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MANIFOLDS WITH CANONICAL COORDINATE CHARTS:
SOME EXAMPLES ')

by Dennis SuLLIVAN and William THURSTON

We will consider examples of low dimensional manifolds with inversive,
projective, and affine structures (see below). The geometry of the associated
developing maps is a problem like the qualitative study of dynamical systems
involving as it does the “infinite composition” of finitely many operations. Our
goal will be to answer in the negative certain questions about affine manifolds—
by producing examples where the developing map is either not a covering of its
image or has a rather complicated image.

These structures, classically called locally homogeneous spaces [1, 3, 8] or
spaces with a flat Cartan connection [4], are determined by “canonical
coordinate charts” on manifolds and may be defined in general as follows:

One starts with a model manifold A (see table below) and a transitive group
.o/ (usually a Lie group) of real analytic homeomorphisms of 4. Then one
constructs all possible manifolds by choosing open sets of A and pasting these
together using restrictions of homeomorphisms from the given group .o/ of
analytic homeomorphisms. Such a manifold M is called an .«/-manifold. More
precisely, an .«/-manifold 1s a manifold M together with an atlask; : U, — A such
that the changes of charts are restrictions of elements of .o/ ; a “canonical chart” is
any chart on M which is .«/-compatible with these.

We will consider the following cases: '

') Our first draft of this paper was done in January 1977. The present version contains

notes and clarifications by N. Kuiper bringing the paper to a more precise form. The
authors acknowledge their thanks.
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structure dimension model manifold 4 group .o/
affine 2,3, 4 affine space affine motions
inversive 2 two sphere group generated

by inversions
in circles
projective 2 real projective projective
plane transformations

We are basically interested in the compact case.

The dynamical nature of such a structure on M arises from the ability to
“roll” or “develop” the manifold M along paths of M (by pasting the open sets of
A) into the model manifold A. We can do this in particular for closed paths
representing generators of the fundamental group n; M of M. The words in ©; M
then determine a dynamical system on A.

Starting from one of the open sets U «— A, the development produces a
covering space M’ — M, a representation t, M 5 G called the holonomy and a
structure preserving immersion, the developing map M’ % A, which is
equivariant via p with respect to the action of 1M on M’ and .« on A.

The ambiguity in the development M’ % A is the choice of one canonical
chart k: U — A about a base point x € U on M, uniquely determined up to
multiplication on the right by an element of .. In other words, the development
d may be found by choosing an arbitrary structure-preserving map in one patch,
then extending this choice by analytic continuation. This process works globally
because .o/ is a group of globally analytic diffeomorphisms.

In Note 1 at the end of this paper Ehresmann’s neat definition of the
development is given.

In Note 2 one sees how an ./-structure can be viewed as a fibrebundle
A — E — M with fibre A and structure group o/, fixed cross section s(M), and
a foliation & transverse to the fibres and to s(M); the foliation & defines
a “parallel transport” of the “tangent” fibres such that, the holonomy is in .27.

In Note 3 one finds the development of curves in a manifold with Cartan
connection as described by Ehresmann in [4], and how this specialises for flat
connections to the above developing map into one fibre.




MANIFOLDS WITH CANONICAL COORDINATE CHARTS 17

s(M)

/’_ﬁ'\. ————
X0 F —leaf of x,

/ P -
.

— ——

FIGURE 1|

Before going to our examples we remark that considerations of the
developing map (an immersion of manifolds of equal dimension),

M 4 A
7l
M

immediately shows such things as

i) there are no compact manifolds with finite fundamental group which have
affine structures.

ii) the only compact n-manifolds with finite fundamental group with projective
or inversive structures are actually covered by the n-sphere §".

Actually i) is true whenever the model manifold A4 is non-compact and ii) is
true whenever the model manifold 4 has a compact universal covering like S”.
In this context we remark that it is not totally unreasonable to hope that all 3-
manifolds have canonical charts relative to some subgroup of analytic
homeomorphisms of S>. This statement by the above remark implies a strong form
of the Poincaré conjecture ; yet the statement itself only involves dimension 3 and
not the fundamental group explicitly. |
Now we turn to our 2-dimensional examples.

L’Enseignement mathém., t. XXIX, fasc. 1-2. 2
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INVERSIVE 2-MANIFOLDS

Inversive structures on orientable two manifolds of genus >1 form a rich
theory properly containing for example the classical subject of Fuchsian and
Kleinian surface groups.

If SI2,C)/ +£1 = Gl2, C)/Gl(1, C) is the group of fractional linear
transformations of CP?, that is the group of orientable inversive (conformal)
transformations of S? and I' is a discrete subgroup acting freely and
discontinuously on a connected open set Q = S?, then Q/I" is a 2-manifold M
with inversive structure. M' is just Q and the developing map is an embedding.

Example 1. If T is a Fuchsian group, that is, Q is an open (round) disk in
C < S?, then the inversive structure is actually a hyperbolic structure—
corresponding to a metric of constant negative curvature. The structure is
inversive and projective at the same time.

Example 2. If I' as in Example 1 is deformed slightly (a so-called quasi-
Fuchsian group; see [9]) then Q2 remains an open disk whose boundary can be a
rather remarkable non rectifiable Jordan curve. This curve has no tangent at a
dense set.

Example 1 Example 2

FIGURE 2

Example 3. Let I' be generated by two.general hyperbolic elements of

sufficient strength so that the union of the fundamental domains of each covers
the entire sphere. Then Q is S* minus a Cantor set and Q/F is a compact
conformal 2 manifold whose developing image is €. (Shottky group)
In Figure 3,r,,r, and r5 are inversions (reflections) in three circles and I' consists
of all products of an even number of these inversions. I' is generated by r,r, and
r,r5. A fundamental domainis D U r;D, D = D; u D,. The Cantor set appears
clearly on the line of symmetry m.
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FIGURE 3

Example 4. A class of examples not always arising from Kleinian groups as
above can be achieved as follows. Let y be the boundary of an immersed disk in
S?. Approximate y by a closed immersed curve again bounding an immersed disk
constituted of 2¢g + 2 (for some integer g > 0) successive arcs of circles meeting
at right acute angles (Fig. 4). The new disk with scalloped edges has a conformal
structure from the immersion and four of these may be assembled to obtain an
inversive 2-manifold of genus g. This topological assemblage is suggested in
Figure 5.

@29 - @3

FIGURE 5
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Note this construction uses inversion in circles, and four angles at a vertex
add up to achieve the non singular conformal structure. Also note the original
immersed disk may be chosen (for g big enough) to cover S% completely (in a very
complicated way) and then the developing map M’ — S? cannot be a covering.
In Figure 6 an example with immersed disk D with 6 vertices(g = 2)is suggested,
where the developing map covers clearly S? completely.

FIGURE 6

We note conversely that if the developing map M’ — S? is not onto (see
Fig. 3, where D, is the initial disk, for an example) then the developing map is
rather remarkably a covering of its image (Gunning [6]). The idea of the proofis
the following—if the image omits at least three points, (exactly one or two points
is easy) M’ has a Poincaré metric of constant negative curvature preserved by the
holonomy group of Moebius transformation acting on the image. Then the
developing map becomes an isometric immersion of a complete manifold and
thus a covering map.

Example 5. There are interesting projective structures on the torus
constructed as follows. Start with a generic linear flow on the projective plane
(with a source, a sink, and a saddle in point B in Fig. 7a) and choose an immersed
curve transverse to the flow lines (Fig. 7b). Note that such curves may be based on
a word in 2 symbols for example ccaaaa in Figure 7, and ccaaacacaa in Figure 8,
where the closed curve on RP? is drawn on the open band that universally
covers the Moebius band, projective plane minus point B.
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Flowing the curve along for time t sweeps out a thickening of the immersed
curve, an immersed annulus. We may identify the two boundary components of
the annulus by the time t map, a locally projective isomorphism.

The identification space is a projective structure on the torus M whose
developing map is the map: M’ = S' x R — RP?, obtained by spreading the
immersed curve around by the flow for all time t € R.

The developing map is not a covering and the image is the projective plane
minus three points for any word different from aa or cc. Note that the covering
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space M’ is obtained by gluing, each time along one of the two segments of a or ¢,
as many copies of open sectors bounded by the lines a and ¢, (each covering an
open annulus [5]) as there are letters in the characteristic word. These projective
structures on the 2-torus are characterized by their (cyclic) word and the t = 1
flow map. In suitable homogeneous coordinates the last is expressed as
Jii iy z) > (xe™, yeP ze o < B <y, t = 1.

Remark.  Following the curve from its initial point P to its endpoint P, one

can say that the sectors of P and P’ were identified by the identity map: in
homogeneous coordinates.

(x,y,2) = (x, ), 2)

A more general case (see Goldman [5]) is obtained if we identify by any
projectivity commuting with f}:

g:(x,y,z) = (xe*, ye*, ze")
A, 1, veR.

AFFINE STRUCTURES IN 2, 3, AND 4 DIMENSIONS

In dimension two orily the torus admits an affine structure by Benzecri [1]
and for all affine structures the developing map is a covering of its image by
Nagano-Yagi [ 7]. The image 1s affinely equivalent to either the whole plane, the
once punctured plane, the half plane or the quarter plane.

We obtain interesting affine structures in dimensions 3 and 4 using
respectively the projective and inversive structures in dimension 2 discussed
above.

i) A projective transformation of the real projective plane RP? = R?
— {0}/R* (where R* = R — {0}) lifts to an affine transformation of V' = R’
— {0}, unique but for scalar multiplication. Any such commutes with scalar
multiplication by a real number o > 1 (e.g. a = 2).

Thus one may build an affine 3-manifold using as a pattern a projective two
manifold (open sets in the projective plane lift to open sets (cones) in V etc.). If we
further divide by the action of a compactness is preserved in the construction.

The projective structures on the two torus constructed above yield compact
affine 3-manifolds where the developing map is not a covering. In particular,
from the example in Figure 7, we can obtain an affine 3-manifold which develops
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over the part outside the coordinate axes of {X > 0} U{Z > 0} = R’
— !(x. y. z)}, but not as a covering. In these examples the 3-manifold M is a 3-
torus.

ii) Similarly, a projective transformation of the complex projective line CP!

= C? — [0}/C*, that is to say an orientable conformal or inversive
transformation of §> = CP!, lifts to a complex affine transformation of V
= C? — {0}, unique but for scalar multiplication and commuting with scalar

multiplication.

We can build a four dimensional affine manifold from an inversive 2-mani-
fold, which is actually a complex affine manifold of C-dimension 2, and this
construction is the analogue of the above over C, thinking of S? as CP' and the
conformal transformations as the C-projective transformation.

Again compactness is achieved if we divide by o = 2. Thus using the
inversive Example 2 we obtain affine 4-manifolds whose developing image has a
complicated boundary related to the non-differentiable Jordan curve. Using
Example 3, we obtain an affine four-manifold whose developing image in R*
omits a Cantor set of two planes passing through the origin.

Using Example 4, we can build affine manifolds whose developing map is not
a covering of its image (which is all of C? — 0). And we repeat, all the above are
actually complex affine structures on compact 4-manifolds.

NOTE 1 (see page 16). Ehresmann defined the development map as follows.
Let # — M be the principle .«7-bundle over M, whose points are germs [ x, K]
of canonical charts {xe U « M, k: U - A}. Define a new topology % () in
the set Z by taking as open set the germs at all points x € U of any given chart
K: U — A. The natural map d: #(#) — A4 is an immersion. Choose one com-
ponent of #(#) and call it M'. The restriction d: M’ - A is a develop-
ment map. The restriction of the natural fibre bundle projection p: #(#) - M
1s a covering M’ — M.

NOTE 2 (see page 16). The fibre bundle picture. For the simple local
discussion of one canonical chart U = A, we can describe a trivial fibre bundle
E, = U x A - U by assigning to any x € U the “heavily osculating” model
space A, = A. The manifold U is embedded as the diagonal cross section. s(U)
= (v, y)} = diaglUxU) c U x U = U x A. Its points are the points of
tangency of fibre and base manifolds. Finally a foliation % is defined as the one
with horizontal leaves U x {v} =« E;, = U x A4, for ve A. |

For the global discussion of an .o7-structure on a manifold M, we assume .o7-
compatible canonical charts that are topological embeddings k: U ¢, A for
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small open sets U < M. A point of the fibre bundle space E over M is by
definition a triple

{xa K, U} s

where xe U « M,x:U - A is a canonical chart and ve A, modulo
equivalence by the action of &/ given by g: {x,x, v} 3 {x,«, v’} where «’
=gox, vV = gv,ge . In E, M is embedded as the “diagonal cross section”
s(M), whose points are represented by triples {x, k, k(x)}. The foliation # has the
local “horizontal” leaves represented by triples {U, k, v}. For contractible closed
curves starting and ending at x, € M in the base space M, the holonomy of the
foliation is of course the identity map of the fibre A, - Asaconsequence for closed
curves in general, starting and ending at x, the holonomy gives the
representation of n, M into the group o/ acting on A, . “Parallel displacement”
of the points of s(M) along the lifting in % -leaves of curves in the base space
ending at x,, determines the development map M’ — %

NoOTE 3 (see page 16). Flat Cartan connections. Manifolds with canonical
(«/, A)-charts are the flat cases (without torsion and without curvature) of
manifolds M with a general (</, A)-connection. They are defined in [4] as
follows

(1) A fibre bundle A - E - M with fibre A over M
(2) A fixed cross section s(M)

(3) An n-plane field € in E transversal to the fibres and transversal to the fixed
cross sections, such that

(4) The holonomy obtained by lifting a closed curve starting and ending at
xo € M, into all curves tangent to &, belongs to .o/ acting on A, . It is in
general different for homotopic curves. It is flat if contractible closed curves
have trivial holonomy (= identity).

The development of a curve ending in x, in M, is obtained by dragging along 1
the corresponding points of s(M) until they arrive in the fibre A, - In the flat case
homotopic curves with common initial and end points give the same image of the
" initial point in the end fibre and the development map is achieved.
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