two points x, y € X are mapped to the same point of Q if and
only if there is a sequence (xq,...,X,) such that x = x,, ¥y = x, and
Xiv1 = AWF;) (x;), where x; € F;and x;.; € R(F;). (Here (R, A) is the glueing
data.) We may take n < N. It follows easily from compactness and_the
finiteness of the situation that the map X — Q is closed. Therefore Q is
hausdorff. [
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