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where u is the volume of a fundamental polygon in the upper half plane,
and et denote the number of elliptic cycles of angles 2n/i. For u, there is a

formula due to Humbert. The et correspond to conjugacy classes of elements

of order i in PST, these in turn to classes of embeddings of fourth and sixth
roots of unity into D; there are formulae for these as well. For an updated
presentation of all of this, we refer to [Vi].

Meanwhile, Eichler's somewhat breathtaking «tour de force» has been

turned into a standard argument with the calculation of a Tamagawa number
as its core. Here is a rough sketch. Denote by G the algebraic group
(linear, semisimple, anisotropic) defined over Z by the norm one elements

of Dx ; thus, G(Z) ST and G(R) SL2(R). Let A be the adele ring of Q
and view G (Q) and G(Z) as subgroups of G (A) via the diagonal embedding.
Let

C n °(zp) and U G(R) X C.
p prime

Then

G (A) G(Q) U and G(Q) n Z)

This induces a bijection of homogeneous spaces

G(A)/G(Q) Z)

preserving the volumes with respect to the Tamagawa measure. Now the
volume on the left is, by definition, the Tamagawa number, and equals 1,
whence the equation

vol (G(R)/ G(Z)) (vol C) ~1

Here, the volume on the right is easy and equals 1. The left side
can be translated into the volume of a fundamental of G(Z) in the upper half
plane, and Gauss-Bonnet brings in the genus. The details can be found
in [Vi, ch. IV],

6. Presentations III:

As a byproduct of their computations, Kirchheimer and Wolfart [KW]
obtained a description of K2(R) for the rings R they treated. Conversely, if
K2(R) happens to be known from another source, one can derive presentations

of SLn(R), n^3. This idea has been pursued in a series of papers
by Hurrelbrink ([Hul]-[Hu3]). The general argument runs as follows.
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Let R be any commutative ring, n ^ 3, and for r e R let e/y (r) be the

elementary matrix in SLn(R) having r in the i -y-position (/ =£y). Then we
have the "trivial" relations

ieij{s)eij{r) ^(s + L),

(6) I [eij(s), eji(r)\ e//(5r), i * I

[[eij(s),eki(r)]

Let Stn(R) be the abstract group generated by elements Xij(s), s e R,
with relations as in (6). Stn(R) is called the n-th Steinberg group, and there
is an obvious surjective homomorphism

(pw St„(R) En(R)

En(R) denoting the subgroup of SLn(R) generated by the ezy(r). The kernel
of (p„ is denoted K2(n,R). As for GL2 we can form the direct limit

St(R) lim Stn(R)

and obtain a surjection

(p lim cpw : lim^CJ?)

with kernel

K2(R) lim K2(n, R)

Thus K2(R) codifies the nontrivial relations among elementary matrices

over R of all sizes. Now let R be the integral domain of a number field. Here

we have two stability results: Vaserstein [Va] showed that

En(R) SLn(R), for n ^ 3

and van der Kallen [Ka] that

K2{n, r) K2(R), for n ^ 3

both under the hypothesis that R x is infinite, thus excluding R Z and the

imaginary quadratic case.

Consequently, if one knows generators of K2(R) in terms of the xu(s),
one can write down immediately presentations of SLn(R), n ^ 3. Now how

can one possibly know something about K2(R) without knowing the matrix
relations in advance? The miracle happens in form of the Birch-Tate

conjecture: assume that K QuotR is totally real. Let be the

Dedekind zeta function of K. The Birch-Tate conjecture predicts that

(7) #K2(R) W2(K) K*(-l)|,
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where w2{K) is a natural number which is easily computed. It follows from
the results of [MW] that the odd part of (7) is true if K is abelian. This makes

it possible to calculate the odd part of #K2(R) in concrete cases: by the

Kronecker-Weber theorem, K is a subfield of a cyclotomic field. From this one

derives that Ç^Cs1) is a product of Dirichlet series the values of which at

negative integers can be expressed by generalized Bernoulli numbers. Finally,
the 2-part of #K2(R) has been calculated in some real quadratic cases by

Browkin and Schinzel [BrS]. Collecting these informations, one has, e.g.,

#K2(R) 12 for K= Q(j/6)

([Flu 3], Th. 8). Now it is not too difficult to write down sufficiently many
different elements of K2(R) (so-called Steinberg and Dennis-Stein symbols).
Thus, one knows K2(R), and presentations of SLn(R), n ^ 3, drop out.
In [Hu2], Hurrelbrink treats the integral domains of the real subfields of
the 9-th and 15-th cyclotomic field, this time relying on the Birch-Tate
conjecture for these fields. A generalization of this line of thought to cases

involving skew fields seems to be out of sight at present.
I would like to mention here (although TCtheory is not explicitely

used) a purely algebraic method due to P.M. Cohn [C] which gives
presentations of SL2(R) for certain subrings R of C; this method applies
to the integral domains of the euclidean imaginary quadratic
fields Q(]/-d), d—1, 2, 3, 7, 11. The presentations involve all matrices

i\
-1 0)

A.> 0
1and y a unit

0 y ' 1

hence are, by genesis, not finite. In the cases in question it is however possible
to reduce them to finite presentations. This is carried out in [F, p. 73 ff.].

7. COHOMOLOGY

We recall some notions from the cohomology theory of groups;
ideal references for our purposes are the book [Br] by K. Brown and
Serre's article [Se 3],

A group r is said to have cohomological dimension n, n, if n is
the maximal dimension for which there exists a T-module M such that
H"(r, M) st 0. If there is no such n,oo. If cdT < <x, then r is
torsion free. It is known that cdT1 if and only if r is free. There is a virtual
notion: vcdT nifT contains a torsion free subgroup A of finite index
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