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Finally, some conjectures on less algebraic knot invariants of links of
singularities should be mentioned. The Milnor number p of a singularity is the
rank of H^Fq ; Z). Let us look at a single branch, for convenience. Then Milnor
conjectured [Mi 2] that p/2, which is the genus of F0 and therefore (by a general
theorem about fibred links) the genus of the knot dF0, actually is the slice genus
of ôF0. One can make the weaker conjecture that at least p/2 is the ribbon

genus of dF0. Milnor also wondered if this integer equalled the
Überschneidung szahl, or gordian number, of dF0; again the conjecture can be

weakened, if one introduces the concepts of "slice Überschneidungszahl" and
"ribbon Überschneidungszahr, cf. [Ru 2]. The conjectures are true in various
cases where direct calculations can be made (e.g., the cusps z t2, w t3),

but I know of no general results.

§5. Global knot theory in brief—the projective case

A curve T c= CP2 can be given by its resolution r : R -+ T (a complex-
analytic map from a compact Riemann surface into CP2 which is generically
one-to-one on R) or by its polynomial F(z0, zu z2) e C[z0, zu z2] (the
homogeneous polynomial of least degree, not identically zero, which vanishes at

every point of T). These suggest different kinds of knot-theoretical questions.
One can consider all curves with diffeomorphic resolutions (the requirement that
the curves have complex-analytically equivalent resolutions would be too
stringent, and is less topological), and ask how differently they can be placed in
the plane. Or one can consider families of curves, each cut out by a polynomial of
some fixed degree.

Let Pd denote the projective space of the vector space of homogeneous

complex polynomials in (z0, zl5 z2) of degree d. Because we never want to
consider curves with multiple components, we throw out of Pd the algebraic
subset corresponding to reducible polynomials with a multiple factor; the

remaining Zariski-open subset Qd corresponds to the set of what we may call

curves of geometric degree d. If (the equivalence class of) F(z0, z1? z2) belongs to
Pd, let rF {(z0 : zx : z2) g CP2 : F(z0, zl9 z2) 0} ; then F g Qd if and only if
there is an open dense set of lines in CP2 which intersect TF transversely in d

distinct points.
The condition that Ff have a singular point is, of course, an algebraic

condition on F. Let Sd c= Pd be the algebraic subset of singular curves without
multiple components, and Rd Qd — Sd the Zariski-open subset of
polynomials of geometrically regular curves of geometric degree d. Any curve

rF, F g Rd, is its own resolution (r identity). By connecting any two F,G e Rd
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with a path in Rd, one may construct an isotopy (which may be effected by an

ambient isotopy) between the curves FF and TG in CP2 ; so all these curves are

diffeomorphic, and of the same knot type in the plane. More generally, F e Qd lies

in a maximal connected subset of Qd of polynomials G such that FF and FG are

ambient isotopic, through algebraic curves. These subsets form a stratification of

Qd which is little understood. Zariski [Z] showed that two (singular) curves in g6,

homeomorphic and with the same type and number of singularities (cusps), were

not in the same stratum, by showing that the knot groups tt^CP2 — Ff) and

^(CP2 — rG) were not isomorphic. In general, as we will see below, the knot

group cannot distinguish strata.
An interesting question (I do not know to whom it is due : I heard of it in

Dennis Sullivan's problem seminar at M.I.T. in the summer of 1974) is whether

there are curves Ff and TG which are ambient isotopic but not so through
algebraic curves. I know of no results here.

The incidence structure of this stratification of Qd by "algebraic ambient

isotopy types" is, especially, not understood : this is the theory of degenerations.

It can be proved that the knot group associated to a given stratum is the

homomorphic image of the knot group associated to any stratum incident to the

given stratum. Partly, it was the desire to apply this fact to the proof of the

Zariski Conjecture (see below) which led investigators for many years to the

study of some particular (unions of) strata to which we now turn.
First we recall the two simplest sorts of singularities. A cusp has a single

branch, locally given by z f2, w t3 ; the link of a cusp is a trefoil knot (of a

fixed handedness once one establishes conventions). A node has two branches,
each itself nonsingular, with distinct tangent lines ; it can be locally given by the

equation zw 0, and its link is a Hopf link of two components (linking number
+ 1). A curve F is a node curve if all its singularities (if any) are nodes, and a cusp
curve if all its singularities are either nodes or cusps.

We also recall, what we have not needed before, the notion of reducibility : a

curve T is reducible if its resolution is not connected ; alternatively Ff is reducible
if and only if F is reducible but square-free. A curve that is not reducible is
irreducible.

The extreme of reducibility is displayed by any F e Qd which is the product of
d linear factors. Then the curve Ff is the union of d projective lines, which we will
say (here) are in general position ifFf is a node curve, that is, ifno three of the lines
are concurrent. Let Ld a Qd be the set of all such completely reducible curves.
Then Ld is a single stratum. Let Nd a Qd be the set of polynomials of node
curves ; Nd is a union of strata. What is now called the Severi Conjecture is the
statement that Ld is incident to every stratum in Nd ; in other words, that every
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node curve can be degenerated to d lines in general position. We will compute the
knot group of à lines in general position below. It is, in particular, abelian.
Consequently, the truth of the Severi Conjecture would imply that the knot group
ofany node curve is abelian—a statement long known as the Zariski Conjecture,
which has recently been proved true by quite other means [F-H, De]. Of course,
independent of the truth of the Severi Conjecture, one can study the union Md

a Nd of those strata which actually are incident to Ld. Moishezon [Mo] calls Md
the mainstream of node curves in his investigation of "normal forms for braid
monodromies". Such normal forms (when they exist) enrich the datum of the
knot group by giving it in a particularly nice presentation related to the algebraic
geometry.

Now let Kd a Qd correspond to the cusp curves. Here the knot groups need

no longer be abelian. In fact, for

F(z0, Zi,z2) z\z\+ 4z0(z2 —zi) + 6ZoZiZ2 - 27zq

in K4, a curve with three cusps and no nodes (which has resolution

r :CP1 TF : (f0 : t j) i-> (tfâ : + 2 : 2t0t\ +1%)

the knot group can be computed (as by Zariski [Z] or, algebraically, by
Abhyankar [Ab]) to have the presentation (a, b : aba bab, a4 1, a2 b2),

making it non-abelian of order 12.

The knot groups of cusp curves have been studied because of their

application to the study and possible classification of complex (algebraic)
surfaces. In fact, iff : Y -> CP2 is a so-called stable finite morphism, X' c= Tthe
locus where /is not étale, X /(£')> then X is a cusp curve.

Zariski commissioned van Kampen, in the early 1930's, to calculate the knot

group of an arbitrary curve [vK] ; van Kampen gave his solution in terms of a

certain presentation of the knot group. If T has (geometric) degree d, then van

Kampen's presentation has d generators xl5..., xd which represent loops in a

fixed projective line CP^ transverse to T ; the intersection T n CPJo contains d

points Pu Pd, and xt is a loop from a basepoint * e CP^ out to Ph around it
once counterclockwise, and back to *. One relation is then that x1 xd 1. The

rest arise by carrying CP^ around certain loops of lines. In fact, let CP2* be the

dual projective plane, each point of which is a line in CP2 ; and let T* contain all
lines which are either tangent to T or pass through one of its singular points.
Then T* is a curve in CP2*. If * and CP^ are sufficiently general, then the pencil

of lines in CP2 through *, which is itself a line in CP2*, will be transverse to T*.
The (free) fundamental group of the complement of T* in this pencil is naturally
represented in the automorphism group of the free group (x1?..., xd : xq xd
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1). The rest of the relations needed for the van Kampen presentation of

tt^CP2 — T ; *) come, then, by declaring this representation trivial. One obtains a

finite presentation, of course, by choosing generators of the acting free group ;

Moishezon's problem of "normal forms" is essentially the problem of making a

good choice. Several modernizations [Abe], [Che], [Cha] of van Kampen's

proof have been published in recent years.
In a standard van Kampen presentation (where the generators of the acting

free group are free generators), each relation corresponds either to a singularity
of T or to a simple vertical tangent to T ; and (up to the action of the

corresponding free generator) each relation is of a certain canonical form, which

depends only on the closed braid type (§7) of the link of the branch(es) at the point
of T, through which the line in the pencil passes that gives the relation in

question, where this line itself is used to find the axis of the closed braid. In
particular, the knot group of a node curve always has a standard van Kampen
presentation in which each relation either sets conjugates of two xt equal (from
a simple vertical tangent) or says that two such conjugates commute (from a

node) ; if "conjugates" could be deleted, the Zariski Conjecture would be trivially
true.

There is also a great body of work on "knot groups" of curves in (compact,
smooth) complex surfaces other than CP2, and on the related issue of
fundamental groups of surfaces ; we cannot touch on these topics here.

§6. Global knot theory in brief—the affine case

Little appears to be known about algebraic curves in affine space, from the
knot-theoretical viewpoint. The gross algebraic topology (even just homology
theory) of CP2 is implicated with the quite rigid geometry ; but affine space is

contractible, and on the other hand its geometry is "infinite" (for instance in the
sense that there are Lie groups of arbitrarily high dimension contained in the

group of biregular automorphisms of C2), so that the conspirators have fallen
out and neither can give away much about the other.

One might think, for example, to study the embedding of a curve T in C2 by
first embedding C2 itself into CP2. Then the affine complement C2 - T becomes
the projective complement CP2 - (TuCPjJ, where T u CP^, is a (reducible)
projective algebraic curve. The obstacle to this program is the unfortunate fact
that C2, just as an algebraic surface, without distinguished coordinates, is not
uniquely embedded as CP2 - CP^. Any biregular automorphism of C2 (in
particular, one of the vast majority which cannot be extended biregularly to CP2)
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