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LE CODAGE DU FLOT GEODESIQUE
SUR LA SURFACE MODULAIRE

par Pierre ARNOUX

RESUME. Nous donnons une preuve élémentaire et explicite du fait que
le flot géodésique sur la surface modulaire (quotient du plan hyperbolique par
’action de SL(2,Z)) peut &tre codé en utilisant les fractions continues.

ABSTRACT. We give an elementary and explicit proof of the coding of the
geodesic flow on the modular surface by continued fractions.

0. INTRODUCTION

Il est connu depuis longtemps, par un travail d’Artin [Ar] que le flot
géodésique sur la surface modulaire peut étre codé en utilisant les fractions
continues; les articles récents d’Adler et Flatto et de Series ont fait une étude
approfondie de ce codage ([AF], [Se]). Le but de cet article est de retrouver
ce résultat de facon explicite et élémentaire en mettant un systéme de
coordonnées adapté sur le fibré unitaire tangent de la surface modulaire.

De facon plus précise, on peut définir algébriquement le flot géodésique
sur la surface modulaire comme l’action a droite, sur 1’espace quotient
SL2,Z)\SL(2,R), du groupe des matrices diagonales positives de la
et/2 0

O " R t/2
mais on peut aussi voir SL(2,Z)\SL(2,R) comme I’espace des réseaux
de R? dont le domaine fondamental est de volume 1, et ’action de g, consiste
alors a écraser le réseau le long de I’axe des abscisses, en multipliant les
abscisses par e'/? et les ordonnées par e~ /2.

Pour la plupart des réseaux (ceux qui ne contiennent pas de vecteurs
horizontaux ou verticaux), on peut trouver un domaine fondamental en forme
de L, formé de deux rectangles accolés; ’action du flot dilate les bases de ces

forme g, = ( ) (nous rappellerons plus bas la démonstration);
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domaines fondamentaux et écrase leurs hauteurs, on peut alors revenir a un
domaine de base plus petite en découpant le grand rectangle et en empilant
les morceaux obtenus au-dessus du petit rectangle (cf. Fig. 1). Si I’on part de
deux rectangles de bases respectives a et b < a, ’opération initiale est la
division euclidienne de @ par b, le quotient apparait dans le nombre
d’empilements au-dessus de b, puis on reprend ’opération avec b et le reste
de la division, de maniére identique a P’algorithme d’Euclide; mais ici
I’algorithme ne termine jamais dés que les deux nombres sont incommen-
surables: il s’agit en fait de la version vectorielle de I’algorithme classique des
fractions continues, et un calcul simple montre que si les quotients successifs
obtenus sont a,;, a,, ..., on a:
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FIGURE 1

Il est clair que rien n’est changé si I’on multiplie a et b par la méme
constante, on peut donc a chaque étape normaliser a 1 le plus grand des deux
nombres, et on passe ainsi de b a la partie fractionnaire de 1/b, ce qui est
la fonction associée a ’algorithme des fractions continues. Puisque le flot g,
dilate les longueurs, on peut utiliser un temps convenable du flot pour réaliser
cette normalisation. La suite de cet article est consacrée a rendre rigoureux le
raisonnement qui précede, et a en tirer quelques conséquences. Une fagon
beaucoup plus lourde d’énoncer les résultats qui précedent consiste a voir
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’espace SL(2, Z)\SL(2,R) comme espace modulaire du tore, et le flot g,
comme flot de Teichmiiller sur cet espace; ce point de vue, inutile ici, permet
d’étudier le flot de Teichmiiller sur l’espace modulaire d’une surface
quelconque, en codant par des «rectangles cousus», généralisations de notre
domaine fondamental en L. Cette étude a été faite par Veech [Ve2], et ’on
peut considérer le présent article comme un exposé du cas le plus simple de
cette construction ([Vel], p. 1391, ou on étudie aussi le flot horocyclique).

Dans la premiére section, nous rappelons ce que nous aurons besoin de
savoir sur les fractions continues; dans la deuxiéme section, nous définissons
le flot géodésique sur la surface modulaire, et nous en donnons un autre
modeéle dans la troisiéme section. Dans la quatriéme, nous définissons de
maniére élémentaire un systéeme de coordonnées global sur le fibré unitaire
tangent a la surface modulaire, et dans la cinquiéme section, nous montrons
que le flot géodésique admet une section sur laquelle ’application de premier
retour est un revétement double de I’extension naturelle de la transformation
des fractions continues. Dans la sixiéme section, nous donnons, comme
exemple d’application de cette méthode, une démonstration géométrique d’un
théoreme de Paul Lévy sur la croissance des dénominateurs des convergents
pour presque tout nombre, en utilisant I’ergodicité du flot géodésique. Dans
la derniére section, nous montrons comment, en changeant la section choisie
pour le flot géodésique, on peut retrouver I’algorithme additif des fractions
continues; on pourrait ainsi trouver, avec d’autres sections, une infinité
d’algorithmes du méme type.

1. LA TRANSFORMATION DES FRACTIONS CONTINUES

Il est classique que tout réel x €]0, 1[ s’écrive de facon unique

1
X =

a, +
1
a, +
as + -
ou la suite (a,) est une suite d’entiers strictement positifs, finie et se
terminant par un entier strictement plus grand que 1 si x est rationnel, infinie
sinon. On note habituellement cette égalité x = [0; a4, ...,a,,...]; dans le cas
particulier ou la suite est périodique, on note x = [0;ay,...,a,]. Un calcul
immediat montre que a; = [1/x], ou [¢] est la partie entiere de ¢z, et que, si
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I’on pose x; = {1/x}, ou {¢} = ¢t — [¢] est la partie fractionnaire de ¢, on a
a, = [1/x]. Plus généralement, définissons les deux applications

f:10,1[ = N xH[-l—]
X

T: [0,1[— [0, 1] xi—*{l} six#0, TO)=0.
X

On vérifie que a, est défini si 77~ (x) # 0, et vaut alors f(7"1(x)).

La transformation 7T est appelée transformation des fractions continues,
elle est surjective, mais non injective; on peut dans un tel cas construire une
application bijective associée, «1’extension naturelle», par limite inductive, en
considérant tous les passés possibles pour un point, c’est-a-dire en considérant
les suites (x;);ez telles que T(x;) = x;.; (voir [Ro] pour une étude plus
poussée des extensions naturelles).

Cette extension naturelle admet ici, 8 un ensemble de mesure nulle pres,
un modele géométrique: une application 7' définie sur un sous-ensemble
de R?2, bijective sauf sur un ensemble de mesure nulle, et telle que, si I’on
note 1 la projection sur la premiére variable, on ait n(Y_"(x, y) = T(x), la
deuxieme variable représentant en quelque sorte le «passé». Cette application
a pour ensemble de définition le sous-ensemble ¥ du plan défini par les
équations 0 < x <1, et 0<y<1/(0+x) si x<1/2,0<y<1/(1+ %)
sinon, et elle est définie par

" T: L—-X
1 .
(x,y)H({—},x—ny) si x #0
X
©0,y)~ (0,0) .

Cette application est bijective sauf aux points (0, y) qui ont tous méme
image et aux points (x, 0) qui n’ont pas d’antécédent si x # 0; elle envoie les
segments verticaux sur des segments verticaux, et elle est discontinue sur les
segments x = 1/n pour n entier, mais continue sur les rectangles curvilignes
qu’ils délimitent. Un calcul simple montre que le rectangle curviligne défini par
1/(n+1)<x<1/n,0 <y < 1/(1 + x) est envoyé sur le rectangle défini par
0<x<1,1/(n+1+x)<y<1/(n+ x), avec une rotation d’un demi-tour,
qui envoie le bord droit sur le bord gauche et le bord inférieur sur le bord
supérieur. C’est pour cela qu’il faut enlever de X les points (x, 0), x > 1/2, qui
seraient envoyés sur le bord supérieur qui n’appartient pas a X (voir Fig. 2).
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FIGURE 2

C’est P’application T que nous trouverons naturellement ci-dessous
comme application de premier retour du flot géodésique sur la surface
modulaire; elle a de plus ’intérét de préserver la mesure de Lebesgue, puisque
son jacobien est 1 en tout point ou elle est continue; la projection sur la
premic¢re coordonnée donne la mesure de Gauss, de densité 1/(1 + x),
préservée par 71 (pour plus de détails, voir [AN]).

On peut présenter cette application d’une autre maniére: le changement de
variable (x, y)— (x,y/(1 — xy)) envoie X sur le carré [0, 1] X [0, 1] privé
d’une partie de son bord; on vérifie facilement qu’il conjugue 1’application T
a ’application 7, définie, sur l’intérieur de son domaine, par

T,: 10, 1[x]0, 1[~[0, 1 x]0, 1]

o ({52

C’est sous cette forme que ’on trouve en général ’extension naturelle de
la transformation des fractions continues (voir par exemple [N], [It]). Cette
application est continue sur les rectangles d’équation 1/(n+ 1) < x < 1/n,
qui sont envoyés respectivement sur les rectangles 1/(n + 1) < y < 1/n: ces
rectangles forment une partition de Markov, et il est particuliérement
commode d’utiliser 7 pour construire un systéme dynamique symbolique, de
la facon suivante: A chaque couple (x, y) de nombres irrationnels de l’inter-
valle [0, 1], on associe la suite (@,),.z définie par x = [0;ay,...,a,,...]
et y =[0;a0,a_1,...,a_,,...]; Ceci définit une bijection entre ’ensemble 7/
des points du carré de coordonnées irrationnelles et ’ensemble des suites



34 P. ARNOUX

biinfinies a valeurs enti€res strictement positives. On vérifie immédiatement
que I est le complémentaire, dans le carré 10, 1[ x]0, 1], des orbites (pour T 1)
des points de la forme (x, 0) ou (0, y). Cet ensemble est de mesure pleine,
invariant par T,, et la restriction de T . & I est une bijection.

De méme que l’on a, pour le développement en fraction continue,
a, = f(T"-1(x)) avec n entier positif, on a ici a, = f(T7 '(x,y)) pour
tout n dans Z, ou ’on définit f par f(x,y) = [1/x] (numéro du rectangle
qui contient le point (x, y)). Cette formule montre que 1’application de codage
qui a (x,y) associe la suite (@,),cz conjugue T, au décalage S sur N*“
(S est P’application qui a la suite (#,),cz associe la suite (v,),cz définie
par v, = Upy1).

2. LE FLOT GEODESIQUE SUR LA SURFACE MODULAIRE

Du point de vue algébrique, le flot géodésique sur la surface modulaire est
I’action a droite sur le quotient SL(2,Z)\SL (2, R) du groupe des matrices

et/2 O
diagonales positives, de forme g, = ( ) .
O e~ /2

Pour justifier ce nom de flot géodésique, il faut rappeler un peu de
géométrie. On nomme demi-plan de Poincaré I’ensemble H = {x + iy |y > 0}
des complexes a partie imaginaire strictement positive, muni de la métrique
(dx? + dy?)/y?. Le groupe SL(2, R) agit a gauche sur H par

a c az + ¢

(b a’) T bzt d
et cette action est isométrique. On vérifie facilement qu’elle est transitive, et
que le stabilisateur du point 7 est le groupe SO(2, R), donc le demi-plan de
Poincaré s’identifie a I’espace homogeéne SL (2, R)/SO(2, R). Le stabilisateur
agit transitivement sur le cercle unité du plan tangent a i, donc SL (2, R) agit
transitivement sur le fibré unitaire tangent du demi-plan. Le stabilisateur du
vecteur tangent vertical en 7 est {I/d, — Id} (I’action de la matrice — Id sur H
est triviale), et le fibré unitaire tangent s’identifie au quotient PSL (2, R)
de SL(2,R) par son centre {+ Id}. Par raison de symétrie, la courbe

et/2 0

v() = e'i = ( 0 e-u2

qu’elle est paramétrée par sa longueur (c’est de 1a que vient le facteur 1/2 dans
la définition de g;). Puisqu’une isométrie transforme géodésique en

) . I est une géodésique, et un calcul facile montre
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géodésique, la courbe M . y(¢) est aussi une géodésique, on en déduit que le
flot géodésique du demi-plan de Poincaré se représente matriciellement par
’action & droite sur PSL(2, R) du groupe {g;|? € R}.

On vient de voir que les géodésiques de H sont les images d’une droite
verticale par les isométries; le groupe des isométries est engendré par des
translations horizontales et des inversions centrées sur 1’axe des abscisses, ce
qui permet de retrouver un fait classique: les géodésiques du demi-plan de
Poincaré sont les demi-droites verticales et les demi-cercles centrés sur I’axe.

La surface modulaire est le quotient du demi-plan par l’action du
groupe PSL(2,7Z), qui est engendré, en tant que groupe agissant sur H,
par les applications z+ z + 1, de domaine fondamental — % <z < %, et
z= — 1/z, de domaine fondamental (au bord prés) |z|> 1; on en déduit
qu’un domaine fondamental pour I’action du groupe est contenu dans
'intersection de ces deux domaines, et I’on peut montrer qu’au bord prés, cette
intersection est en fait un domaine fondamental (cf. Fig. 3).

N,
77

)

N —

FIGURE 3: LE DOMAINE FONDAMENTAL POUR L’ACTION DE SL 2,7Z)

Cette surface est isomorphe & une sphére privée d’un point avec 2 singula-
rités. Son fibré unitaire tangent est isomorphe a PSL(2,Z)\PSL 2, R)
= SL(2,Z)\SL(2, R), et on retrouve bien pour le flot géodésique la forme
annoncée au début de la section.
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3. UNE AUTRE PRESENTATION DU FLOT GEODESIQUE

Nous allons donner une autre interprétation de ce flot: on peut considérer
, a c ) .
une matrice (b d) de SL(2,R) comme formée de deux vecteurs lignes

ei = (a, ¢) et e, = (b, d). On lui associe ainsi une base (e, e;) de R? orientée
dans le sens positif et dont le «carré unité» {xe; + ye,,0 < x < 1,0 <y < 1}
est de volume 1. La multiplication a droite de cette matrice par une
matrice M correspond, si ’on considére les vecteurs, a ’action standard
sur le plan R? de la matrice transposée M?’. Le flot géodésique consiste
a «aplatir» la base donnée sur 1’axe des abscisses, et ’espace quotient
SL(2, R)/SO(2, R) s’interpréte comme espace des bases a isométrie pres. On
peut facilement retrouver le modele de Poincaré: si nous assimilons R? a C,
on peut associer a une base (e, ;) un couple (z;, z,) de nombres complexes,
et définir une application

¢: SL2,R)—H
(e1,e)z2=2/21.

Il est clair que ¢ est invariante par isométrie, et son image appartient au
demi-plan supérieur; c’est une version explicite de P’identification donnée
au paragraphe précédent entre le demi-plan de Poincaré et le quotient
SL(2,R)/SO(2, R).

a
La multiplication a gauche par un ¢lément (
Y

(ei, e,) par (ae, + Be,, yer + dey), qui est une autre base du méme réseau
Ze, + Ze,, et ’on obtrent de cette facon toutes les bases directes de ce
réseau. Le quotient & gauche SL(2, Z)\SL (2, R) est donc ’espace des réseaux.

Pour pouvoir décrire explicitement le flot géodésique, il nous faut disposer
de coordonnées sur cet espace des réseaux, c’est-a-dire donner une facon de
choisir une base pour un réseau donné. La méthode classique est celle de
Minkowski, qui consiste a choisir pour e; le plus court vecteur du réseau
(bien défini au signe pres, sauf si le réseau est carré ou hexagonal), et pour
e, le plus court vecteur du réseau qui soit indépendant de e; et forme une
base positivement orientée (bien défini, sauf si le réseau est hexagonal). Cette
méthode est évidemment équivariante par toute isométrie, et il est facile de
vérifier que les bases obtenues se projettent, via ’application ¢, sur le domaine
fondamental de ’action de SL(2,Z) sur H que nous avons défini dans la
section 2. L’action triviale de — Id sur le fibré unitaire tangent correspond au

E) de SL(2, Z) remplace
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fait que la méthode de Minkowski donne pour chaque réseau deux bases
opposées I’une de I’autre; les réseaux pour lesquels cette méthode fournit plus
de deux bases (réseaux carrés et hexagonaux) sont projetés sur les deux points
singuliers de la surface modulaire.

4. UN SYSTEME DE COORDONNEES SUR L’ESPACE DES RESEAUX

Nous allons définir une autre méthode pour fixer des coordonnées, qui
conduit & des calculs plus faciles. Etant donné un réseau dans R? (identifié
a C pour la commodité de notation), on définit pour chaque point x du réseau
Pintervalle horizontal ouvert H,=]x — 1,x + 1[. La demi-droite verticale
issue de x recoupe au moins un autre intervalle horizontal: en effet, soit le
réseau contient un vecteur vertical, et cette demi-droite rencontre un autre
point du réseau, soit il n’en contient pas, donc les deux vecteurs d’une base
du réseau ont des abscisses rationnellement indépendantes, et il y a des points
du réseau arbitrairement proches de la demi-droite.

Soit H, le premier intervalle rencontré, et supposons que le point de ren-
contre soit a gauche de y. Ce point de rencontre peut s’écrire x + ic = y — a;
on appellera V, lintervalle vertical [x, x + ic[ qu’il définit. On prolonge
ensuite vers la droite tous les intervalles horizontaux jusqu’a rencontrer un
intervalle vertical, ce qui est toujours possible par un raisonnement du méme
type que ci-dessus. Par symétrie, pour tout intervalle V., il existe un seul H,
dont le prolongement le coupe; on écrira z + b = x + id le point d’inter-
section. Il est clair que (a, c) et (— b, d) sont des vecteurs du réseau, et on
vérifie sans peine qu’ils forment une base (cf. Fig. 4; en fait, cette construction
donne un domaine fondamental pour le réseau formé de deux rectangles, I’un
de base g et de hauteur d, I'autre de base b et de hauteur ¢). On vérifie
immeédiatement que 'on a, par construction, 0 <a<1l1<bet 0<d<ec.

Si le premier point de rencontre avec H, est a droite de y, on peut faire
la construction symétrique, et on obtient une base (a,c), (— b, d) avec
O<b<l<<aetld<Kc<d.

Cette construction tombe en défaut dans deux cas:

— si le premier point d’intersection est égal & y; dans ce cas le réseau
contient un vecteur vertical, et on peut trouver une base de la forme

(0,¢), (—b,d) avecd < c, b > 1 (et aussi une base de la forme (g, ¢), (0, d)
avec c < d,a > 1),

— si le premier point d’intersection est contenu dans deux intervalles
horizontaux, et dans ce cas le réseau contient un vecteur horizontal, et il y a
une base de la forme (a, 0), (— b, d), avec b < a < 1.
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On peut remarquer que le premier cas correspond a des points dont I’orbite
positive tend vers ’infini sur la surface modulaire, et le second cas a des points
dont ’orbite négative tend vers ’'infini; par exemple, une base de la forme
0, ¢), (— b, d) devient (0, ce~"?), (— be’?,de~"?) sous I’action du flot
géodésique, et ’application ¢ définie ci-dessus lui fait correspondre le nombre
complexe d/c + ie'b/c, qui est contenu dans le domaine fondamental donné
ci-dessus des que d/c < 1/2 et tend vers 1’infini.

Pour résumer, nous avons montré qu’il existe un domaine fonda-
mental pour ’action a gauche de SL(2,Z) sur SL(2,R) formé de matrices

a ¢
( b d) , ou (a, b, c,d) appartient 2 I'un des 3 ensembles suivants:

Qo=1{(a,b,c,d)eR*|ad + bc=1,0<b< 1K
Q,={(a,b,c,d)eR*|ad + bc=1,0<a< 1<
Q,={(a,b,0,d)eR*|ad=1,0<b<a<11}.

a,0 <c<d}
b,0<d<c}

Le choix pour les inégalités strictes ou larges sur les bords de Q, et Q; est
assez arbitraire, puisqu’il y a des identifications entre les bords; en particulier
le bord a = 0 de Q, s’identifie au bord b = 0 de Q,, I’identification étant
donnée par la formule:

(0
1
—da ;—-C

[N
N ———

Il
——
| ()
[
—
SN ——
—
S [
NN T )
S —mm——
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Il peut &tre utile d’interpréter ces domaines de la facon suivante: tout
réseau ne contenant pas de vecteur horizontal posséde un unique domaine
fondamental formé de deux rectangles alignés, le plus étroit étant de largeur
inférieure a 1, le plus large étant plus haut que I’autre, et de largeur supérieure
a 1 (cf. Fig. 4). On peut alors prendre comme coordonnees les deux largeurs
et la plus petite des hauteurs; 'autre s’en déduit puisque I’aire du domaine
fondamental est 1. On retrouve le fait, évident sur les équations, que les
domaines Q, et Q, sont de dimension 3; Qo (resp. €,) correspond au cas ou
c’est le rectangle de droite (resp. de gauche) qui est le plus grand. Quant
a Q,, il correspond aux réseaux contenant un vecteur horizontal petit; le plus
petit rectangle est alors de hauteur nulle, et I’on ne peut plus assurer que la
largeur du plus grand rectangle soit supérieure a 1.

5. LE CODAGE DU FLOT GEODESIQUE

Dans ces coordonnées, le flot géodésique s’écrit simplement, du moins
localement:

g(a, b,c,d) = (e"%a,e’?b,e~2c,e~12d) .

Mais pour ¢ assez grand, les deux premiéres coordonnées sont plus grandes
que 1 (sauf dans le cas particulier ou I’une d’entre elles est initialement nulle),
et ’on traverse le bord du domaine fondamental; il faut alors faire une identifi-
cation pour poursuivre I’orbite a partir d’une autre face. Pour décrire
compléetement le flot, il faut étudier cette identification.

Le domaine Q, peut €tre paramétré par les 3 coordonnées a, b, c,
puisque d = (1 — bc)/a, et plongé dans R3 (cf. Fig. 5); il posseéde alors
cing bords, dont trois, donnés respectivement par les équations
b=0,c=0,c=1/(a+ b), sont formés de segments d’orbites du flot
géodésique. Les deux derniers sont Xy, d’équation a = 1, sur lequel le flot est
rentrant, et Ay, d’équation b = 1, sur lequel le flot est sortant. Le bord X,
peut &tre paramétré par (b,c), avec b e [0,1[ et ce [0,1/(b + 1)[; on
reconnait le domaine ¥ du paragraphe 1. Le bord A, peut, lui, étre paramétré
par (a,c), aveca>1letce [0,1/(a + D][.

On peut de méme paramétrer Q;, cette fois par (a, b, d), et définir un

bord rentrant X, paramétré par (@, d), et un bord sortant A;, paramétré
par (b, d).
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FIGURE 5

Notons X = 2o U Xy la réunion des deux bords rentrants; on peut
identifier £ a ¥ X {0, 1}, avec coordonnées (x,y,&) ou & appartient a
{0, 1}, (x, », €) correspondant a I’élément (x, y) de X,. Le résultat principal
de cet article est le suivant:

PROPOSITION. L’application de premier retour T du flot géodésique
en Y est un revétement d’ordre 2 de application T définie au para-
graphe 1, c’est-a-dire qu’elle est donnée par

T: £=YXx{0,1}>%
(x,y,8)= ({1/x},x — x?y,1 — ¢) .

Preuve. La remarque essentielle est que A, s’identifie naturellement
a X,; en effet, le point (a,c) de A, s’identifie au point ({a}, (1 — c)/a)
de X, par produit par un élément de SL (2, Z), en tenant compte du fait que
dans la formule suivante on a d = (1 — ¢)/a:

1 [a] a c\ {a} c+ [ald
(o 1)(—1 d)_(—l d )

Cette identification s’interpréte trés bien en termes de domaines
fondamentaux: on passe d’un domaine fondamental ou le plus petit rectangle
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est de largeur 1 et le plus grand de largeur ¢ a un autre ou le plus grand
rectangle est de largeur 1 et le plus petit de largeur {a} (cf. Fig. 1). De la méme
facon, A, s’identifie a X,.

11 est alors facile de calculer I’application Tsur ¥,: partant du point (x, y)
de ¥,, le flot géodésique arrive au temps —2logx au point (1 /X, XY)
de Ao, qui est identifié au point ({1/x},x—x?y) de Xi. Aprés un
calcul symétrique pour les points de ¥;, on retrouve la formule donnée
ci-dessus. [

Remargue. Au lieu de paramétrer X, par (b, ¢), on peut prendre comme
coordonnées (b, ¢/ d), c’est-a-dire prendre le rapport des hauteurs et le rapport
des largeurs (puisque sur Xoon a ¢ = 1, donc b = b/a) plutdt que la hauteur
et la largeur du plus petit rectangle; ce systéme de coordonnées fait jouer un
rdle symétrique aux largeurs et aux hauteurs, il envoie X, sur le carré unite,
et un calcul simple montre que I’application de premier retour s’écrit alors
comme un revétement de ’application T, décrite au paragraphe 1.

De la mesure invariante pour T on déduit une mesure invariante pour g,,
qui a diverses interprétations: mesure de Haar sur SL(2, R), mesure de
Liouville pour le flot géodésique, mesure donnée par la métrique riemannienne
naturelle sur la surface modulaire... Contrairement aux autres, la mesure
induite par la métrique est complétement définie, et pas seulement a une
constante multiplicative pres, et on peut montrer que la mesure transverse
invariante qu’elle définit sur Y est exactement la mesure de Lebesgue; en
particulier, le volume de Y pour cette mesure transverse est 2log2; nous
utilisons ces faits dans la prochaine section.

En utilisant I’application définie a la fin de la section 1, on peut facilement
donner un codage explicite de 1’application T, c’est-a-dire une conjugaison
avec un revétement d’ordre 2 du décalage S sur N*%. L’ensemble 7 défini a
la fin de la section 1 correspond ici a I’intersection de la surface de section
avec les géodésiques qui repassent une infinité de fois, dans le passé et le futur,
dans un domaine compact; le codage est évidemment plus facile dans ce
domaine, mais il est aussi possible dans le complémentaire, au moyen de suites
finies; nous n’insisterons pas sur ce sujet, sauf pour remarquer que des
complications de ce type sont inévitables quand on essaye de conjuguer une

application sur une surface et une application sur un ensemble de Cantor
comme N*Z,

On a méme un résultat plus précis que le codage de I’application de premier
retour, puisque tout élément du domaine fondamental s’écrit de facon
unique g,(x,y,€), avec (x,y,8)eX et 0<t< — 2logx); rappelons
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qu’étant données une bijection 7 sur un ensemble X et une application f
définie sur X a valeurs réelles positives, telle que la série X f(7T"x) tende
vers I’infini pour tout point x de X, on appelle flot spécial au-dessus de X,
d’application de premier retour 7 et de temps de retour f, le flot ¢, sur
{(x,8),x e X,0 <t < f(x)} défini par ¢,(x, 1) = (x,t+5) si t + 5 < f(x),
et d;(x, 1) = (Tx,0) si s+ t= f(x) (ces formules permettent de définir
Os(x, t) pour tout s).

COROLLAIRE. L’application qui au point g,(x,,&) associe ((@p)necz,&,1),
ou (a,) estle codage de (x,y) défini dans la section I, conjugue le flot
géodésique a un flot spécial v, au-dessus de N** x {0,1}, de temps de
retour —2logl0;a,,...,a,,...] et dont ’application de premier retour est
un revétement d’ordre 2 du décalage.

Il est intéressant de remarquer que le temps de retour a la section ne dépend
que de la coordonnée x (ou de la partie d’indices positifs de la suite (a,)
associée).

Si, au lieu de s’intéresser aux points individuels, on regarde les géodésiques,
on obtient un codage par les suites d’entiers positifs:

COROLLAIRE. On a une bijection entre les géodésiques de la surface
modulaire et les couples (u,e) (u suite finie ou infinie d’entiers
positifs, €e€{0,1}) modulo [’équivalence (u,e)= (Su,1—¢€). En
particulier, une géodésique tend vers l’infini si et seulement si la suite u
n’est pas définie au-dela d’un certain rang, elle vient de [linfini si et
seulement si elle n’est pas définie avant un certain rang. Une géodésique
est périodique si et seulement si la suite (u,) associée est périodique,
et dans ce cas, si p est la plus petite période paire de la suite, la
longueur de la géodésique est Zf;ol —210g[05%; 4 1, s Uj1 pl-

Preuve. Seule la derniere assertion demande une démonstration; mais il
suffit de calculer le temps nécessaire pour aller du point (u, €, 0) a lui-méme,
en calculant les p temps de retour intermédiaire a la section, d’aprés la formule
donnée au corollaire précédent. [
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6. LA CONSTANTE DE LEVY ET LE VOLUME DU FIBRE TANGENT
A LA SURFACE MODULAIRE

Si ’on tronque & l'ordre n le développement en fraction continue d’un
nombre x = [0; ay, ..., an, ...], On obtient un nombre rationnel p,/q,, appelé
convergent d’ordre n de x. Ces nombres se calculent facilement par récurrence,
et on a les formules:

po=0 pi=ayai+1 Py=0apDn-1+Pn-2 sI n22
go=1 qi=0a ¢n=0,qn -1+ gn-2 I n=22.
Les convergents sont les meilleures approximations rationnelles de x, ils
satisfont | x — p,/qnx | <1/ q,z,. Pour évaluer la vitesse d’approximation, il est

intéressant de connaitre la croissance des g, ; celle-ci est donnée, pour presque
tout nombre, par la proposition suivante, due a Lévy [Le].

PROPOSITION. Pour presque tout nombre, la suite des dénominateurs des
convergents satisfait:
. logg, n?
lim = .
now H 12 log 2

1

0
Preuve. Nous allons étudier la géodésique issue de ( 1) . Notons
X

Ti, Tas --.s Tns ... S€S temps successifs d’intersection avec la surface i; quitte
a écarter un ensemble de mesure nulle, nous pouvons supposer qu’il y a une
infinité d’intersections. On définit une suite x, par x_; =1, Xxo = X,
Xne1=Xn_1— An+1Xn; on vérifie facilement que x,/x,_-1 = T"(x). On
montre par récurrence que le point d’intersection d’ordre 2n avec X est

donné par:
Xon-1 Gan-1 etan’? 0
— Xon d2an 0 e 2n/2

et une formule analogue pour ’intersection d’ordre 2n + 1; le point essentiel
consiste a voir que I’on passe d’un point au suivant en multipliant a droite par
une matrice diagonale correspondant au flot, et a gauche par une matrice
entiecre correspondant a un changement de coordonnées; cette matrice est

1 0 1 Aon + 1 . .
de la forme ou , suivant la parité.
ary 1 0 1

On a le lemme suivant:
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, 1 c
LEMME. Soit ( 5 d) un élément de X,; onatoujours 1/2 <d< 1.

Preuve du lemme. On a d + bc =1,b et ¢ sont positifs, donc d est
inférieur & 1; comme c est inférieur a d et b inférieur a 1, 2d est supérieur
a1, d’ou le résultat. [

Suite de la preuve. Appliqué aux points calculés plus haut, ce lemme
implique que, pour tout point x, on a: 1/2 < g,e "2 < 1. Si orbite de x
recoupe une infinité de fois la surface de section, en prenant le logarithme et
en divisant par », on en déduit:

log q, T
hm, .. —2_ T g,

n 2n_

Autrement dit, le terme qui apparait dans le théoréme de Lévy est la moitié
du temps de retour moyen le long de ’orbite. Compte tenu du fait que le
1

X
codage donné au paragraphe précédent, on voit que, si I’on appelle t(x) la
fonction temps de premier retour, on a:

c
temps de premier retour d’un point ( d) ne dépend que de x, et du

Th "

1
n n

-1
Y (Tix).
i=0

Cette expression est la somme de Birkhoff associée a la fonction temps de
retour. Mais on sait que le flot géodésique sur la surface modulaire est
ergodique; donc cette fonction tend presque partout vers une constante, qui
est la moyenne du temps de premier retour sur la surface Y. Cette moyenne
est elle-méme le quotient, par le volume de la surface, de I’intégrale de ce temps
de retour sur 2, qui n’est autre que le volume de I’espace tout entier. Cet
espace est le fibré tangent a la surface modulaire. Cette surface est d’aire n/3,
puisqu’elle admet dans le plan hyperbolique un domaine fondamental qui est
un triangle isocéle d’angle 0, /3, ®/3; il suffit pour obtenir ’aire d’appliquer
la formule de Gauss pour les triangles hyperboliques. Le fibré tangent a pour
fibre PSO (2, R), qui est de longueur nt (ne pas oublier que — Id agit de facon
triviale, c’est pour cela que la fibre a pour longueur © et non 27 comme on
s’y attend); le volume total de I’espace est donc m?/3.

On a vu plus haut que I’aire de Y est 2 log 2; le temps de retour moyen
est donc m2/(6log 2), et compte tenu du facteur 2 introduit dans le calcul, on
retrouve bien la constante cherchée. [
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7. UN CODAGE DU FLOT GEODESIQUE SUR UN ALPHABET FINI

Un choix différent de la surface de section conduit & retrouver d’autres
algorithmes de fractions continues. En particulier, si, dans la procédure donnée
au paragraphe 4, on inverse les deux derniéres étapes, c’est-a-dire si on
prolonge le segment vertical jusqu’a rencontrer une deuxiéme fois le segment
horizontal avant de poursuivre celui-ci (cf. Fig. 6), on obtient un domaine
fondamental différent, caractérisé par 0 < ¢ < 1 < b <1 + q, sans condition
sur les deux autres coefficients, sauf ad + bc = 1.

1
!
1
1

1

FIGURE 6

e e

V i i

On peut alors refaire la méme étude qu’au paragraphe 5, en définissant
deux domaines Q; et Q{, avec des faces rentrantes et sortantes. L’une des

) a c
faces rentrantes, 2., est formée des matrices du type ( ) avec

a <1 et c,d positifs, et L] est définie de facon symétrique. La surface de
section sur laquelle on définit ’application de premier retour est X, U 25 .
On peut paramétrer | par a et ¢, tous deux compris entre 0 et 1, et X’

par (a,c, €), avec € = 0 ou 1. Un calcul simple montre que ’application de
premier retour en ¥’ est donnée par

T{: I W
) 1
(a,c,e) ,c(l—a),g) Si a<§
1-a . 1
(a,c,e) ,l—c(l—a),l—s) si a>5.

\
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C’est un revétement d’ordre 2 de I’application représentée ci-dessous
(cf. Fig. 7); elle a un domaine de définition trés simple, mais des formules un
peu compliquées (en particulier, elle ne préserve pas la mesure de Lebesgue).
En utilisant la partition de Markov naturelle pour cette fonction, on peut coder
le flot géodésique par un alphabet a deux lettres.

En utilisant comme coordonnées non plus (a, ¢) mais (a, d), avec 0 < a < 1
et 0 <d< 1/a, on trouve pour ’application de premier retour la forme
suivante:

1 2 !
— 1
FIGURE 7
i“l il__)il

a . 1

(a,d,e)— ,d(l—a)2+(1——a),8) S a<5
1—a . 1

(a,a’,z—:)r—>k a—a*d,1 —¢ si a>£.

a

C’est un revétement de ’application schématisée dans la figure 8; cette
application préserve la mesure de Lebesgue, et son domaine est de mesure
infinie.

Dans les deux cas, ’application de premier retour se projette sur la
premiére coordonnée en I’application 7" de !intervalle [0, 1] définie
parT'(x) =x/(1 —x)six< 1/2, T'(x) = (1 —x)/xsix > 1/2. On peut voir
cette application comme la version projective de ’algorithme qui consiste a
prendre deux nombres positifs a et b, a soustraire le plus petit du plus grand
et a itérer I’opération; on réalise ainsi I’algorithme d’Euclide en ne faisant que
des soustractions, donc avec beaucoup d’étapes intermédiaires. Il s’agit d’une
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version «lente» de P’algorithme des fractions continues: si x est compris entre
1/(n+1) et 1/n, alors {1/x} = T'"(x).

FIGURE 8
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