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§3. Compact groups. Proof of Theorem A.

1. Let U be a compact Lie group. Then we may view U as the group G(R) of
real points of an algebraic group G defined over R [5]. Furthermore, the

maximal (topological) tori of U are the groups T(R), where T runs through the

maximal R-tori of G. They are conjugate under inner automorphisms of U.

Corollary 1 to Theorem 2 insures the existence of a non-commutative free

subgroup T of U such that every y eT — {1} is strongly regular, i.e., generates a

dense subgroup of a maximal torus of U. If now F is a closed subgroup of U,

then, by [10], /(G/F) 0 if F does not contain a maximal torus of G, and is

equal to [NV(T) : NV(T)] if F contains a maximal torus T of G. By the results just
recalled, we may write F H(R), where H is an algebraic R-subgroup of G, the

condition (*) of §2 is satisfied, and any maximal torus of G is conjugate to T
Theorem A now follows from Corollaries 1 and 3 to Theorem 2.

2. The results of this paper, specialized to compact Lie groups, can ofcourse
be proved more directly, in the framework of the theory of compact Lie groups,
without recourse to the theory of algebraic groups. For the benefit of the reader

mainly interested in that case, we sketch how to modify the above arguments.
The main point is again to prove Theorem 1, where now G stands for a non-

trivial compact connected semi-simple Lie group. In part a) of the proof, the role
of SL„ is taken by SUn. If n 2, G contains non-commutative free subgroups. If
n > 2, the argument is the same except that now we take for D, exactly as in [8], a

division algebra with an involution of the second kind and identify SU„ to

(D0 X R)1, where L is the fixed field, in the center of D, of the given involution of D.

In part b), we use the fact that if G is simple, not locally isomorphic to SU„, then it
contains a proper closed connected semi-simple subgroup of maximal rank, for
which we can refer directly to [2] (the proof of Lemma 1 was in fact just an

adaptation to algebraic groups of the one in [2]).
Then, as pointed out in section 5 of §2, a simple category argument yields

Theorem 2, whence also Corollary 1 to Theorem 2 and Theorem A.

§4. Free group actions with commutative isotropy groups

1. Let r be a non-commutative free group acting on a set X. Assume that T
acts freely, or more generally, that the isotropy groups T^xeX) are commutative
(hence cyclic), and that at least one is reduced to {1}. Then the decomposition
theorem 2.2.1, 2.2.2 of [6] implies in particular the following : given n ^ 2, there

exists a partition of X into In subsets Xt and elements yt e T(1 ^ i ^ In) such that
X is the disjoint union of yiXi and + iXn + |I g i ^ n). If we view the operations of
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