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where v is the volume of a fundamental polygon in the upper half plane,
and e; denote the number of elliptic cycles of angles 2n/i. For v, there is a
formula due to Humbert. The e; correspond to conjugacy classes of elements
of order i in PST', these in turn to classes of embeddings of fourth and sixth
roots of unity into D; there are formulae for these as well. For an updated
presentation of all of this, we refer to [Vi].

Meanwhile, Eichler’s somewhat breathtaking «tour de force» has been
turned into a standard argument with the calculation of a Tamagawa number
as its core. Here is a rough sketch. Denote by G the algebraic group
(linear, semisimple, anisotropic) defined over Z by the norm one elements
of D*; thus, G(Z) = ST and G(R) = SL,(R). Let A be the adele ring of Q
and view G (Q) and G(Z) as subgroups of G(A) via the diagonal embedding.
Let

C= ] GZ,) and U=GR)XxC.
p prime

Then
GA)=GQU and GQnNnU=G®Z).
This induces a bijection of homogeneous spaces
GA/GQ=U/G2),

preserving the volumes with respect to the Tamagawa measure. Now the
volume on the left is, by definition, the Tamagawa number, and equals 1,
whence the equation

vol (G(R)/ G(Z)) = (vol C)-! .

Here, the volume on the right is easy and equals C2)o(d)d~!. The left side
can be translated into the volume of a fundamental of G(Z) in the upper half

plane, and Gauss-Bonnet brings in the genus. The details can be found
in [Vi, ch. IV].

6. PRESENTATIONS III: K,

As a byproduct of their computations, Kirchheimer and Wolfart [KW]
obtained a description of K, (R) for the rings R they treated. Conversely, if
K, (R) happens to be known from another source, one can derive presen-
tations of SL,(R), n > 3. This idea has been pursued in a series of papers
by Hurrelbrink ([Hu1]-[Hu3]). The general argument runs as follows.
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Let R be any commutative ring, n > 3, and for r € R let e;;(r) be the
elementary matrix in SL,(R) having r in the i/ — j-position (i # j). Then we
have the “trivial” relations

e;j(s)e;;(r) = e;(s+r),
(6) leij(s), e ()] = ey(sr),i+1
leij(s),exi(P)] = 1, #k,i#1.

Let St,(R) be the abstract group generated by elements x;;(s), s € R,
with relations as in (6). S¢,(R) is called the n-th Steinberg group, and there
is an obvious surjective homomorphism

¢n = Sty(R) > E,(R),

E,(R) denoting the subgroup of SL,(R) generated by the e;;(r). The kernel
of ¢, is denoted K,(n, R). As for GL, we can form the direct limit

St(R) = lim S7,(R)

and obtain a surjection
¢ =limg,:St(R) > ER) =1limE,(R)
with kernel
K>;(R) =limK,(n, R) .

Thus K,(R) codifies the nontrivial relations among elementary matrices
over R of all sizes. Now let R be the integral domain of a number field. Here
we have two stability results: Vaserstein [Va] showed that

E,(R) = SL,(R), forn>3,
and van der Kallen [Ka] that
KZ(n, r) = KZ(R)s for n 2 3 ’

both under the hypothesis that R * is infinite, thus excluding R = Z and the
imaginary quadratic case.

Consequently, if one knows generators of K,(R) in terms of the x;;(s),
one can write down immediately presentations of SL,(R), n > 3. Now how
can one possibly know something about K,(R) without knowing the matrix
relations in advance? The miracle happens in form of the Birch-Tate
conjecture: assume that K = Quot R is totally real. Let Cx(s) be the
Dedekind zeta function of K. The Birch-Tate conjecture predicts that

(7) # K> (R) = wa(K) [ Lx(= 1) [,
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where w,(K) is a natural number which is easily computed. It follows from
the results of [MW] that the odd part of (7) is true if K is abelian. This makes
it possible to calculate the odd part of # K,(R) in concrete cases: by the
Kronecker-Weber theorem, K is a subfield of a cyclotomic field. From this one
derives that {x(s) is a product of Dirichlet series the values of which at
negative integers can be expressed by generalized Bernoulli numbers. Finally,
the 2-part of # K,(R) has been calculated in some real quadratic cases by
Browkin and Schinzel [BrS]. Collecting these informations, one has, e.g.,

#K,(R) = 12 for K = Q(/6) ,

([Hu3], Th. 8). Now it is not too difficult to write down sufficiently many
different elements of K,(R) (so-called Steinberg and Dennis-Stein symbols).
Thus, one knows K,(R), and presentations of SL,(R), n > 3, drop out.
In [Hu?2], Hurrelbrink treats the integral domains of the real subfields of
the 9-th and 15-th cyclotomic field, this time relying on the Birch-Tate
conjecture for these fields. A generalization of this line of thought to cases
involving skew fields seems to be out of sight at present.

I would like to mention here (although K-theory is not explicitely
used) a purely algebraic method due to P.M. Cohn [C] which gives
presentations of SL,(R) for certain subrings R of C; this method applies
to the integral domains of the euclidean imaginary quadratic
fields Q(/—d), d =1, 2, 3, 7, 11. The presentations involve a// matrices

x 1 y 0 )
and , Y aunit,
-1 0 0 y-!

hence are, by genesis, not finite. In the cases in question it is however possible
to reduce them to finite presentations. This is carried out in [F, p. 73 ff.].

7. COHOMOLOGY

We recall some notions from the cohomology theory of groups;
ideal references for our purposes are the book [Br] by K. Brown and
Serre’s article [Se3].

A group I' is said to have cohomological dimension n, cdT = n, if n is
the maximal dimension for which there exists a I'-module M such that
H"(', M) # 0. If there is no such n,cdl = o. If cdl < o, then I is
torsion free. It is known that cd ' = 1 if and only if T is free. There is a virtual
notion: vedT = n if T contains a torsion free subgroup A of finite index
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