|
Issue 1-2: L'ENSEIGNEMENT MATHÉMATIQUE
|
|
|
Front matter
|
|
|
Table of Contents
|
|
|
Front matter
|
|
|
Index
|
|
|
Front matter
|
|
|
Article
SOME PARADOXICAL SETS WITH APPLICATIONS IN THE GEOMETRIC THEORY OF REAL VARIABLE
|
1
|
|
Chapter
1. Maneuvering a needle
|
1
|
|
Chapter
2. Streets in all directions covering null area
|
2
|
|
Chapter
3. A TOURIST COLONY NOT TO BE RECOMMENDED
|
3
|
|
Chapter
4. A SMALL TREE WITH MANY FRUITS
|
3
|
|
Chapter
5. How the Perron tree sprouts
|
4
|
|
Chapter
6. The solution of the needle problem
|
8
|
|
Chapter
7. The construction of the Besocovitch set
|
9
|
|
Chapter
8. The Nikodym set
|
11
|
|
Chapter
9. Mathematical frivolities? From the Perron tree to the measure of the density
|
12
|
|
Chapter
10. Another fruit of the Perron tree. A PROBLEM ON DOUBLE FOURIER SERIES
|
13
|
|
Bibliography
|
14
|
|
Article
MANIFOLDS WITH CANONICAL COORDINATE CHARTS : SOME EXAMPLES
|
15
|
|
Chapter
Inversive 2-manifolds
|
18
|
|
Chapter
Affine structures in 2, 3, and 4 dimensions
|
22
|
|
Bibliography
|
25
|
|
Article
GROUPE DE WITT D'UNE ALGÈBRE AVEC INVOLUTION
|
27
|
|
Chapter
§1. RÉDUCTION AU CAS SEMISIMPLE
|
28
|
|
Chapter
§2 Réduction au groupe de Witt hermitien d'un corps gauche
|
31
|
|
Chapter
§3. Présentation du groupe de Witt hermitien d'un corps gauche
|
37
|
|
Article
EXACT SEQUENCES OF WITT GROUPS OF EQUIVARIANT FORMS
|
45
|
|
Bibliography
|
51
|
|
Article
REPRESENTATIONS OF THE SYMMETRIC GROUP, THE SPECIALIZATION ORDER, SYSTEMS AND GRASSMANN MANIFOLDS
|
53
|
|
Abstract
|
53
|
|
Abstract
Contents
|
53
|
|
Chapter
1. Introduction
|
54
|
|
Chapter
2. SEVERAL MANIFESTATIONS OF THE SPECIALIZATION ORDER
|
56
|
|
Chapter
3. Grassmann manifolds and classifying vectorbundles
|
59
|
|
Chapter
4. Schubert Cells
|
60
|
|
Chapter
5. Interrelations
|
62
|
|
Chapter
6. Young's rule, the specialization order and nilpotent matrices
|
65
|
|
Chapter
7. Nilpotent matrices and systems
|
67
|
|
Chapter
8. VECTORBUNDLES AND SYSTEMS
|
73
|
|
Chapter
9. Vectorbundles, systems and Schubert cells
|
76
|
|
Chapter
10. Deformations of representation homomorphisms and subrepresentations
|
81
|
|
Chapter
11. A FAMILY OF REPRESENTATIONS OF $S_{n+m}$ PARAMETRIZED BY $G_n(C^{n+m})$
|
82
|
|
Bibliography
|
85
|
|
Article
THE METHOD OF HADAMARD AND DE LA VALLÉE-POUSSIN (ACCORDING TO PIERRE DELIGNE)
|
89
|
|
Abstract
Contents
|
89
|
|
Chapter
Introduction
|
90
|
|
Chapter
Part I: Examples
|
91
|
|
Chapter
Part II: Statement of the theorem
|
100
|
|
Chapter
Part III: Proof of the Main Lemma
|
114
|
|
Bibliography
|
128
|
|
Article
FREE GROUPS IN LINEAR GROUPS
|
129
|
|
Chapter
1. Early examples
|
129
|
|
Chapter
2. Statement of Tits' theorem
|
132
|
|
Chapter
3. Digression on hyperbolic geometry
|
134
|
|
Chapter
4. Free subgroups of GL(2, R) and of GL(2, C)
|
135
|
|
Chapter
5. SOME OTHER CASES OF TITS' THEOREM
|
139
|
|
Bibliography
|
142
|
|
Article
DIVISION ALGEBRAS AND THE HAUSDORFF-BANACH-TARSKI PARADOX
|
145
|
|
Appendix
Appendix A
|
147
|
|
Appendix
Appendix B
|
148
|
|
Appendix
Appendix C
|
149
|
|
Bibliography
|
150
|
|
Article
ON FREE SUBGROUPS OF SEMI-SIMPLE GROUPS
|
151
|
|
Chapter
§1. Proof of Theorem B
|
153
|
|
Chapter
§2. Free subgroups with strongly regular elements
|
157
|
|
Chapter
§3. Compact groups. Proof of Theorem A.
|
161
|
|
Chapter
§4. Free group actions with commutative isotropy groups
|
161
|
|
Bibliography
|
164
|
|
Article
KUMMER'S IDEAS ON FERMAT'S LAST THEOREM
|
165
|
|
Bibliography
|
176
|
|
Rubric
COMMISSION INTERNATIONALE DE L'ENSEIGNEMENT MATHÉMATIQUE (INTERNATIONAL COMMISSION ON MATHEMATICAL INSTRUCTION)
|
179
|
|
Article
SOME KNOT THEORY OF COMPLEX PLANE CURVES
|
185
|
|
Chapter
§1. Aspects of the "placement problem" for complex plane curves
|
185
|
|
Chapter
§2. A TRIPTYCH
|
185
|
|
Chapter
§3. RÉSUMÉ OF BASIC DEFINITIONS
|
186
|
|
Chapter
§4. Local knot theory in brief
|
186
|
|
Chapter
§5. Global knot theory in brief—the projective case
|
190
|
|
Chapter
§6. Global knot theory in brief—the affine case
|
193
|
|
Chapter
§7. The middle range
|
195
|
|
Bibliography
|
207
|
|
Article
SUR LES SOMMES DE QUATRE CUBES
|
209
|
|
Bibliography
|
220
|
|
Article
THE TOPOLOGY OF REAL ALGEBRAIC SETS
|
221
|
|
Chapter
§0. Introduction
|
222
|
|
Chapter
§1. Resolution of Algebraic Sets
|
225
|
|
Chapter
§2. Nonsingular Algebraic Sets
|
229
|
|
Chapter
§3. Blowing Down
|
237
|
|
Chapter
§4. Isolated Singularities
|
240
|
|
Chapter
§5. Algebraic Structures on P.L. Manifolds
|
246
|
|
Chapter
§6. On classification of Real Algebraic Sets
|
250
|
|
Bibliography
|
260
|
|
Article
MILNOR LATTICES AND GEOMETRIC BASES OF SOME SPECIAL SINGULARITIES
|
263
|
|
Chapter
Introduction
|
263
|
|
Chapter
1. The Milnor Lattice of a Singularity
|
264
|
|
Chapter
2. Geometric Bases of the Milnor Lattice
|
266
|
|
Chapter
3. Milnor Lattices and Weakly Distinguished Bases of Some Special Singularities
|
269
|
|
Chapter
4. Distinguished Bases for the Bimodular Singularities
|
273
|
|
Bibliography
|
280
|
|
Article
ON POLYLOGARITHMS, HURWITZ ZETA FUNCTIONS, AND THE KUBERT IDENTITIES
|
281
|
|
Chapter
§1. Introduction
|
281
|
|
Chapter
§2. Classical examples
|
282
|
|
Chapter
§3. Continuous Kubert functions
|
287
|
|
Chapter
§4. EXTENDING FROM (0, 1) TO R/Z
|
292
|
|
Chapter
§5. Universal Kubert functions
|
294
|
|
Chapter
§6. On Q-linear relations
|
300
|
|
Appendix
Appendix 1 Relations between polylogarithm and Hurwitz function
|
306
|
|
Appendix
Appendix 2 SOME RELATIVES OF THE GAMMA FUNCTION
|
309
|
|
Appendix
Appendix 3 Volume and the Dehn invariant in hyperbolic 3-space
|
315
|
|
Bibliography
|
321
|
|
Article
PROPOS DES ÉQUATIONS ANTIPELLIENNES
|
323
|
|
Bibliography
|
327
|
|
Article
VANISHING OF COHOMOLOGY WITH COEFFICIENTS IN A LOCALLY FREE SHEAF AND PSEUDOCONVEXITY
|
329
|
|
Chapter
Introduction
|
329
|
|
Bibliography
|
338
|
|
Article
THE CLEBSCH-GORDAN FORMULAS
|
339
|
|
Chapter
0. Introduction
|
339
|
|
Chapter
1. SOME REPRESENTATIONS OF $sI_2$
|
339
|
|
Chapter
2. The Weyl algebra A
|
340
|
|
Chapter
3. The theory of the highest weight
|
342
|
|
Chapter
4. The decomposition of A
|
342
|
|
Chapter
5. Decomposition of $Hom(V_m, V_{m+n})$
|
344
|
|
Bibliography
|
346
|
|
Rubric
COMMISSION INTERNATIONALE DE L'ENSEIGNEMENT MATHÉMATIQUE (INTERNATIONAL COMMISSION ON MATHEMATICAL INSTRUCTION)
|
347
|
|
Chapter
ICMI NOTES
|
347
|
|
Article
THE INTERNATIONAL COMMISSION ON MATHEMATICAL INSTRUCTION PAST, PRESENT AND FUTURE
|
348
|
|
Rubric
|
|
|
Rubric
BULLETIN BIBLIOGRAPHIQUE
|
1
|
|
Rubric
BULLETIN BIBLIOGRAPHIQUE
|
45
|
|
Back matter
|
|
|
Back matter
|
|