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L'Enseignement Mathématique, t. 40 (1994), p. 29-48

LE CODAGE DU FLOT GÉODÉSIQUE

SUR LA SURFACE MODULAIRE

par Pierre Arnoux

Résumé. Nous donnons une preuve élémentaire et explicite du fait que

le flot géodésique sur la surface modulaire (quotient du plan hyperbolique par

l'action de SL(2, Z)) peut être codé en utilisant les fractions continues.

Abstract. We give an elementary and explicit proof of the coding of the

geodesic flow on the modular surface by continued fractions.

0. Introduction

Il est connu depuis longtemps, par un travail d'Artin [Ar] que le flot
géodésique sur la surface modulaire peut être codé en utilisant les fractions

continues; les articles récents d'Adler et Flatto et de Series ont fait une étude

approfondie de ce codage ([AF], [Se]). Le but de cet article est de retrouver
ce résultat de façon explicite et élémentaire en mettant un système de

coordonnées adapté sur le fibré unitaire tangent de la surface modulaire.
De façon plus précise, on peut définir algébriquement le flot géodésique

sur la surface modulaire comme l'action à droite, sur l'espace quotient
SL(2, Z)\SL(2, R), du groupe des matrices diagonales positives de la

(etn 0 \
forme gt I 1 (nous rappellerons plus bas la démonstration);

mais on peut aussi voir SL(2, Z)\ SL(2, R) comme l'espace des réseaux
de R2 dont le domaine fondamental est de volume 1, et l'action de gt consiste
alors à écraser le réseau le long de l'axe des abscisses, en multipliant les

abscisses par et/2 et les ordonnées par e~tn.
Pour la plupart des réseaux (ceux qui ne contiennent pas de vecteurs

horizontaux ou verticaux), on peut trouver un domaine fondamental en forme
de L, formé de deux rectangles accolés; l'action du flot dilate les bases de ces
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domaines fondamentaux et écrase leurs hauteurs, on peut alors revenir à un
domaine de base plus petite en découpant le grand rectangle et en empilant
les morceaux obtenus au-dessus du petit rectangle (cf. Fig. 1). Si l'on part de

deux rectangles de bases respectives a et b < a, l'opération initiale est la
division euclidienne de a par b, le quotient apparaît dans le nombre
d'empilements au-dessus de b, puis on reprend l'opération avec b et le reste
de la division, de manière identique à l'algorithme d'Euclide; mais ici
l'algorithme ne termine jamais dès que les deux nombres sont incommensurables:

il s'agit en fait de la version vectorielle de l'algorithme classique des

fractions continues, et un calcul simple montre que si les quotients successifs

obtenus sont •••> on a:

b
_

1

a
~

1

Ü2 F
a3 + •• •

Figure 1

Il est clair que rien n'est changé si l'on multiplie a et b par la même

constante, on peut donc à chaque étape normaliser à 1 le plus grand des deux

nombres, et on passe ainsi de b à la partie fractionnaire de l/b, ce qui est

la fonction associée à l'algorithme des fractions continues. Puisque le flot gt
dilate les longueurs, on peut utiliser un temps convenable du flot pour réaliser

cette normalisation. La suite de cet article est consacrée à rendre rigoureux le

raisonnement qui précède, et à en tirer quelques conséquences. Une façon
beaucoup plus lourde d'énoncer les résultats qui précèdent consiste à voir
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l'espace SL(2, Z)\SL(2, R) comme espace modulaire du tore, et le flot gt

comme flot de Teichmüller sur cet espace; ce point de vue, inutile ici, permet
d'étudier le flot de Teichmüller sur l'espace modulaire d'une surface

quelconque, en codant par des «rectangles cousus», généralisations de notre
domaine fondamental en L. Cette étude a été faite par Veech [Ve2], et l'on
peut considérer le présent article comme un exposé du cas le plus simple de

cette construction ([Vel], p. 1391, où on étudie aussi le flot horocyclique).
Dans la première section, nous rappelons ce que nous aurons besoin de

savoir sur les fractions continues; dans la deuxième section, nous définissons
le flot géodésique sur la surface modulaire, et nous en donnons un autre
modèle dans la troisième section. Dans la quatrième, nous définissons de

manière élémentaire un système de coordonnées global sur le fibré unitaire

tangent à la surface modulaire, et dans la cinquième section, nous montrons

que le flot géodésique admet une section sur laquelle l'application de premier
retour est un revêtement double de l'extension naturelle de la transformation
des fractions continues. Dans la sixième section, nous donnons, comme
exemple d'application de cette méthode, une démonstration géométrique d'un
théorème de Paul Lévy sur la croissance des dénominateurs des convergents
pour presque tout nombre, en utilisant l'ergodicité du flot géodésique. Dans
la dernière section, nous montrons comment, en changeant la section choisie

pour le flot géodésique, on peut retrouver l'algorithme additif des fractions
continues; on pourrait ainsi trouver, avec d'autres sections, une infinité
d'algorithmes du même type.

1. La transformation des fractions continues

Il est classique que tout réel a e]0, 1[ s'écrive de façon unique

1

1

(X\ +
1

a2 +
#3 + * * *

où la suite (a„) est une suite d'entiers strictement positifs, finie et se
terminant par un entier strictement plus grand que 1 si x est rationnel, infinie
sinon. On note habituellement cette égalité x 10; ,,...]; dans le cas
particulier où la suite est périodique, on note x [0; a,, a„]. Un calcul
immédiat montre que a, [1/x], où [r] est la partie entière de et que, si
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l'on pose X\ {1/x}, où {/} t - [/] est la partie fractionnaire de t, on a

a2 [1/jci]. Plus généralement, définissons les deux applications

/: ]0,1[-*N

T: [0,1[-[0,1[ x^ j- si x 0, 7X0) 0
(x

On vérifie que an est défini si Tn ~1 (x) ^ 0, et vaut alors f(Tn~l(x)).

La transformation T est appelée transformation des fractions continues,
elle est surjective, mais non injective; on peut dans un tel cas construire une

application bijective associée, «l'extension naturelle», par limite inductive, en

considérant tous les passés possibles pour un point, c'est-à-dire en considérant
les suites (x/)/eZ telles que T{xt) xi+i (voir [Ro] pour une étude plus
poussée des extensions naturelles).

Cette extension naturelle admet ici, à un ensemble de mesure nulle près,

un modèle géométrique: une application T définie sur un sous-ensemble

de R2, bijective sauf sur un ensemble de mesure nulle, et telle que, si l'on
note 7i la projection sur la première variable, on ait n(T(x,y)) T(x), la
deuxième variable représentant en quelque sorte le «passé». Cette application
a pour ensemble de définition le sous-ensemble Z du plan défini par les

équations 0 ^ x < 1, et 0 ^ y < 1/(1 + x) si x < 1/2, 0 < y < 1/(1 + x)
sinon, et elle est définie par

T: I
(x, y) ' x - x2y si x 0

(0, y) (0, 0)

Cette application est bijective sauf aux points (0, y) qui ont tous même

image et aux points (x, 0) qui n'ont pas d'antécédent si x =£ 0; elle envoie les

segments verticaux sur des segments verticaux, et elle est discontinue sur les

segments x i/n pour n entier, mais continue sur les rectangles curvilignes

qu'ils délimitent. Un calcul simple montre que le rectangle curviligne défini par
1 /(n + 1) < x < 1/n, 0<y<l/(l+x) est envoyé sur le rectangle défini par
0 < x < 1, 1 /(n + 1 + x) < y < l/(n + x), avec une rotation d'un demi-tour,

qui envoie le bord droit sur le bord gauche et le bord inférieur sur le bord

supérieur. C'est pour cela qu'il faut enlever de Z les points (x, 0), x ^ 1 /2, qui
seraient envoyés sur le bord supérieur qui n'appartient pas à Z (voir Fig. 2).



FLOT GÉODÉSIQUE 33

4 2
»

4

Figure 2

C'est l'application T que nous trouverons naturellement ci-dessous

comme application de premier retour du flot géodésique sur la surface

modulaire; elle a de plus l'intérêt de préserver la mesure de Lebesgue, puisque

son jacobien est 1 en tout point où elle est continue; la projection sur la

première coordonnée donne la mesure de Gauss, de densité 1/(1 + x),
préservée par T (pour plus de détails, voir [AN]).

On peut présenter cette application d'une autre manière: le changement de

variable (x, y) ^ (x,y/( 1 — xy)) envoie E sur le carré [0, 1] x [0, 1] privé
d'une partie de son bord; on vérifie facilement qu'il conjugue l'application T
à l'application Tx définie, sur l'intérieur de son domaine, par

C'est sous cette forme que l'on trouve en général l'extension naturelle de
la transformation des fractions continues (voir par exemple [N], [It]). Cette
application est continue sur les rectangles d'équation 1 /{n + 1) < x < 1 /n,
qui sont envoyés respectivement sur les rectangles l/(n + 1) < y < \/n\ ces

rectangles forment une partition de Markov, et il est particulièrement
commode d'utiliser Tx pour construire un système dynamique symbolique, de
la façon suivante: A chaque couple (x, y) de nombres irrationnels de l'intervalle

[0,1], on associe la suite (a„)neZ définie par x [0; ax, an,...]
et y [0; a0> #-i> ...]; Ceci définit une bijection entre l'ensemble /
des points du carré de coordonnées irrationnelles et l'ensemble des suites

Tx: ]0, l[x]0, l[->[0, 1 x]0, 1[
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biinfinies à valeurs entières strictement positives. On vérifie immédiatement

que / est le complémentaire, dans le carré ]0, l[x]0, 1[, des orbites (pour Tx)
des points de la forme (x, 0) ou (0,y). Cet ensemble est de mesure pleine,
invariant par T1% et la restriction de Tx à / est une bijection.

De même que l'on a, pour le développement en fraction continue,

an f{Tn~l(pc)) avec n entier positif, on a ici an /(f"~l(x, y)) pour
tout n dans Z, où l'on définit / par f {x,y) [l/x] (numéro du rectangle

qui contient le point (x, y)). Cette formule montre que l'application de codage

qui à (x, y) associe la suite (an)nez conjugue Tx au décalage S sur N*z
(S est l'application qui à la suite (un)neZ associe la suite (un)f!eZ définie

par un un + x).

2. Le flot géodésique sur la surface modulaire

Du point de vue algébrique, le flot géodésique sur la surface modulaire est

l'action à droite sur le quotient SX (2, Z)\SX(2, R) du groupe des matrices

te"2 0 \
diagonales positives, de forme gt I

\ 0 e~t/2)
Pour justifier ce nom de flot géodésique, il faut rappeler un peu de

géométrie. On nomme demi-plan de Poincaré l'ensemble H {x + iy | y > 0}
des complexes à partie imaginaire strictement positive, muni de la métrique
(dx2 + dy2)/y2. Le groupe SL(2, R) agit à gauche sur H par

(a
c\ az + c

b d) bz + d

et cette action est isométrique. On vérifie facilement qu'elle est transitive, et

que le stabilisateur du point i est le groupe SO(2, R), donc le demi-plan de

Poincaré s'identifie à l'espace homogène SL(2, R)/SO(2, R). Le stabilisateur

agit transitivement sur le cercle unité du plan tangent à /, donc SL(2, R) agit
transitivement sur le fibré unitaire tangent du demi-plan. Le stabilisateur du

vecteur tangent vertical en i est {Id, - Id} (l'action de la matrice - Id sur H
est triviale), et le fibré unitaire tangent s'identifie au quotient PSL{2, R)
de SX (2, R) par son centre {±Id}. Par raison de symétrie, la courbe

(et/2 0 \
y(t) e(i= I i est une géodésique, et un calcul facile montre

\ 0 e~t/2j
qu'elle est paramétrée par sa longueur (c'est de là que vient le facteur 1/2 dans

la définition de gt). Puisqu'une isométrie transforme géodésique en
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géodésique, la courbe M.y(t) est aussi une géodésique, on en déduit que le

flot géodésique du demi-plan de Poincaré se représente matriciellement par
l'action à droite sur PSL(2, R) du groupe {g, 11 e R}.

On vient de voir que les géodésiques de H sont les images d'une droite
verticale par les isométries; le groupe des isométries est engendré par des

translations horizontales et des inversions centrées sur l'axe des abscisses, ce

qui permet de retrouver un fait classique: les géodésiques du demi-plan de

Poincaré sont les demi-droites verticales et les demi-cercles centrés sur l'axe.

La surface modulaire est le quotient du demi-plan par l'action du

groupe PSL(2, Z), qui est engendré, en tant que groupe agissant sur H,
par les applications z^ z + 1, de domaine fondamental - \ ^ z < f;î et
Z1-* - 1/z, de domaine fondamental (au bord près) |z| ^ 1; on en déduit
qu'un domaine fondamental pour l'action du groupe est contenu dans
l'intersection de ces deux domaines, et l'on peut montrer qu'au bord près, cette
intersection est en fait un domaine fondamental (cf. Fig. 3).

Figure 3: Le domaine fondamental pour l'action de SL(2, Z)

Cette surface est isomorphe à une sphère privée d'un point avec 2 singularités.

Son fibré unitaire tangent est isomorphe à R)
SL(2,Z)\SL(2, R), et on retrouve bien pour le flot géodésique la forme

annoncée au début de la section.



36 P. ARNOUX

3. Une autre présentation du flot géodésique

Nous allons donner une autre interprétation de ce flot: on peut considérer

(a c\
une matrice de SL(2, R) comme formée de deux vecteurs lignes

\b d)
e\ (a, c) et el2 (b, d). On lui associe ainsi une base (ex, e2) de R2 orientée
dans le sens positif et dont le «carré unité» {xex + ye2, 0 ^ x < 1, 0 ^ jy < 1}

est de volume 1. La multiplication à droite de cette matrice par une
matrice M correspond, si l'on considère les vecteurs, à l'action standard

sur le plan R2 de la matrice transposée ML Le flot géodésique consiste

à «aplatir» la base donnée sur l'axe des abscisses, et l'espace quotient
SL{2, R)/SO(2, R) s'interprète comme espace des bases à isométrie près. On

peut facilement retrouver le modèle de Poincaré: si nous assimilons R2 à C,

on peut associer à une base (ex, e2) un couple (zx, z2) de nombres complexes,
et définir une application

(1) : SL(2, R) H

(ex,e2) ^ z z2/zx

Il est clair que (f> est invariante par isométrie, et son image appartient au

demi-plan supérieur; c'est une version explicite de l'identification donnée

au paragraphe précédent entre le demi-plan de Poincaré et le quotient
SL(2, R)/SO(2, R).

(a ß\
La multiplication à gauche par un élément de SL(2, Z) remplace

\y s;
(ei,e2) par (aex + ße2,yei + ô£2), qui est une autre base du même réseau

Zex + Ze2, et l'on obtient de cette façon toutes les bases directes de ce

réseau. Le quotient à gauche SL(2, Z)\SL(2, R) est donc l'espace des réseaux.

Pour pouvoir décrire explicitement le flot géodésique, il nous faut disposer
de coordonnées sur cet espace des réseaux, c'est-à-dire donner une façon de

choisir une base pour un réseau donné. La méthode classique est celle de

Minkowski, qui consiste à choisir pour ex le plus court vecteur du réseau

(bien défini au signe près, sauf si le réseau est carré ou hexagonal), et pour
e2 le plus court vecteur du réseau qui soit indépendant de ex et forme une
base positivement orientée (bien défini, sauf si le réseau est hexagonal). Cette

méthode est évidemment équivariante par toute isométrie, et il est facile de

vérifier que les bases obtenues se projettent, via l'application $, sur le domaine

fondamental de l'action de SL(2, Z) sur H que nous avons défini dans la

section 2. L'action triviale de - Id sur le fibré unitaire tangent correspond au
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fait que la méthode de Minkowski donne pour chaque réseau deux bases

opposées l'une de l'autre; les réseaux pour lesquels cette méthode fournit plus

de deux bases (réseaux carrés et hexagonaux) sont projetés sur les deux points

singuliers de la surface modulaire.

4. Un système de coordonnées sur L'ESPACE des réseaux

Nous allons définir une autre méthode pour fixer des coordonnées, qui

conduit à des calculs plus faciles. Etant donné un réseau dans R2 (identifié
à C pour la commodité de notation), on définit pour chaque point x du réseau

l'intervalle horizontal ouvert Hx=]x— l,x+l[. La demi-droite verticale

issue de x recoupe au moins un autre intervalle horizontal: en effet, soit le

réseau contient un vecteur vertical, et cette demi-droite rencontre un autre

point du réseau, soit il n'en contient pas, donc les deux vecteurs d'une base

du réseau ont des abscisses rationnellement indépendantes, et il y a des points
du réseau arbitrairement proches de la demi-droite.

Soit Hy le premier intervalle rencontré, et supposons que le point de

rencontre soit à gauche de y. Ce point de rencontre peut s'écrire x + ic y - a;
on appellera Vx l'intervalle vertical [x, x + ic[ qu'il définit. On prolonge
ensuite vers la droite tous les intervalles horizontaux jusqu'à rencontrer un
intervalle vertical, ce qui est toujours possible par un raisonnement du même

type que ci-dessus. Par symétrie, pour tout intervalle Vx, il existe un seul Hz
dont le prolongement le coupe; on écrira z + b x + id le point
d'intersection. Il est clair que (a, c) et (- b, d) sont des vecteurs du réseau, et on
vérifie sans peine qu'ils forment une base (cf. Fig. 4; en fait, cette construction
donne un domaine fondamental pour le réseau formé de deux rectangles, l'un
de base a et de hauteur d, l'autre de base b et de hauteur c). On vérifie
immédiatement que l'on a, par construction, 0<a<l^bet0^J<c.

Si le premier point de rencontre avec Hy est à droite de y, on peut faire
la construction symétrique, et on obtient une base (a, c), (-b,d) avec

0<b<l^aet0^c<d.
Cette construction tombe en défaut dans deux cas:

— si le premier point d'intersection est égal à y; dans ce cas le réseau
contient un vecteur vertical, et on peut trouver une base de la forme
(0, c), (- b,d) avec d < c, b ^ 1 (et aussi une base de la forme (a, c), (0, d)
avec c < d, a ^ 1);

— si le premier point d'intersection est contenu dans deux intervalles
horizontaux, et dans ce cas le réseau contient un vecteur horizontal, et il y a

une base de la forme {a, 0), (- b3 d), avec b < a < 1.
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w*1v — a — x—11y-a x-ic y

z + b x + id

\ x - a x

Figure 4

On peut remarquer que le premier cas correspond à des points dont l'orbite
positive tend vers l'infini sur la surface modulaire, et le second cas à des points
dont l'orbite négative tend vers l'infini; par exemple, une base de la forme

(0ic),(-b,d) devient (0, ce~ t/2), (-bet/2, de~ t/2) sous l'action du flot
géodésique, et l'application $ définie ci-dessus lui fait correspondre le nombre

complexe d/c + ietb/c, qui est contenu dans le domaine fondamental donné

ci-dessus dès que d/c < 1/2 et tend vers l'infini.
Pour résumer, nous avons montré qu'il existe un domaine

fondamental pour l'action à gauche de SL(2,Z) sur 5L(2, R) formé de matrices

(C ] où (a, b, c, d) appartient à l'un des 3 ensembles suivants:
-b d]

Q0 {{a, b,c,d) e R41 ad + bc 1,0 < b < 1 ^ a, 0 ^ c < d\
Qi {(<a, b, c, d) e R41 ad + bc 1, 0 ^ a < 1 < b, 0 ^ d < c)

^2 {(#> b, 0, d) e R41 ad 1,0 < b < a < 1}

Le choix pour les inégalités strictes ou larges sur les bords de Q0 et Qi est

assez arbitraire, puisqu'il y a des identifications entre les bords; en particulier
le bord a 0 de Q0 s'identifie au bord b 0 de Q1? l'identification étant

donnée par la formule:
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Il peut être utile d'interpréter ces domaines de la façon suivante: tout

réseau ne contenant pas de vecteur horizontal possède un unique domaine

fondamental formé de deux rectangles alignés, le plus étroit étant de largeur

inférieure à 1, le plus large étant plus haut que l'autre, et de largeur supérieure

à 1 (cf. Fig. 4). On peut alors prendre comme coordonnées les deux largeurs

et la plus petite des hauteurs; l'autre s'en déduit puisque l'aire du domaine

fondamental est 1. On retrouve le fait, évident sur les équations, que les

domaines Q0 et Qi sont de dimension 3; Q0 (resp. QQ correspond au cas où

c'est le rectangle de droite (resp. de gauche) qui est le plus grand. Quant

à Q2, il correspond aux réseaux contenant un vecteur horizontal petit; le plus

petit rectangle est alors de hauteur nulle, et l'on ne peut plus assurer que la

largeur du plus grand rectangle soit supérieure à 1.

5. Le codage du flot géodésique

Dans ces coordonnées, le flot géodésique s'écrit simplement, du moins

localement :

gt(a, b, c, d) (et/2a, et/2b, e~ 1/2c, e~ t/2d)

Mais pour t assez grand, les deux premières coordonnées sont plus grandes

que 1 (sauf dans le cas particulier où l'une d'entre elles est initialement nulle),
et l'on traverse le bord du domaine fondamental; il faut alors faire une identification

pour poursuivre l'orbite à partir d'une autre face. Pour décrire

complètement le flot, il faut étudier cette identification.
Le domaine Q0 peut être paramétré par les 3 coordonnées a, b, c,

puisque d 1 - bc)/a, et plongé dans R3 (cf. Fig. 5); il possède alors

cinq bords, dont trois, donnés respectivement par les équations
b 0, c 0, c 1 /(a + b), sont formés de segments d'orbites du flot
géodésique. Les deux derniers sont Z0> d'équation a 1, sur lequel le flot est

rentrant, et A0, d'équation b 1, sur lequel le flot est sortant. Le bord Z0

peut être paramétré par (b, c), avec b e [0, 1[ et ce [0, 1 /(b + 1)[; on
reconnaît le domaine E du paragraphe 1. Le bord A0 peut, lui, être paramétré
par (ö, c), avec a > 1 et c e [0, 1 /{a + 1)[.

On peut de même paramétrer Ol5 cette fois par (a,b,d), et définir un
bord rentrant Zj, paramétré par (a, d), et un bord sortant Ai, paramétré
par (b, d).



40 P. ARNOUX

Notons E E0 u ^1 la réunion des deux bords rentrants; on peut
identifier E à Ex {0,1}, avec coordonnées (x, .y, s) où s appartient à

{0, 1}, (x,y, s) correspondant à l'élément (x, j) de Ee. Le résultat principal
de cet article est le suivant:

Proposition. L'application de premier retour T du flot géodésique

en E est un revêtement d'ordre 2 de l'application T définie au
paragraphe 1, c'est-à-dire qu'elle est donnée par

T: Z Ex{0, 1}^Z
(x,y, 8)h^ ({l/x},x - x2y, 1 - e)

Preuve. La remarque essentielle est que A0 s'identifie naturellement
à Ei; en effet, le point (a,c) de A0 s'identifie au point ({tf},(l - c)/a)
de Ei, par produit par un élément de SL{2, Z), en tenant compte du fait que
dans la formule suivante on a d (1 - c)/a:

1 [a]\ la l{a} c+ [a]d\
0 1 / 1 d) ~ \- 1 d

'

Cette identification s'interprète très bien en termes de domaines

fondamentaux: on passe d'un domaine fondamental où le plus petit rectangle
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est de largeur 1 et le plus grand de largeur a à un autre où le plus grand

rectangle est de largeur 1 et le plus petit de largeur {a} (cf. Fig. 1). De la même

façon, Ai s'identifie à Zo¬

ll est alors facile de calculer l'application Tsur Eo: partant du point (x, y)
de E0, le flot géodésique arrive au temps -21ogx au point (1 /x,xy)
de A0, qui est identifié au point ({1 /x},x - x2y) de Ei. Après un

calcul symétrique pour les points de Ei, on retrouve la formule donnée

ci-dessus.

Remarque. Au lieu de paramétrer Z0 par (b, c), on peut prendre comme

coordonnées (ù, c/d), c'est-à-dire prendre le rapport des hauteurs et le rapport
des largeurs (puisque sur E0 on a a 1, donc b b/a) plutôt que la hauteur

et la largeur du plus petit rectangle; ce système de coordonnées fait jouer un
rôle symétrique aux largeurs et aux hauteurs, il envoie Z0 sur le carré unité,

et un calcul simple montre que l'application de premier retour s'écrit alors

comme un revêtement de l'application T{ décrite au paragraphe 1.

De la mesure invariante pour T on déduit une mesure invariante pour gt,
qui a diverses interprétations: mesure de Haar sur SL(2, R), mesure de

Liouville pour le flot géodésique, mesure donnée par la métrique riemannienne

naturelle sur la surface modulaire... Contrairement aux autres, la mesure
induite par la métrique est complètement définie, et pas seulement à une
constante multiplicative près, et on peut montrer que la mesure transverse

invariante qu'elle définit sur E est exactement la mesure de Lebesgue; en

particulier, le volume de E pour cette mesure transverse est 2 log 2; nous
utilisons ces faits dans la prochaine section.

En utilisant l'application définie à la fin de la section 1, on peut facilement
donner un codage explicite de l'application T, c'est-à-dire une conjugaison
avec un revêtement d'ordre 2 du décalage S sur N*z. L'ensemble / défini à

la fin de la section 1 correspond ici à l'intersection de la surface de section
avec les géodésiques qui repassent une infinité de fois, dans le passé et le futur,
dans un domaine compact; le codage est évidemment plus facile dans ce

domaine, mais il est aussi possible dans le complémentaire, au moyen de suites

finies; nous n'insisterons pas sur ce sujet, sauf pour remarquer que des

complications de ce type sont inévitables quand on essaye de conjuguer une
application sur une surface et une application sur un ensemble de Cantor
comme N*z.

On a même un résultat plus précis que le codage de l'application de premier
retour, puisque tout élément du domaine fondamental s'écrit de façon
unique gt(x, y, s), avec (x, y, s) e Z et 0 < t < - 2 log x); rappelons
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qu'étant données une bijection T sur un ensemble X et une application /
définie sur X à valeurs réelles positives, telle que la série Lf(Tnx) tende

vers l'infini pour tout point x de X, on appelle flot spécial au-dessus de X,
d'application de premier retour T et de temps de retour /, le flot <\>s sur

{(x, t), x e X, 0 ^ t < f (x)} défini par <t)5(x, t) (x, t + s) si t + s < /(x),
et (f>5(x, t) (7x, 0) si s + t /(x) (ces formules permettent de définir
<\)s(x, t) pour tout s).

Corollaire. L'application qui au point gt(x,y9s) associe {(an)n eZ,£, t),
où (an) est le codage de (x9y) défini dans la section 1, conjugue le flot
géodésique à un flot spécial \|/, au-dessus de N *Z X {0,1}, de temps de

retour - 2 log [0; ax, an, ...] et dont l'application de premier retour est

un revêtement d'ordre 2 du décalage.

Il est intéressant de remarquer que le temps de retour à la section ne dépend

que de la coordonnée x (ou de la partie d'indices positifs de la suite (an)
associée).

Si, au lieu de s'intéresser aux points individuels, on regarde les géodésiques,

on obtient un codage par les suites d'entiers positifs:

Corollaire. On a une bijection entre les géodésiques de la surface
modulaire et les couples (u, s) (u suite finie ou infinie d'entiers

positifs, s g {0, \ }) modulo l'équivalence (u, s) (Su, 1 - s). En

particulier, une géodésique tend vers l'infini si et seulement si la suite u

n'est pas définie au-delà d'un certain rang, elle vient de l'infini si et

seulement si elle n'est pas définie avant un certain rang. Une géodésique

est périodique si et seulement si la suite (un) associée est périodique,
et dans ce cas, si p est la plus petite période paire de la suite, la

longueur de la géodésique est 0* - 2log[0; uJ+ l9 ...,Uj + p].

Preuve. Seule la dernière assertion demande une démonstration; mais il
suffit de calculer le temps nécessaire pour aller du point (u, 8, 0) à lui-même,

en calculant les p temps de retour intermédiaire à la section, d'après la formule
donnée au corollaire précédent.
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6. La constante de Lévy et le volume du fibré tangent
À LA SURFACE MODULAIRE

Si l'on tronque à l'ordre n le développement en fraction continue d un

nombre a [0; ü\% ...,an, ...], on obtient un nombre rationnel pn/qn5 appelé

convergent d'ordre n dex. Ces nombres se calculent facilement par récurrence,

et on a les formules:

p0 0 Pi a0a{ + 1 Pn - ClnPn -l + Pn-2 SÎ lî ^ 2

q0 1 qi ax qn anqn _ i + qn -2 si n ^ 2.

Les convergents sont les meilleures approximations rationnelles de x, ils

satisfont | x - pn/qn I < 1 /q\- Pour évaluer la vitesse d'approximation, il est

intéressant de connaître la croissance des qn; celle-ci est donnée, pour presque

tout nombre, par la proposition suivante, due à Lévy [Le].

Proposition. Pour presque tout nombre, la suite des dénominateurs des

convergents satisfait:

r log qn
lim

12 log 2

I 1 °\
Preuve. Nous allons étudier la géodésique issue de Notons

\-x \)
_

Tj, t2, t„, ses temps successifs d'intersection avec la surface É; quitte
à écarter un ensemble de mesure nulle, nous pouvons supposer qu'il y a une

infinité d'intersections. On définit une suite xn par x_ 1 1, x0 x,
xn + 1 xn _ 1 - an + ixn; on vérifie facilement que xn/x„ _ 1 Tn(x). On

montre par récurrence que le point d'intersection d'ordre 2n avec E est

donné par:

X2„-1 qm-1\/eT2»/2 0

~X2„ q2nJ\0

°
X2n/2)

et une formule analogue pour l'intersection d'ordre 2n + 1 ; le point essentiel

consiste à voir que l'on passe d'un point au suivant en multipliant à droite par
une matrice diagonale correspondant au flot, et à gauche par une matrice
entière correspondant à un changement de coordonnées; cette matrice est

A l f / 1 0\ /I a2n+l\
de la forme ou suivant la parité.

\a2n 1/ \o 1 /
On a le lemme suivant:
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Lemme. Soit I un élément de E0/ on a toujours 1/2 ^ d < 1.(-» 3
Preuve du lemme. On adr+Z?c=l,öetc sont positifs, donc d est

inférieur à 1; comme c est inférieur à d et b inférieur à l,2öf est supérieur
à 1, d'où le résultat.

Suite de la preuve. Appliqué aux points calculés plus haut, ce lemme

implique que, pour tout point x, on a: 1/2 ^ qne~Tn/2 ^ 1. Si l'orbite de x
recoupe une infinité de fois la surface de section, en prenant le logarithme et

en divisant par «, on en déduit:

r logqn Tn
hm„ _ oo 0

n 2 n

Autrement dit, le terme qui apparaît dans le théorème de Lévy est la moitié
du temps de retour moyen le long de l'orbite. Compte tenu du fait que le

/I c\
temps de premier retour d'un point ne dépend que de x, et du

\* d)
codage donné au paragraphe précédent, on voit que, si l'on appelle x(x) la
fonction temps de premier retour, on a:

T 1 n~ 1

- - I X
n n i o

Cette expression est la somme de Birkhoff associée à la fonction temps de

retour. Mais on sait que le flot géodésique sur la surface modulaire est

ergodique; donc cette fonction tend presque partout vers une constante, qui
est la moyenne du temps de premier retour sur la surface £. Cette moyenne
est elle-même le quotient, par le volume de la surface, de l'intégrale de ce temps
de retour sur E, qui n'est autre que le volume de l'espace tout entier. Cet

espace est le fibré tangent à la surface modulaire. Cette surface est d'aire 7t/3,
puisqu'elle admet dans le plan hyperbolique un domaine fondamental qui est

un triangle isocèle d'angle 0,71/3, 7t/3 ; il suffit pour obtenir l'aire d'appliquer
la formule de Gauss pour les triangles hyperboliques. Le fibré tangent a pour
fibre PSO(2, R), qui est de longueur n (ne pas oublier que - Id agit de façon

triviale, c'est pour cela que la fibre a pour longueur n et non 2n comme on

s'y attend); le volume total de l'espace est donc n2/3.
On a vu plus haut que l'aire de Z est 2 log 2; le temps de retour moyen

est donc 7i2/(6 log 2), et compte tenu du facteur 2 introduit dans le calcul, on

retrouve bien la constante cherchée.
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7. Un codage DU FLOT GÉODÉSIQUE sur un alphabet fini

Un choix différent de la surface de section conduit à retrouver d'autres

algorithmes de fractions continues. En particulier, si, dans la procédure donnée

au paragraphe 4, on inverse les deux dernières étapes, c'est-à-dire si on
prolonge le segment vertical jusqu'à rencontrer une deuxième fois le segment
horizontal avant de poursuivre celui-ci (cf. Fig. 6), on obtient un domaine
fondamental différent, caractérisé par sans condition
sur les deux autres coefficients, sauf ad + bc 1.

On peut alors refaire la même étude qu'au paragraphe 5, en définissant
deux domaines Q,'0et avec des faces rentrantes et sortantes. L'une des

a < 1 et c, dpositifs, et Y,\ est définie de façon symétrique. La surface de
section sur laquelle on définit l'application de premier retour est u EJ.

On peut paramétrer L,, par a et c, tous deux compris entre 0 et 1, et £ '
par a,c,s), avec s 0 ou 1. Un calcul simple montre que l'application de
premier retour en £' est donnée par

T[: £'-£'

Figure 6

faces rentrantes, ZJ, est formée des matrices du type avec

' - -/j I

\1 - a
a < -

2

(a, c, e) |i_£ 1 - C(1 - a), i - gj si a ^ -
2
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C'est un revêtement d'ordre 2 de l'application représentée ci-dessous

(cf. Fig. 7); elle a un domaine de définition très simple, mais des formules un
peu compliquées (en particulier, elle ne préserve pas la mesure de Lebesgue).
En utilisant la partition de Markov naturelle pour cette fonction, on peut coder
le flot géodésique par un alphabet à deux lettres.

En utilisant comme coordonnées non plus (a, c) mais (a, d), avec 0 ^ a < 1

et 0 ^ d < 1/a, on trouve pour l'application de premier retour la forme
suivante :

C'est un revêtement de l'application schématisée dans la figure 8; cette

application préserve la mesure de Lebesgue, et son domaine est de mesure

infinie.

Dans les deux cas, l'application de premier retour se projette sur la
première coordonnée en l'application T' de l'intervalle [0, 1] définie

par T'{x) x/(î -x)six < 1/2, T'(x) (1 - x)/xûx ^ 1/2. On peut voir
cette application comme la version projective de l'algorithme qui consiste à

prendre deux nombres positifs a et b, à soustraire le plus petit du plus grand
et à itérer l'opération; on réalise ainsi l'algorithme d'Euclide en ne faisant que
des soustractions, donc avec beaucoup d'étapes intermédiaires. Il s'agit d'une

2

Figure 7

T' : ï'-+è'

{a, d, s) d( 1 - a)2 + (1 - a), s j si
1

a < —

2
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version «lente» de l'algorithme des fractions continues: si x est compris entre

\/(n+1) et 1 /n,alors{1/x} T'"{x).

Figure 8
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