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reformule en les inégalités ||/ > f~', et on peut définir une suite
asymptotiquement invariante (| C, |~ ')n>1 dans /1(I) {;,1. Il en résulte
que [, est intérieurement moyennable, ce qui achéve la preuve de Ila
proposition 4.

3. LEMMES PRELIMINAIRES

Soit d’abord T un groupe discret. Notons Cornj’(I') ’ensemble des classes
de conjugaison de I distinctes de {e}. Avec les notations du début du chapitre
précédent, on a

Or = @ ar, c

C € Conj’(I')

ou @ désigne une somme orthogonale. Pour tout C € Conj’(I'), choisissons
de plus un élément yc € C; notons Zr = {Yc}cecony(ry le sous-ensemble
de I' ainsi spécifié. Pour tout C € Conj’(I'), la classe C s’identifie a
I’espace homogéne Z(y-,I')\I" et on a

T
Or,c = Indz(yC, ) A Z(ve, F))

ou Z(yc,I') désigne le centralisateur de y- dans I' et ou = indique I’équi-
valence unitaire des représentations. On a donc

r
Or = @ Indz(y,r) (Izy,my) -

yeZr

LEMME 3. Soit T un réseau dans un groupe localement compact G.
Si ' est intérieurement moyennable, on a

e < @ Ind3, o (1z¢4,6)) -

Yy e ?)‘r

Preuve. Par hypothése, on a

T
Ir < @ IndZ(y,F) (ze,my) -
ve #r
En induisant a G on obtient

Ind?(lr) < @ Indg(y,r) (Iz¢4.m)) -

vye”r

Par ailleurs, 14 est une sous-représentation de Ind? (1), car I" est un réseau
dans G. La conclusion résulte donc de I’assertion (ii) du lemme suivant. [

Le lemme qui suit est essentiellement le «principe de majoration de
Herz» [EyL].
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LEMME 4. Soient {H;}j., et {H}};c, deux familles de sous-groupes
Jermés d’un groupe localement compact G telles que H i CH; pour
tout jelJ.

(i) S’il existe pour tout j € J une représentation unitaire T ; de H;
telle que 1, < @jejlndgj(nj), alors 1g < @jejlndgj(lHj).

(i) Si 1lg <@jesIndg(ly), alors 16< @;c,Indg (1x).

Preuve. (a) Précisons le modéle considéré ici pour les représentations
induites en rappelant ceci. On considére d’abord un sous-groupe fermeé H
de G et une représentation n de H dans un espace de Hilbert 777 .

On choisit une mesure p sur ’espace homogene H\ G dont la classe est
invariante par I’action a droite de G. (On peut par exemple prendre I’image
par la projection canonique G — H\ G d’une mesure de probabilité sur G dans
la classe de la mesure de Haar.) Pour tout g € G, on a donc une dérivée de
Radon-Nikodym décrite par I’application

A { (H\G) x G =R,

’ dp(s8)
(S:g) = dp (s)

satisfaisant I’identité de cocycle A(s, gg’) = A(s, g) A(s8, g’).

On introduit I’espace vectoriel L2(G, 77;)" des applications mesurables
£:G— 77, (modulo I’égalité presque partout) qui sont H-é€quivariantes,
c’est-a-dire telles que

E(h—'x) = n(h)&(x) pour tout & € H et presque tout x € G

et de carré sommable au sens ou

s | €x) [2dn(x) < oo ;
H\G

comme || € (x) |2 ne dépend que de la classe x = Hx de x, on a commis ’abus
d’écrire ce nombre | € (x) 2. L’espace L2(G, 7,)# est muni d’un produit
scalaire défini par

<tElg > = s <E(X) | &' (x) > dp(x)
H\G

qui en fait un espace de Hilbert.
On définit la représentation 7 = Ind $(n) de G dans L*(G, 2#,)H par

(m(2)€) (x) = E(xg)A(x, g)!/?
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pour tous ge G, &€ LG, 2#;)" et xe G (avec x = Hx € H\G). On
vérifie que 7 est bien une représentation de G, car A est un cocycle, et qu’elle
est bien unitaire, car (en posant y = x£)

N

In (g€ = IE(xe) [2A(X, g)dp(x)
v H\G

Y

= e IPAGE ", ) A, g~ du(y)

VvV H\G

N

= I E) [2du(y)
vV H\G

=] &>
pour tous g € G et £ € L2(G, 7/7)" .

(b) Montrons d’abord I’assertion (i) du lemme lorsqu’il n’y a qu’un
sous-groupe H de G. Posons ¢ = 15 et 6 = Ind,G,(lH). L’application de
composition avec la norme de 775 s’écrit

N‘{ LG, 7)) = L*(G, 5 = O)F
e » G- xmfemD.

Elle est G-équivariante (via les représentations m et o), lipschitzienne
de rapport 1, et [ N(&) | = | &€ | pour tout & € L2(G, 2,)".

Dire que 15 < 7, c’est dire que, pour toute partie compacte K de G et
pour tout nombre € > 0, il existe une fonction & = &g . € L2(G, 575)" telle
que | €| = 1 et telle que

sup | m (k)€ - E]<ce.

keK
Ces propriétés impliquent qu’on a aussi | N(§) [ = 1 et
sup [ 6 (F)N(E) - N(&) | <e.
keK

I en résulte que 15 < 6.

(c) On montre le cas général de I’assertion (i) grace au méme argument,
en utilisant une application

. { ®jes LG, 7)1 = ®@;c;L*(G, C)H
(§))jes ¥ (N;i&)jes

avec N; comme dans (b) pour tout j € J.
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(d) L’hypothese de (ii) s’écrit aussi

16 < @ Ind,ij(lndzj;(l,,;))

jeJ

de sorte que D’assertion (ii) est un cas particulier de (i). [

Remarque. Pour illustrer le lemme 4, répétons 1’un des arguments
montrant qu’un groupe I' qui est moyennable et non réduit a {e} est aussi
intérieurement moyennable. Rappelons que I' est moyennable si et seulement
st 1p< pr.

Pour foute classe de conjugaison C C I' — {e}, si on choisit un élément y
de C, on a (avec les notations comme au chapitre 3)

lIr< pr = I”dg(y,r) Pzy,r)-

Le lemme 4.i implique qu’on a aussi
r
1r<< ]ndZ(y,l") IZ(y,F) = 0r,c -

On a donc a fortiori 1r < ar.

LEMME 5. Soit G un groupe localement compact qui posséde la
propriété (T) de Kazhdan et soit (H;);., une famille de sous-groupes
fermés de G. On suppose que, pour tout jeJ, il n’existe aucune
mesure de probabilité G-invariante sur [’espace homogene H;\G. Alors

6K @ Ind, (1) .
jelJ

Preuve. Supposons par I’absurde que ’on ait 15< ®jejlndgj(lﬂj).
Comme G a la propriété (T), la contenance aurait lieu au sens fort. Comme
la représentation 1, est irréductible, il existerait j € J tel que 14 soit une
sous-représentation de Indgj(lHj), c’est-a-dire que H;\G possede une
mesure de probabilité G-invariante, contrairement a I’hypothése. [

LEMME 6. Soit G un groupe localement compact agissant contintiment
dans un espace compact Q et soit (H;)jc,; une famille de sous-groupes
fermés de G. On suppose qu’il n’existe aucune mesure de probabilité
G-invariante sur €, et qu’il existe pour tout j € J une mesure de proba-
bilité H;-invariante v; sur Q. Alors

lo X @ Ind§ (1) .

JjedJ
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Preuve. On convient ici que ’action de G sur Q est a droite.

Pour tout j € J, on choisit une mesure de probabilité p; sur H;\ G qui est
quasi-invariante par G (voir la preuve du lemme 4). On introduit I’espace de
Hilbert

= B L*H\G, )

jeJ

de la représentation @ ;.,Ind gj(l ;) ainsi que sa spheére unité 1. On
introduit aussi I’espace Prob () des mesures de probabilité¢ sur Q, muni de
la topologie vague; c’est naturellement un G-e$pace compact. Nous allons
définir en deux temps une application

H1 — Prob(Q)

S m Vs
lipschitzienne et G-équivariante.

Dans un premier temps, on introduit pour tout j e J le G-espace
Mes , (H;\ G) des mesures positives finies sur H;\ G, ainsi que I’application
{ L2(H\G, u;) = Mes . (H;\G)

Ji > wy, =S 17,
qui est évidemment lipschitzienne sur les parties bornées. De plus, comme G
agit a gauche via Ina’f,j (1g,) sur L*(H;\ G, ;) et a droite sur Mes, (H,\ G),
on a (avec des notations dont nous espérons le sens évident au lecteur)
dWrg-1n5,(X) =] f;(x2) [P A(x, g)du,; (%)

= | fj(x2) [2dp;(x¢)

= d((us,)¢) (X)
pour tout g € G.

Dans un second temps, on introduit le sous-espace

[1' Mes,(HN\G) ¢ [] Mes,(H\G)

jed jelJ
formeé des familles (X;);., telles que L MHNG) < o, ainsi que
I’application de convolution
{ [1,., Mes . (H\G) - Mes., (Q)
A)jes P LiesVixh,

ou

Vix ;= s‘ (v,)Edr;(g) .
HA\G

J
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Pour tout g € G de projection canonique ¢ € H,\ G, I'image (v ;)& par g de
la mesure v; sur Q ne dépend que de g, et nous avons noté (v j)é cette mesure
image. Il est & nouveau évident que (A;)— Y v, » A; est une application
lipschitzienne, et qu’elle est G-équivariante pour les actions a droite naturelles
de G a la source et au but.

On obtient par composition ’application 277 — Prob () annoncée, qui
applique un vecteur unité f = (f;), sur la mesure de probabilité

jeJ

vi= L s v)ELfi (@) [2du,(g) -
H\G

Supposons alors qu’on ait
16< @ Ind§, (1u) .

jeJ
Il existerait dans 277 une suite de vecteurs

(fn)n;l = ((fj,n)je])n>1

asymptotiquement G-invariante au sens ou

lim sup ¥ | Ind$§ (1) k=) (fin) = fin |2 =0

n—>o kek jeld
pour toute partie compacte K de G. Il en résulterait que la suite corres-
pondante (vr, ),>1 de Prob(Q) serait aussi asymptotiquement invariante au

sens ou

=0

lim sup || (v )% — vy,

n—- o kek

pour toute partie compacte K de G. Quitte a passer a une suite extraite, on
obtiendrait a la limite une mesure de probabilité G-invariante sur Q, en
contradiction avec les hypothéses du lemme. L’hypothése de contenance faible
ci-dessus est donc impossible, et la preuve est achevée. [

4., PREUVE DES RESULTATS DE L’INTRODUCTION

Enoncons d’abord le raffinement suivant du théoréme A.

THEOREME B. On consideére des groupes localement compacts Gy, Gr
un réseau

I'CG=GygXxXGr

et un sous-groupe S de G contenant T', ayant les propriétés suivantes.
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